
 
 

TYPE 1 FUZZY FUNCTION APPROACH BASED ON RIDGE REGRESSION 

FOR FORECASTING 
 

 Fuzzy function approach is a kind of fuzzy inference system that can produce successful results for 
analyzing of forecasting problems. In a fuzzy function approach, a fuzzy function corresponding to each 
fuzzy set is generated by using multiple regression analysis. The number of explanatory variables in 
multiple regression analysis is increased via the non-linear transformations of the membership functions 
to improve the prediction performance of the model. In a fuzzy function approach, it can be found a high 
correlation between the non-linear transformations of membership functions and therefore the multiple 
linear regression method used to define fuzzy functions, which has multicollinearity issues. In order to 
overcome this problem, a new fuzzy function approach using ridge regression instead of multiple linear 
regression in Type 1 fuzzy function approach is proposed in this paper. The new Type 1 approach is 
applied to various real world time series data and the results are compared to the ones obtained by other 
techniques. The results obtained with the new methodology show superior forecasts performance.  

 

Keywords: Type 1 fuzzy function approach, ridge regression, fuzzy inference system, forecasting, 
fuzzy c-means. 
 

1. INTRODUCTION 
The future planning has become very important in the world we live in. It is vital to obtain accurate 

and reliable forecasts in making plans for the future. Fuzzy inference systems have been added in recent 
years to the methods used to obtain predictions. Fuzzy inference systems work based on fuzzy sets 
created for input and output data set on hand. In the literature, the fuzzy inference system proposed by 
Takagi and Sugeno (1985) and the adaptive network fuzzy inference system (ANFIS) proposed by Jang 
(1993) have been commonly used for forecasting problem. Both of these fuzzy inference systems work 
based on a rule base. The determination of these rules requires expert knowledge and this situation 
prevents the objective working of the inference system. 

Therefore, fuzzy function approach was proposed by Turksen (2008). Fuzzy function approach does 
not need rule base as it uses fuzzy functions instead of rules. The different applications of fuzzy function 
approach were developed by Celikyilmaz and Turksen (2008a, b) and Turksen (2009). The detailed 
information about fuzzy functions can be found in Celikyilmaz and Turksen (2009). A hybrid fuzzy 
function approach was proposed by Zarandi et al. (2013). The fuzzy function approach for forecasting 
problem was reconsidered in the study of Beyhan and Alci (2010).  

Fuzzy function can produce successful results for prediction problems. In a fuzzy function approach, 
while obtaining fuzzy functions, the input matrix is extended with the use of various nonlinear 
transformations of memberships. It should not be a significant linear relationship between the 
explanatory variables in multiple regression method used in the obtaining of fuzzy functions. Linear 
relationship between the explanatory variables in multiple regression leads to multicollinearity problem 
and this situation causes an increase in variance of estimators and to obtain inconsistent prediction results. 
It is clearly seen that the nonlinear functions of the memberships used to obtain fuzzy functions are 
related between each other.   

As a result, Type 1 fuzzy function (T1FF) approach works based on regression models with 
multicollinearity problem. The presence of multicollinearity problem in T1FF method is a sign that the 
results obtained from T1FF method are not reliable. In order to obtain reliable results in T1FF method, 



  
  

multicollinearity problem has to be eliminated. For this purpose, ridge regression technique can be used 
instead of classic regression analysis to overcome multicollinearity problem.  

Ridge regression was firstly proposed by Hoerl and Kennard (1970a) and it has been frequently used 
in the literature to overcome multicollinearity problem. There are many methods to determine 
multicollinearity problem. One of these methods is to determine shrinkage parameter in ridge regression. 
A simple formula to obtain shrinkage parameter in ridge regression was proposed by Hoerl et al. (1975). 

In this paper, the multicollinearity problem in T1FF approach is solved by using ridge regression 
technique. The proposed new T1FF approach is called as “Type 1 fuzzy function approach based on 
ridge regression (T1FFRR)”. In the proposed method, the shrinkage parameter of the ridge regression 
was obtained as in the study of Hoerl et al. (1975). The new T1FFRR approach is applied to many real- 
world time series data sets and the results are compared to the ones obtained from other techniques.  

The rest part of the paper can be outlined as below: The second section of the paper is about T1FF 
approach. Ridge regression technique is briefly summarized in Section 3. In the fourth section of the 
paper, the proposed new T1FFRR approach is introduced with details. Section 5 presents the results from 
the application of the proposed method to real life data sets and finally Section 6 presents conclusions 
and discussions. 

2. TYPE 1 FUZZY FUNCTION APPROACH 
Fuzzy inference system proposed by Takagi and Sugeno (1985) and ANFIS are fuzzy inference 

systems that require the creation of a rule base. Fuzzy function approach proposed by Turksen (2008) is 
a fuzzy inference system working without a rule base. In a fuzzy function approach, a linear function is 
composed via linear regression method for each fuzzy set obtained from fuzzy c-means and the output 
of the system is obtained from the output of weighted fuzzy function predictions with memberships as 
weights. Four different fuzzy function approaches were given in Celikyilmaz and Turksen (2009). In a 
fuzzy function approach, fuzzy function is obtained as the number of clusters and requires fewer 
parameters than other fuzzy inference systems. The non-linear relationship between input and output 
can be modeled on the grounds that fuzzy function approach is an approach based on data. The most 
important issue in fuzzy function approach is that it has multicollinearity problem and also there is no 
method in the literature that provides a solution on this subject. In this study, Type 1 fuzzy function 
approach has been modified by solving multicollinearity problem.  

3. RIDGE REGRESSION 
 

In the regression analysis, the presence of full or high level relationships among the independent 
variables is explained by the concept of multicollinearity. The presence multicollinearity has significant 
effects on the estimates of least squares of the regression coefficients. The most important effect of 
multicollinearity problem is that the regression coefficients cause the smallest squares estimates to have 
large variance. That means if there is multicollinearity among the independent variables, it would be 
inappropriate to do solutions with ordinary least squares (OLS).  
 

It is well known that the OLS estimates of regression coefficients  are unbiased estimators. In the 
ridge regression method, different from classical regression analysis, the ridge estimates of regression 
coefficients are biased estimators. The ridge model estimates the coefficients in the regression analysis 
as biased to reduce the variances of the predictions. 
 
Ridge regression was firstly proposed by Hoerl and Kennard (1970a). In the literature, several methods 
have been developed to determine whether there is multicollinearity or not. One of these methods is to 
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examine correlation coefficients. If the correlation coefficients between the independent variables are 
close to 1, this indicates the presence of multicollinearity problem. One of the other methods to determine 
the multicollinearity problem is variance inflation factors (VIF). The diagonal elements of 𝑉𝑎𝑟(𝛽)'  is 
called as VIF. If VIF value is bigger than 10, this indicates the presence of multicollinearity problem. 
 
The OLS estimates of regression coefficients and ridge estimates of regression coefficients are given in 
the Equations 1 and 2 respectively. 

                         (1) 

                      (2) 

One of the main obstacles in using ridge regression is the choice of value of k.This k value is also called 
as biased parameter or shrinkage parameter and it takes values between 0 and 1. In the literature there 
are some methods to find this k value. One of these methods is ridge trace method proposed by Hoerl 
and Kennard (1970). In this method, Hoerl and Kennard (1970) suggested using a graphic to find this k 
value. Besides this method, in the advancing years, Hoerl et al. (1975) proposed an iterative method for 
selecting of the value of k. This method is based on the Equation 3.  

𝑘 = *	,-.

/01/0
                      (3) 

 

4. THE PROPOSED METHOD 
In T1FF approach, ridge regression technique can be used to eliminate the multicollinearity problem that 
arises from the relationship between non-linear transformations of the membership values. The 
forecasting performance will be increased in a fuzzy function approach which does not have the 
multicollinearity issue.  
A new T1FFRR approach that uses ridge regression to define fuzzy functions is given as an algorithm 
below.  
 
Algorithm: The Proposed Method 
Step 1. The inputs of the system are lagged variables (number of p).  
The model order (𝑝)	is determined according to the structure of the time series. Time series is shown as 
column vectors in the form of 𝑋4 = [𝑥7, 𝑥9,… , 𝑥;]1. The matrix Z is composed of the input and outputs 
of the system and its dimension is (𝑛 − 𝑝) × (𝑝 + 1). 

𝑍 = [𝑋4 𝑋4C7 𝑋4C9 … 𝑋4C*]                              
(6) 

The elements of the matrix are clustered using Fuzzy Clustering Method (FCM) technique proposed by 
Bezdek (1981). FCM clustering technique is applied iteratively as per Equations (7) and (8). In these 
Equations,	𝑐,  𝑣F  (𝑖 = 1, 2, … , 𝑐) and 𝜇FJ  (𝑖 = 1, 2,… , 𝑐	; 	𝑘 = 1, 2,… , 𝑛) represent the number of 
fuzzy sets, cluster centers and membership values, respectively.  

𝑣F =
∑ (MNO)PQOR
OST
∑ (MNO)PR
OST

		,			𝑖 = 1, 2, … , 𝑐                         (7)     

𝜇FJ = U∑ VW(QO,XN)
W(QO,XY)

Z
.

P[T\
]^7 _

C7

		,			𝑖 =, 2,… , 𝑐	; 	𝑘 = 1, 2,… , 𝑛     (8) 
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where 𝑓	is the degree of fuzziness, 𝑧J is a vector whose elements are the elements compose of kth row 
of 𝑍.  µik; is the degree of belongingness of kth observation to ith cluster and 𝑑(𝑧, 𝑣): is Euclidian 
distance and is computed by using Equation 9. 

𝑑(𝑧J, 𝑣F) = ‖𝑧J − 𝑣F‖                                           
(9) 
Step 2. The membership values are determined by using the Equation 8 for the input data set according 
to the center determined from FCM technique.  

𝜇FJ = U∑ VW(dO,XN)
W(dO,XY)

Z
.

PN[T;
]^7 _

C7

, 𝑖 = 1, 2,… , 𝑐	; 	𝑘 = 1, 2,… , 𝑛    

(10)   
where;𝑥J,	is a row of the input matrix which is generated for lagged variables and it is a vector whose 
elements are the elements compose of kth row and  this value is taken as zero when µik ≤ 𝛼. 𝑓F is 
fuzziness index. 

𝑋 = [𝑋4C7 𝑋4C9 … 𝑋4C*]                                  
(11) 

Step 3. For each cluster 𝑖 , the membership values of each input data sample (µik), non-linear 
transformations of membership values and  original inputs are used as explanatory variables  
and ith fuzzy function is obtained from predicting of  𝒀(F) = 𝑿(F)𝜷(F) + 𝜺(F) multiple regression model. 
𝑋(F)  and 𝑌(F)  matrices are as follows when the number of lagged variables is 𝑝  and using 

transformations 𝜇F79 , 𝑒𝑥𝑝	(𝜇F7)  and 𝑙𝑛m(1 − 𝜇F7)/𝜇F7o  for non-linear transformation of the 

membership values. 

𝑿(F) =

⎣
⎢
⎢
⎢
⎡𝜇F7 𝜇F79 𝑒𝑥𝑝	(𝜇F7) 𝑙𝑛m(1 − 𝜇F7)/𝜇F7o 𝑥7 						⋯ 𝑥*
𝜇F9
⋮

𝜇F99
⋮

𝑒𝑥𝑝	(𝜇F9)
⋮

𝑙𝑛m(1 − 𝜇F9)/𝜇F9o
⋮

			𝑥9 								⋯ 𝑥*u7
⋮ 							⋯ ⋮

𝜇F; 𝜇F;9 𝑒𝑥𝑝	(𝜇F;) 𝑙𝑛m(1 − 𝜇F;)/𝜇F;o 			𝑥;C* 			⋯ 𝑥;C7⎦
⎥
⎥
⎥
⎤
                

(12) 

𝒀(F) = y

𝑥*u7
𝑥*u9
⋮
𝑥;

z                                             

(13) 
Maximum likelihood estimators of regression parameters are obtained as follows. 

𝛽{'
(F)
= (𝑿(F)1𝑿(F) + 𝑘𝐼)C7𝑿(F)1𝒀(F)                            

(14) 

𝒀0(𝒊) = 𝑿(F)𝛽{'
(F)

                                         

(15) 
Here shrinkage parameter (𝒌)	is obtained by using Equation 4.  
 



   
  

Step 4. The results obtained from fuzzy functions are weighted according to the membership values and 
the output values are calculated as follows: 

𝑦�J =
∑ ��NOMNO�
NST
∑ MNO�
NST

	 , 𝑖 = 1,2,… , 𝑐, 𝑘 = 1,2, . . . , 𝑛 − 𝑝              

(16)            
where, 𝑦�FJ  represents the predicted value obtained from ith cluster for the observation 𝑘 and 𝑦�J  is the 
forecasted value of the approach for the observation 𝑘. The flowchart of proposed method is given in 
Figure.1. 
 

 
FIGURE 1. The flowchart of proposed method 

5. APPLICATIONS 
In this study, 12 time series data were analyzed for the evaluation of the forecasting performance of 

the proposed method. The first five time series data sets are Istanbul Stock Exchange Market (BIST100) 
data observed daily between years 2009 and 2013. The next five time series data set are Taiwan Stock 
Exchange Capitalization Weighted Stock Index (TAIEX) data observed daily between 2000 and 2004. 
The next data set is Australian Beer Consumption (AUST) data observed quarterly between years 1956 
and 1994. Finally, the last data set is Turkey Electricity Consumption (TEC) data observed monthly 
between first month of 2002 and last month of 2013.  

These time series and their features are presented in Table 1. The methods are compared in terms of 
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) criteria. RMSE and 
MAPE are calculated using Equations (17) and (18):   

𝑅𝑀𝑆𝐸 = �7
;
∑ (𝑦J − 𝑦J�)9;
J^7                           

(17) 



  
  

                                  

(18) 
TABLE 1. The names and features of time series 

 
Series 

No 
Series/Year The number of α-cut ntest 

Obs. Lag Clust
er 1 BIST100/2009 103 1:5 3:7 0,0.1,0.

2 
7,15 

2 BIST100/2010 104 1:5 3:7 0,0.1,0.
2 

7,15 
3 BIST100/2011 106 1:5 3:7 0,0.1,0.

2 
7,15 

4 BIST100/2012 106 1:5 3:7 0,0.1,0.
2 

7,15 
5 BIST100/2013 106 1:5 3:7 0,0.1,0.

2 
7,15 

6 TAIEX/2000 271 1:5 5:15 0,0.1,0.
2 

47 
7 TAIEX/2001 244 1:5 5:15 0,0.1,0.

2 
43 

8 TAIEX/2002 248 1:5 5:15 0,0.1,0.
2 

43 
9 TAIEX/2003 249 1:5 5:15 0,0.1,0.

2 
43 

10 TAIEX/2004 250 1:5 5:15 0,0.1,0.
2 

45 
11 AUST 148 4,8 3:10 0,0.1,0.

2 
16 

12 TEC 144 2:16 3:10 0,0.1,0.
2 

12 
 
In the first case, the proposed method was implemented on BIST100 data sets. The results are compared 
with the results obtained by the following methods: 

• ARIMA: Autoregressive Integrated Moving Average Model. The best model has been 
determined by Box-Jenkins Procedure. 

• ES: Exponential Smoothing. Simple, Holt and Winters exponential smoothing methods were 
applied and the best model has been selected. 

• MLP-ANN: Multi-Layer Artificial Neural Network. The number of hidden layer neurons varies 
between 1 and 5 and the best architecture was selected by trial&error method. Levenberg 
Marquardt training algorithm was used as learning algorithm. 

• SC: Song and Chissom time invariant fuzzy time series method (Song and Chissom, (1993b)). 
The number of fuzzy sets varies from 5 to 15 and the best number of fuzzy sets have been 
selected. 

• FF: Fuzzy Function Approach (Turksen, (2008)). The model order and the number of fuzz sets 
varies from 1 to 5 and from 5 to 15, respectively.  

The best situations were determined for each series. Table 2 summarizes the results obtained from test 
set for Series 1-5.
 

TABLE 2. The obtained results for Series 1-5 and when ntest=7 and 15 

100*
ˆ1

1
å
=

-
=

n

k k

kk

y
yy

n
MAPE

 ARIMA ES MLP-ANN SC T1FF T1FFRR 
Series/ 
Ntest 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

Series 1/7 345 0.0087 345 0.0087 325 0.0083 140
2 

0.0396 446 0.0101 319 0.0077 
Series 
1/15 

540 0.0120 540 0.0120 525 0.0114 175
4 

0.0438 534 0.0122 495 0.0112 



   
  

 
The proposed method shows a 70% success for BIST 100 data sets and provides a noticeable 
improvement on the forecasting performance. Besides, although the proposed method has 30% failure, 
the multicollinearity problem has been eliminated. An example of multicollinearity problem in T1FF 
approach was given in Table 3 for Series 1 when ntest=7. It was shown that T1FF method has 
multicollinearity problem because some VIF values are greater than 10. And also there is no 
multicollinearity problem when using T1FFRR method because all VIF values are less than 10. 

 
TABLE 3. The comparison of VIF values obtained from T1FF and T1FFRR methods for Series 1 when ntest=7. 

 
VIF Values 

T1FF T1FFRR 

1963.121 2.225606 
1545.953 5.193898 
1368.769 5.433400 
1969.465 1.776532 
4.01E-08 3.85E-08 
6.97E-08 6.73E-08 
6.81E-08 6.68E-08 
6.74E-08 6.41E-08 
3.48E-08 3.47E-08 

 
And also, the best situations for Series 1-5 for the best results were given in Table 4. 

 
TABLE 4. The best situations for Series 1-5 

 
Series/Ntest 𝑚 𝑐𝑛 α-cut 

Series 1/7 4 5 0.1 
Series 1/15 3 3 0.2 
Series 2/7 4 3 0.1 

Series 2/15 2 3 0.0 
Series 3/7 2 5 0.1 

Series 3/15 4 4 0.2 
Series 4/7 2 5 0.1 

Series 4/15 2 5 0.0 
Series 5/7 2 5 0.1 

Series 5/15 2 5 0.0 
 
In the second case, the proposed method was implemented on TAIEX data sets. Table 5 summarizes 
the results obtained from test set for Series 6-10. 

Series 2/7 1221 0.0183 1208 0.0185 1077 0.0143 112
8 

0.0182 1180 0.0179 1080 0.0155 
Series 
2/15 

1612 0.0220 1612 0.0220 1603 0.0220 174
2 

0.0265 1852 0.0264 1575 0.0213 
Series 3/7 1058 0.0144 1057 0.0144 920 0.0128 139

6 
0.0200 1083 0.0153 915 0.0115 

Series 
3/15 

1130 0.0150 1130 0.0150 1096 0.0146 136
0 

0.0189 1146 0.0156 1028 0.0143 
Series 4/7 651 0.0084 651 0.0084 775 0.0111 129

2 
0.0183 1034 0.0162 720 0.0106 

Series 
4/15 

621 0.0088 621 0.0088 783 0.0117 104
7 

0.0153 1038 0.0161 676 0.0100 
Series 5/7 1362 0.0116 1362 0.0116 1315 0.0109 145

0 
0.0108 1512 0.0131 1251 0.0102 

Series 
5/15 

1269 0.0109 1269 0.0109 1233 0.0107 193
1 

0.0176 1279 0.0108 1237 0.0103 



  
  

 
TABLE 5. All obtained results for TAIEX 

 
   Series    

Methods 6 7 8 9 10 Mean 

Chen (1996) 176.32 147.84 101.18 74.46 84.28 116.816 
Chen et al. (2010) 

()996) 
129.42 113.33 66.82 53.51 60.48 84.712 

Chen and Chen 
(2011) 

123.62 115.33 71.01 58.06 57.73 85.15 
Chen et al. (2012) 119.98 114.47 67.17 52.49 52.27 81.276 

T1FFRR 119.73 113.17 62.55 48.73 51.66 79.168 
 

Analysis of Table 5 reveals that the proposed method exhibit more successful and superior forecasting 
performance compared to other methods in terms of RMSE performance criteria. And also, the best 
situations for Series 6-10 for the best results are given in Table 6. 

 
TABLE 6. The best situations for Series 6-10 

 
Series 𝑚 𝑐𝑛 α-cut 

Series 6 5 9 0.1 

Series 7 2 9 0.2 
Series 8 4 13 0.1 
Series 9 2 5 0.2 

Series 10 4 11 0.0 
 

In the next case, the proposed method was implemented on AUST data set (Series11). Table 7 
summarizes the results obtained for the test set for Series11. Series 11 was forecasted by Seasonal 
Autoregressive Integrated Moving Average (SARIMA), Winters’ multiplicative exponential smoothing 
method (WMES), linear and nonlinear artificial neural network model (L&NL-ANN) proposed by Yolcu 
et al. (2013), multiplicative neuron model based fuzzy time series method (MNM-FTS) proposed by 
Aladag (2013) and T1FF method. 

 
TABLE 7. All obtained results for Series 11 

 

Test Data SARIMA WMES 
Yolcu et al. 

(2013) 
Aladag 
(2013) 

T1FF T1FFRR 

430.50 452.72 453.91 449.92 437.50 446.20 446.64 

600.00 578.29 575.22 574.28 537.50 580.12 580.95 
464.50 487.70 502.32 481.47 437.50 483.04 481.19 
423.60 446.28 444.73 442.79 437.50 442.97 442.76 
437.00 456.77 459.66 445.12 437.50 444.74 445.13 
574.00 583.51 582.48 571.97 537.50 579.90 579.87 
443.00 492.13 508.64 472.76 487.50 468.01 465.80 
410.00 450.36 450.31 416.36 437.50 418.98 418.72 
420.00 461.01 465.40 428.63 437.50 431.60 431.85 
532.00 588.96 589.74 559.89 562.50 559.41 559.10 
432.00 496.77 514.96 445.75 462.50 444.08 442.34 



   
  

420.00 454.64 455.89 390.25 412.50 394.99 394.65 
411.00 465.46 471.15 412.38 437.50 409.72 410.03 
512.00 594.71 597.00 533.19 537.50 525.60 525.92 
449.00 501.67 521.28 442.13 437.50 438.91 436.09 
382.00 459.17 461.46 405.08 412.50 409.07 408.81 
RMSE 47.0367 53.3295 18.7888 29.1381 17.3926 17.0845 
MAPE 0.0949 0.1072 0.0357 0.0532 0.0345 0.0340 

 
Analysis of Table 7 reveals that the proposed method exhibit more successful and superior 

forecasting performance compared to other methods in terms of MAPE and RMSE performance 
measures. We conclude that the best result is obtained in the case where “𝑚 = 8, 𝑐𝑛 = 5, 𝑎𝑛𝑑	𝛼 −
𝑐𝑢𝑡 = 0”. In Table 7, the results of methods compared with the proposed method are taken from [20]. 

The graph of the real observations and the forecasts obtained from proposed method for the test set 
was presented in Figure. 2. According to this graph, it is clearly seen that the forecasts obtained from 
proposed method are very accurate. 

 
 

 
FIGURE 2. The graph of the real observations and the forecasts obtained from proposed method for Series 11 

 
Finally, the proposed method was implemented to TEC data set (Series 12). The data set was 

forecasted by using SARIMA, MLP-ANN, Multiplicative Neuron Model Artificial Neural Network 
(MNM-ANN), L&NL-ANN, and T1FF approach.  

Table 8 summarizes the results obtained from test set for Series 12. Table 8 reveals that the proposed 
method exhibit more successful and superior forecasting performance compared to other methods in 
terms of MAPE and RMSE performance measures. We conclude that the best result is obtained in the 
case where “𝑚 = 16, 𝑐𝑛 = 4, 𝑎𝑛𝑑	𝛼 − 𝑐𝑢𝑡 = 0.1”. 

 
TABLE 8. All obtained results for Series 12 

 

350
450
550
650

1 3 5 7 9 11 13 15

Test Data Forecasts

Test Data MLP-ANN 
SARIMA 

(0,1,1)(0,1,1)12 
MNM-ANN L&NL-ANN T1FF 

Proposed 
Method 

21275408487 21504260392 21690314907 21929976335 22005935580 21666285710 21675649037 
18841712637 21407932217 19879748318 19674336447 21273737442 20685602131 20715993541 
20463933683 19934741061 20679491118 20759353666 20386359964 19996267563 20048429544 
19139248871 17339157313 18616749529 18177421217 19068902087 17987700997 18030742336 
19511728912 19132107582 18166751109 19502618441 19337714416 19394021620 19427466506 
20132602347 20521392811 19476718063 19961628854 20493224715 20584842565 20555636973 
22648523194 21559624073 22996373189 21466603203 22493619106 22702026988 22707403125 



  
  

 
 

And also, the graph of the real observations and the forecasts obtained from proposed method for the 
test set was presented in Figure. 3. According to this graph, it is clearly seen that the forecasts obtained 
from proposed method are very accurate. 

 
FIGURE 3. The graph of the real observations and the forecasts obtained from proposed method for Series 12. 

6. CONCLUSION AND DISCUSSIONS 
Fuzzy function approach is a kind of fuzzy inference system that can produce successful results for the 
analyzing of forecasting problems. In fuzzy function approach, a fuzzy function corresponding to each 
fuzzy set is generated by using multiple regression analysis. A high correlation can be observed between 
the non-linear aspect of membership functions and the multiple linear regression method used to define 
fuzzy functions which have multicollinearity problem. 
In order to overcome this problem, a new fuzzy function approach using ridge regression instead of 
multiple linear regression method in Type 1 fuzzy function approach is proposed. The multicollinearity 
problem was eliminated by using our new proposed method. In order to show the superior forecasting 
performance of the proposed method, we applied and tested it on several real-world data sets. 
In future studies, the new proposed approach can be applied to Type 2 fuzzy function approach and also 
different regression techniques can be used for Type 1 fuzzy function. 
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