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Introduction

The purpose of this paper is to introduce a rational twelve
parameter C' interpolant over a triangulation. This involves
the discretization of the bicubic blending function interpolant
in Barnhill, Birkhoff and Gordon [l]. The interpolant could be
useful for computer aided geometric design and for finite element
analysis of fourth order elliptic boundary value problems, for
example, the biharmonic problem. Known C' polynomial interpolants
include the twenty-one and eighteen parameter interpolants which
can be found in Mitchell [8].

Blending function interpolation was devised to interpolate
to functions. The report by Coons [5] initiated the subject and
considerable subsequent work has been done by Gordon [7].
Birkhoff and Gordon [4] characterized certain interpolants to
functions defined around the boundary of a square. Barnhill,
Birkhoff, and Gordon [1] extended this to interpolation to functions
defined around the boundary of a triangle.

For the triangle T with vertices at (0,0), (1,0), and (0,1 ),
bicubic interpolants were devised in [1] for functions and their
derivatives normal to the sides of the triangle. A simple case
is interpolation to functions defined around the boundary and this
is discussed in Section 2 as a motivation for the more general case.
The bicubic case is discussed in Section 3.

Blending function interpolants are Boolean sums P; @ Pj of
univariate interpolation operators P; and P, i # j. The associated

remainder is of multiplicative type in that formally, if I is the



identity operator, then

[-(P®P,)=1-(P,+P, P P ) =R, R, (1.1)

where Rk =1 - Py, k =1, j. However, this formal multiplicative
property of the univariate remainders is misleading for
triangles as the projectors do not commute, and
the correct precision set cannot be inferred directly from
(1.1). The lack of commutativity is mentioned in [1].
Theorem 4.3 in this paper gives a precise precision statement
for the general case. The importance of the precision set is
that it implies the order of convergence of the interpolant.
If an interpolant has polynomial precision n-1 in two
variables, then the remainder is 0(h"), where h is a generic
mesh parameter length More information about this order of
convergence is given in Barnhill and Gregory [2] and in
Barnhill and Mansfield [3].

Section 5 is concerned with the twelve parameter discretiza-
tion of the bicubic blending function interpolant given in
Section 3. The interpolation properties and the precision

set are given. The remainder is 0(h?).

Bilinear Blending Function Interpolation

Let F(x,y) be a function defined on the triangle T with
vertices at (0,0), (1,0), and (0,1).We consider the

idempotent linear operators (projectors) P; P, and P3 defined

by :

P (F) = G_—?jF(y,y) + [T - ;J F(Ly) 2.1)



P,(F)=|2" y] F(x,0) + (l) F(x,X) ,

P,(F) = 1_—"] F(x—y,0) + [4}3(1,1 — X + )

l-x=y LIl -x+y

P,(F), P,(F), and P,(F)are the linear interpolants to

F(x,y) along the lines through (x,y) parallel to the sides
Y =0,x =1, and x = y respectively, see Figures 1 and 2.
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We consider Boolean aums of these operators :

Theorem 2.1. Let F(x,y) be defined on the boundary oT

of the triangle T. Then the Boolean sums

(P, ® P))(F) = P(F)+ P (F) - PP (F)i=#j;1,j=12,3, (2.4)
interpolate to F(x,y) on OT.

Proof : Consider P, ®P, =P +P, - P P,. Now
P®P, =P +(I-P)P, and on the sides x =1 and x =y

P, =1 Hence I -P, =60, the null operator, and thus
(I-P)P, =0 on these sides. Also P, ® P, =P, - P(I1-P,)
and, on the sidey =0,P, = ITandI-P,= 6 . Hence

P,(I - P,) (F) = 0, since this is the linear interpolant between
Zero function values at (0,0) and (1,0). The interpolation
property thus follows. The arguments for the other Boolean
sums are analogous. Q.E.D

The above proof motivates the definition of the Boolean sum
interpolant.

We consider in more detail the Boolean sum interpolant

(P, ® P,) (F)=(X_YJ F(1,y)+[x_ij(x,0)+(ljF(x,x)
-y X X

—(’1‘ . y][(l— y) F (1,0)+y F (1,D] . (2.5)
-y

Precision
In order to determine the precision set of interpolant

(2,5) we require the following lemma :



Lemma 2.1. Let f be a function of one variable and g be

a function of two variables. Then
P, [f(y) g(x,y)] = f(y)Plgx,y)] , (2.6)
P,[f(x) g(x,y) ] = f(x)P,[g(x,y)] , (2.7)
P,(f(y-x) g(x,y) = f(y—-x) P[e(x,y)] , (2.8)

i.e. the projectors are homogeneous in functions of the
variable perpendicular to the direction of the projector.
Proof : Each projector contains function evaluations which
are homogeneous in functions of the variable perpendicular

to the direction of the projector and proof of the lemma thus
follows. For example, P3;, contains F(x-y,0 and F(1,1-x + y)
and when F(x,y) = f(y-x) g(x,y), F(x-y,0) = f(y-x) g(x-y,0)

and F(I,1-x + vy ) = f(y-x) g(1,l-x+y) . Q.E.D.

Theorem 2.2. The precision set of the bilinear Boolean
sum interpolant (P, ®P,) (F), (2.9), is y? and x'j’,
i=20,1,2,...; ) =0,1.
Proof : The precision of P; and P, is Pi(l) = 1, P;(x) = x,
P,(1)=1,and P,(y)=1y. Thus
(P, ®P,) (x'y) =P (x'y") +P,(x'j') = Pp,(x'y’)

=P, (x'y") + x'P,(y') — P,(x'P,(y’)), for all i

from Lemma 2.1,
=Pl(xiyj) +x'yl - Pl(xiyj) for j=0,1.

=x'y! for all T and for j =0,1.



Also, since P;(y?) = y?> from Lemma 2.1 and, from (2.2),

P, (y?) = xy, a linear function in x, we have

(P, ®P,) (y’) = P(y) + P,(y’) - PP, (y?))
=y® + xy - P(xy)

2

-y

where P-(xy) = xy follows from application of Lemma 2.1
in the variable y and the linear precision of Py, in the
variable x. Q.E.D.
Analogous results hold for the other Boolean sum interpolants.
see Section 4, where this theorem is generalised for
(2n - 1) st degree two point Taylor interpolation projectors.
In [1] a "trilinear" blending function interpolant
Q" (F) was considered which contains all three projectors
and has the advantage of having certain symmetry in its variables.

This interpolation operator has a representation
%

1 . . .
and so has the quadratic precision x'y, 0<i+ j<2,

which is the intersection of the two precision sets of

P,® P, and P, ® p,.

3. Bicubic Blending Function Interpolation

The cubic interpolation projectors P;, P, and P3

which interpolate to the function and its first derivatives



on OT are defined by :

by = GVl D0
(1-y) 1-y)
v 2 Y)(i (_3;)32" Dy o+ & _(lyjzy()xz_ DE, 0y . (3.1)
P = U x)’ gx "2 px0) o+ (y_x—f)zyFM (x,0)
b YOI gy " @ Fpu(,%) (3.2)
pF) = U _(’i)_z (ji ;; D Fx-y.0) + %[Fw (x = ,0) + Fy, (x = v,0)]

2017 2(x —
g X2 & 3X+3Y) F(LI-x+y) 2D (x 1)2 [Flo(l,l—X+y)+F01(1,l—x+y)]
(1-x+vy) l-x+y) ~ ’

(3.3)

We consider the bicubic Boolean sum



+

(P, ®P,)(F) =

CIEBCIED iy — FL0)y =12y D) - 00061y
-y

~F(Ly*(-2y +3) - F,,(LDy*(y-1) |

2
x-y)"x-D B 12 | o 12
1—y)? 10@GY) — F L0 (y-D7C2y+D [ ™ 010 L:1(y D“y

= [F o@Dl + Fo @D ] YZ(_2Y+3)_|:8%F0=1(X’X):lley2(y_1)

~F(L,0)6y” (1-y) - F,, (1,0)2y* (1- y) ~ FLDOY* (y - 1)

—F,, (L)Y (<2y +1) |

2 2 2
N (y—x)“(x+2y) f(x,0) + (y _XZ) y FO i (x,0) _,_MF(X, X)

X3 X X3

, Y- Fy, (X, ) . (3.4)

2
X

Interpolation Properties

The interpolatory properties of the Boolean sum operator

can be derived formally in a manner similar to that in Theorem 2.1,
with the assumption of sufficient continuity on the derivatives
of F. In order to obtain weaker sufficient conditions for

interpolation we must consider the actual Boolean sum interpolant.



Theirem 3.1. Let F(x,y), Fo (nm)aFo,l(X,O),Fl‘o(nm)a Fl,o(ls}’)

b

be defined on JT and assume 2 (7],7])|:a 0’1 (77,77):|

and Fy,1(1,0) exist on 0 T. Then the Boolean sum (P; @ P, (F)

interpolates to F on 0T, to % on the sides x =y and x=1 of

0T, and to %5 on the sides x=y and y=0 of 0 T.

Proof; The interpolation of the Boolean sum to the function
on 0T follows from (3.4). To prove the interpolation properties
for the derivative we differentiate (3.4) and, after some

cancellation, eventually obtain the following:

Eheno.

= Fy 1 (x,0) + x3{ [%Fl,o(l,y)}

y=0 y=0
0
_ {WFO’I()C,O) L:l}
0
[5@1 @ P2 }F) L_ B = FO’I(n,n)
=y=n

0
{6—(131 ® 1)2)(F)}X = F o (Ly)

X

0 0 2
: { |:8_XF0’1(X’0) l{zl _‘:& FO’I(X,O):LZI }(y_l) g

0 0 2
L] - S ] oo

8 8
e PP = E i)



10.
Thus, with the assumption that the partial derivatives
in these equations exist and also the existence of F  (n,n),
we obtain the derivative interpolation properties.
Corollary . The Boolean sum interpolates any order of
derivative on OT tangential to the side if this derivative
exists.

This follows from Interpolation to F on OT.

Removable Singularities

The Boolean sum interpolant and its first order partial

derivatives have removable singularities at (0,0) and (0,1).

Consider, for example, aa—(P1 @ Pz)(F) at (x,y) = (0,0).
X

Differentiating (3.4) with respect to x we find the singular

terms involve only the following :

& y) = (00) [%(Pl ® Py)®) }

. 2 2 ae
=}1)1;1;1y)=(0’0) l: (y X) §X Al 2y> FI,O (X,O) + —y (3X3 2Y) FLO (X, X)
X X

+—y2(y4_x){ — 6 F(x,0) + 6F(x,x) — 2xF,,(x,0) — 4xF, (x,x) } } 3.5)
X



1.

Taylor expansions give the following:

F(x,x):F(x,O)+xFO’I(X,0)+1§FO,2(X,§)d§ : (3.6)
0
Foo(x,x) = F, (x,0)+ [F,, (xX) dX (3.7)
0
Fio(x,x) = F (x,0) + ['F (x,%) d%X , (3.8)

Substitution of these expansions in (3.5) gives

li 0
() = (0,0) [5 (P1 ® Py )(F)}

2
_lim y“(3x —2y) = o
" (x,)=(0,0) [F, p0x.0) + — 3 [0 FL(x,%)dR

2
y(y—X){6 X . . - N}
+ o L XF,, (x,X)dX —4x IO F,, (x,X)dX

(3.9)
Consider the first integral term. From Holder’s inequality,
X % X p' l/p’
[ FL (%) dR < x [jo | F, (x,%) ] dx]

where + + i,zl and p, p >1. Now
p p

) 2 _
lim Mxl/p =0 for p <co.
*,¥)= (0,0 3

X



Similar consideration of the other integral terms in

(3.9) gives the result that
lim 0 ~
(%, ¥)=(0,0) L)—X (P1 ® Pz) (Fﬁ = F 0.0,

provided that F; ; and Fy , are in L v(T),1<P'£oo.
p

The other singularities are treated similarly and so the
Boolean sum interpolant (3.3) interpolates to the function
and its first partial derivatives at the vertices of the

triangle T.

Precision

The precision of the bicubic Boolean sum interpolant
(P, ® P,) (F) is

Xi yj, i1 =01.; j=0,1,2,3, and y4, xy4, y5

This is a corollary of Theorem 4.1 in next Section.

Blending function Interpolation of nth Order,

The (2n-1)st degree interpolation projectors
P;, P,, and P53 which interpolate to the function and its
first n-1 derivatives on OT are defined by the two point
Taylor interpolation polynomials, see Davis [6,p.37].

For example, the projector P, is defined by the following:

—1 —1
Py (F)=y" "> B (0 (y—0W +y—xn ' A (0 y®
k=0 k=0

12.

(3.10)

(4.1)
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k
where A (x) = F&x.y) } B =2 3 [ F(X’z) ]
(y-x)" oy ™ 1y =,
and (y—x) (k) _ ki (y— x) etc.
P, (F) Interpolates to the following:
F(x,0), Fo,1 (x,0), .., Fo n-1(x0),
F(x,x), Fo,1 (x,x), ..., Fo,n-1(x,%),

Boolean sums of -these projectors interpolate to the function
and to its first n-1 derivatives taken in directions parallel
to the sides of the triangle.

Precision

The following is a generalisation of Lemma 2.1 on homogeneity,
Lemma 4.1. With the P; as defined above, equations
(2.6)-(2.8) are valid.

Proof ; Each projector contains function and partial

derivative evaluations which are homogeneous in functions

or the variable perpendicular to the direction of the projector.

The argument for P3; involves the following:

o 0 0 0
(5 +a—fo(x—y) gxy) = f(x-y) (5 + a_xj g(x.y)

fg(xy) (% n aix] F(x—y),

the last directional derivative being zero. Q.E.D.

Theorem 4.1 The precision set for Py @ P, is




the following :

xi yj, i=01..; j=0L.., 2n—-1, and
2n<i+j< 3n-1for 2n<j < 3n-1.
This is the shaded region of Figure 3. where the nodes (i, j)

are the powers of xiyj .

3
(0,3n-1)
(0,2n-1)
' (0,0) (3n-1,0) 1
Figure 3.
Proof : 1. Weconsider x" yJ, 0 < j<2n-1; 0 <i.

(P, ®P,)(x',y' ) =P, (x ,y') + P, (x'y!) = P,P, (x' y)
P (xiyd) + xIPy(yd) - Py [xl Py (yl)},

from Lemma 4.1. For 0<j<2n-1, Py (yj) :yj, so that

(P ® Pp) (x'yd) = x'y!

2. We consider x' y' and 2n_<j < 3n-1 and 2n < i+j < 3n-1.

14.



Py ® Py) (x'yl) = yipp (x') + x'Py (y)) =PI [ x' Py (yI) 1.

Since 0 <i1<n -1, P](Xi)= Xi. From (4.1) for Py (yj),
the Ay =0 and By = x(—n-k) (j—n)! so that

Py (yd) =y nzl UK oy (y=0® | 2n << 3141,

k=0
Thus Py (yj) is a polynomial which, in the variable x,
is of degree < 2n-1-i. Hence the homogeneity and precision
of Py imply that (P; ® P,) (x' y)) = x' y! Q.E.D.
When Pj, is involved, the argument is somewhat different:

Theorem 4.2 P;, © P, has the same precision set as Py, @ P;.

Proof: 1. Precision for x! yj, 0 <j<2n-1,0 <1 follows
from the proof of Theorem 4.1 since only the homogeneity
and precision of the projector P, are involved.

2. We consider x' (y-x)' for 2n <j < 3n-1 and

2n <1+ j <3n-1. These monomials, together with those
for which we already have precision, span the same precision
set as in Theorem 4.1 for P; © P,. By the homogeneity

of P2, (3 @ P2) [x (v |= (=] Py ixyaxi e [(y- 0T |

—P3{XiP2[(y—X)j}}

Since 0 <1 < n-1, P3 (xi) =x'. From (4.1) for

Py [(y—x)j}, the By =0 and
Ak = (-n)! (—U=n=k) 1< j-n-k < 2n—1-i

so that P2[<y—x>j}=<y—x>ni_zlo (o1 (o G0y ()

15.



Homogeneity of P; in the variable y-x and precision of
P3;, of degree 2n-1 implies the conclusion. We note that the

5 5 2n
remainder of P; involves the derivative (a— +gj .Q.E.D.
X

We state a general theorem that covers both Theorems 4.1 and

4.2. We consider the Boolean sum P; ® Pj, i#j, 1<i, j<3.

P; and P; are taken along the lines & = constant and
n = constant, respectively. (Thus, e.g., § is the variable

perpendicular to the direction of P;.)

Theorem 4.3 P; @ P; has the following precision set:

gn', i=0,1,...;5=0,1l... , 2n-1, and

2n <1+ j < 3n-1for 2n <j < 3n-1.
Table I contains & and n for the six possibilities of

Pi(JBPj, 1= 3, 1 <1, )< 3.

i ] S n
1 2 X y
1 3 y-X y
2 1 y X
2 3 y-X X
3 1 y y-X
3 2 X y-X

Table 1

16



A Twelve Parameter Ct Interpolant

We derive an interpolant on the triangle T in terms of
the twelve point functionals F, F o, Fo1, and F 1 at

the three vertices. The interpolant has quadratic precision
interpolates to a function and to a normal derivative
function on each side of the triangle T which are uniquely
defined by the point functionals on that side. Over a

certain type of triangulation of a polygon Q, the interpolant

defines a piecewise interpolant which is in CI(Q) (n), (Theorem 5.1).

The cardinal basis functions for the cubic two point

Taylor interpolants on [0,ll are the following:

0, (X) = (X-1’(2X +1) : ¢, (X) = (X-1°X,

03(x) = ¢,(1-X) = X* (-2X + 3), 04 (X) =0, (1-X) =X*(X-1).

Let F(x,y) satisfy the following :

F(x,0) = ¢,(x) F(0,0) + ¢,(x) F1.0(0,0) + d5(x) F(1,0)
+¢,(x) Fi.0(1,0)

Fo.1(x,0) = ¢,(x) Fo.1 (0,0) + ¢,(x) Fi.1(0,0) + ¢5(x) Fo.1(1,0)
+04(x) Fi.1(1,0)

F (1y) = ¢,(y) F(1,0) + ¢,(y) Fo.1(1,0)+ ¢5(y) F(1,1)
+4(y) Fou(1,1)

Fio(1,y) =¢; (¥) Fr.o(1,0) + ¢5(y) F1ri(1,0)+ ¢5(y)F1,0)(1,1)
¢4 (y)Fo.1(1,1)

17.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
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F (mm) = ¢, (n) F(0,0) + ¢,(N)[F1,0(0,0) + Fo,1(0,0)]

+¢3(m) F(LD) +¢,(n)[Fi0(1,1) + Foa(1,1)] (5.6)

% Fm) = (1-1) [- Fio(0, 0) + Fo.1(0,0) ]

+ n[- Fio(l,1) + Fo1(1,1)] (5.7)

0 0 o
where — = —— + — represents a derivative
ov ox

in the direction of the outward normal on the side x = y.
Equations (5.2) - (5.6) are cubic two point Taylor interpolants

along the sides of* the triangle and (5.7) is a linear interpolant.
The tangential derivatives of F(x,y) along the sides are defined
by the equations for 1~3(x,y) along the sides, as noted in the
Corollary to Theorem 3.1. The function F satisfies the hypotheses

of Theorem 3.1. We take the Boolean sura (P; @ P,)( F) and

from equation (3.4), equations (5.2) - (5.7), and

Fo.1(x,x) = %{% F (x,X) +% F (X,X)i| we obtain the

following interpolant :



19.

Ux,y) = (Pi1® Py) (F(x,y))

YDy )+ 2R, () - 3F0.0) - 2R, (0.0)
(y-1) ’ 2 L

- ;—FOJ (0,0) - 3F(@,1)- %F,ﬂo(l,l) +6 F(1,0) + 2F0’1(1,0)}

N (y - x)2 (3X + 2}’) {(I)l(X) F(0,0) + (I)z(X)Fl,o (0,0) + (|)3(x) F(I,O)
+ 0y (X)FI,O (1,0) }

+ (y;ﬁ{d)l(x) F(0,0) + ¢2(X)[F1,1(0’0) + ¢3(X)F0,1 (1’0)
+ ¢,(x)F,(,0) }
20 ) 0.0 + 4,615, 00) + F,, (00)
+ ¢3(X)F(1,1) + ¢4(X)[F1,0(1’1) + Fy, (171)] }

.\ yz(y;X){q).1 (x)F(0,0) + ¢', (x) [F,,(0,0) + F,,(0,0)]

2X
+ 04 (XF(LL) + ¢4 (x) [F, o (11) + Fy, (L1)]
+(1-x)[-F,,(0,0) + F,, (0,0)]
+ X[_Fl,o(lal) + Fy, (1’1) } (5-8)

The interpolant (5.8) has the function and normal derivatives

defined by equations (5.2) - (5.7) on the sides of the



20.
triangle T. This follows from Theorem 3.1. Because of the
way (5.2) - (5.7) were defined, U interpolates to

F, Fi0, Fo.1, at the three vertices.

Theorem 5.1. Let Q be a polygonal region which can be

subdivided into a system of right triangles with the perpendicular
sides parallel to the co-ordinate axes. Then, with a suitable

change of variable to the triangle T, the bicubic Boolean sum

interpolant (p; @ Pj) ,F (5.8), on each of the right triangles,
defines a C (Q) piecewise Interpolation function

Proof: consider an internal side in O which will be common

to two triangles: On this side the interpolant, its

tangential derivative and its normal derivative are continuous
and uniquely defined by the same functions for eaoh of the

two triangles. Consider a common vertex: The interpolants on
the triangles with this common vertex have the same function

and partial derivative values "there, namely F, F; o and F¢ ;.

The continuity C' (Q) thus follows.

Precision

The linear interpolant (5.7) to the normal derivative
has quadratic precision in F. Since this is the least accurate
interpolant, we expect the quintic precision of the bicubic Boolean
sum of the continuous function to be reduced to quadratic precisio
for the discretized Boolean sum interpolant.

Theorem 5.2. The 12-parameter C' interpolant (5.8) has quadratic

precision and is also exact for (x + y )°.



Proof : Consider, for example, F(x,y) = y2, then

Ux,y) = [X(2x+3) + 23 (x-1) ] yz(3x—3—2y)
X

+ [6x(-x+1) + 2x (3x-2) + 2x] yly=x)

2x?
y2
=2 [3x-2y+2y-2x]=V*.
X
The other functions are treated similarly. Q. E. D.

Corollary 5.1 The remainder of the 12-parameter interpolant is 0(h3).

Nine Parameter Interpolants

Consideration of the continuity at the vertex of a
triangle, in the region Q, implies that at least the function
and two independent directional derivatives must be specified
there for a piecewise interpolant to be C'(Q). Thus these
nine parameters are the minimum possible conditions needed
to define a piecewise C'(Q) interpolant. We make the
observation that defining F;; = 0 at the vertices in (5.8)
defines a nine parameter interpolant and does not affect
the precision for the monomials l,x,y,x2 and y2. Similar
modifications can be made to many other interpolation formulae,
for example, the eighteen parameter interpolant which can
be found in Mitchell [8], based on the point functionals
Fii 0<i + j<2, atthe three vertices of the triangle,
can be reduced to a nine parameter family with linear precision
by defining F, o = F1,1 =Fp2 = 0 at the three vertices.
Unfortunately, for finite element applications to 4th order
elliptic equations, we require at least quadratic precision

for theoretical convergence.
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