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Abstract 

The Zr-modified Al-Si-Cu-Mg alloy with 0.14wt%Zr addition was studied against the 

counterparts of commercially used EN-AC-42000 (Al7Si0.5Cu) baseline alloy for the effect of 

Zr on the high cycle fatigue (HCF) and mechanical properties at elevated temperatures of 150, 

200, 250 oC. It was found that the fatigue life was significantly improved by 8-10 times at the 

high stress amplitude of 140 MPa in the Zr-modified alloy at all different temperatures. The 

fatigue strength coefficient, 𝜎𝑓
′, of the baseline alloy was 574.9, 589.8, and 514.8 MPa at 150, 

200, and 250 oC, respectively, which was greatly increased to 1412.3, 620.1, and 821.6 MPa 

for the Zr-modified alloy. The tensile strength was considerably improved by 34%-50%, 

dependant on the testing temperatures. The improved fatigue and tensile properties in the Zr-

modified alloy could be mainly ascribed to: (1) the refined microstructure, with α-Al grain size 

decreasing from 335 to 253 μm and the secondary dendrite arm spacing (SDAS) dropping from 

39 to 28 μm; (2) the reduced porosity; and (3) the additional precipitates strengthening effect 

by the nano-sized Al-Si-Zr-Ti dispersoids. 
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1. Introduction 

Al-Si-Cu-Mg cast aluminium alloys have gained a growing interest for the application in 

automotive engine powertrains, such as cylinder heads and engine blocks, due to their high 

strength-to-weight ratio, excellent thermal stability, and good castability [1, 2]. Modern 

automotive engines have been confronted with an increasingly great challenge of improving 

efficiency and overall mechanical performance. In theory, increasing the maximum operating 

temperature and pressure of engines can effectively improve the efficiency of the engine. 

However, the increased temperature and pressure will undoubtedly pose a considerable demand 

for the improved mechanical performance of aluminium alloys at elevated temperatures. 

During operation, the cylinder head works continuously at a high temperature and thermal 

cyclic stress condition at numerous start-stop cycles [3]. Each cyclic loading will cause periodic 

stress in the casting parts [4]. Therefore, fatigue behaviour at elevated temperatures becomes a 

major consideration in the design of engine products. 

The fatigue behaviour of Al-Si-Cu-Mg alloys is affected by various factors which include 

casting defects such as the porosities and oxide inclusions [5], secondary dendrite arm spacing 

(SDAS) [1, 6], Si particles [7], and the Fe-rich intermetallic phases [8]. Overall, the 

microstructure exhibiting lower porosity volume fraction, finer SDAS, less brittle intermetallic 

phases, as well as higher Si modification causes better fatigue resistance [6]. Notably, the 

precipitate strengthening that is strongly responsible for enhancing the strength can play key 

roles in improving the fatigue resistance of aluminium alloys. For the application of cylinder 

heads, the main challenge lies that the strength of heat treatable cast Al-Si-Cu(Mg) alloys 

decreases at temperatures above about 200 oC [9]. Dispersoids like β-Mg2Si that maintain the 

high strength of the alloy usually coarsen or dissolve at temperatures above 200 oC, resulting 

in decreased fatigue resistance at high temperatures and consequently causing a considerable 

decline of engine performance [10]. 
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A trace of the transition alloying element(s) such as Mn, Mo, Ni, Cr, V, Zr, and Ti are often 

added to Al-Si-Cu-Mg alloys to maintain/improve the fatigue and mechanical properties at high 

temperatures, because these elements: (1) can form thermally stable strengthening phases such 

as Al3Zr; (2) have low solid solubility and exhibit low diffusivity in the Al matrix; (3) can 

retain the ability for the alloy to be conventionally solidified. Shaha et al. [11, 12, 13] have 

extensively studied the effect of Mn, Mo, Ti, V, and Zr on the mechanical properties of Al-Si-

Cu-Mg. It was found that the addition of Mn and/or Mo significantly improved the tensile and 

low cycle fatigue (LCF) properties of Al-7Si-1Cu-0.5Mg under T6 peak aging condition, 

leading to the 7% higher of UTS and 16% higher of elongation due to the formation of Mn- 

and Mo-rich dispersoid precipitates [11, 12]. Elhadari et al. [9] proposed that Ti, Zr, and V 

enhanced the tensile and low cycle fatigue properties of Al-7Si-1Cu-0.5Mg, with 60-87% 

increment in the yield strength. Also, a small amount (<0.5wt%) of Ti, V, and Zr was proved 

to improve the high-temperature low cycle fatigue behaviour of the T6 heat treated Al-7Si-

1Cu-0.5Mg alloy [10, 13]. Feng et al. [14] reported that Ni additions (1-4wt%) were beneficial 

to the tensile and LCF properties of Al-12Si-0.9Cu-0.8Mg alloy at 350 oC, due to the formation 

of Al3Ni phase. Hernandez-Sandoval and Mohamed proposed that additions of Ti, Zr, and Ni 

in the Al-Si-Cu-Mg alloy could improve their high temperature strength [15, 16]. In addition, 

our previous work [17] have confirmed that the 0.2wt% Zr addition can improve the 

mechanical properties of Al-7Si-0.5Cu-Mg both at room and elevated temperature (200 oC). 

Despite the relative studies regarding the influence of Zr on the mechanical properties of Al-

Si-Cu-Mg alloys [9, 10, 13], the information for the effect of Zr on high cycle fatigue (HCF) 

properties remains limited. Besides, it is still unclear how Zr modify the Al-Si-Cu-Mg cast 

alloys with relatively high Si and Cu. Therefore, in the present study, the Zr-modified Al-Si-

Cu-Mg alloy with 0.14wt%Zr addition was studied against the counterparts of commercially 

used EN-AC-42000 (Al7Si0.5Cu) baseline alloy for the effect of Zr on the high cycle fatigue 
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(HCF) and mechanical properties of Al-Si-Cu-Mg alloy at elevated temperatures of 150, 200, 

250 oC. The metallurgical microstructure features including α-Al grains, SDAS, eutectic Si 

particles, and porosities were thoroughly examined. The discussion focused on the effect of Zr 

addition on the microstructure refinement and the microstructure-mechanical property 

relations. 

2. Experimental 

Commercially pure Mg and Cu ingots, combined with Al-50Si, Al-10Sr, Al-10Ti, and Al-10Zr 

master alloys were added to a standard A356 alloy (Al7Si0.3Mg), to prepare the baseline and 

Zr-modified Al-Si-Cu-Mg alloys with the chemical compositions (in weight) reported in Table 

1. The A356 alloy and master alloys were melted in the electrical resistance furnace (Carbolite) 

at 750 oC. When the melt was homogenised after hold for approximately 2 hours, Al-10Sr 

master alloy was added to the melt to modify the morphology of the eutectic Si particles during 

solidification. Then, the melt was subjected to degassing, during which argon was blown into 

the melt by using a rotatory degasser at a rotating speed of 350 rpm for 6 min. After degassing, 

the melt was covered by a commercial granular flux on the surface, and hold for 15 min for 

temperature rise. Thereafter, the melt was poured at 730 oC into a permanent steel mould, pre-

heated to 460 oC, to produce the cylinder-shaped casting bars with 20 mm in diameter and 165 

mm in length. The casting bars were heat treated subjected to T6 heat treatment involving the 

solutionizing at 535 oC for 8 hours, followed by immediate water quenching to room 

temperature, and then artificial aging at 170 oC for 8 hours, followed by air cooling to room 

temperature. 

The mechanical test was performed on the specimens with a circular cross section, extracted 

from the central part of the cylinder-shaped casting bars. The tensile test was conducted at room 

and elevated temperatures using Instron 5500 universal Electronmechanical Testing System 
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equipped with Bluehill software and a 50 KN load cell. Room and elevated temperature tensile 

tests were performed according to ASTM E8/E8M [18] and ASTM E21 [19], respectively. A 

gauge length of 50 mm and a gauge diameter of 10 mm were applied. Each data reported with 

standard deviation was based on the mechanical properties attained from 6 to 8 samples. The 

high cycle fatigue test was carried out on a 10 kN MTS-810 servohydraulic test machine 

equipped with a heating chamber at 150, 200, and 250 oC according to ASTM E466-15 [20]. 

The geometry and dimension of the sample for HCF tests were shown in Figure 1. Prior to 

tests, the specimen was preheated in the heating chamber and held for 30 min to ensure sample 

temperature uniformity. A sinusoidal waveform was used under fully-reversed stress-

controlled conditions. The test was performed with a constant stress amplitude in the range of 

60-160 MPa, with stress ratio R= -1 and test frequency of 40 Hz. The test was continuously 

running until the full fracture of specimens or reached 1.0×107 cycles without fracture. 

The metallographic microstructural examination was conducted on the cross section of testing 

bars at the gauge position. The surface to be examined was ground using SiC abrasive papers 

and then polished using silica suspension (OPS, 0.05μm water based SiO2 suspension). The 

electrochemical etching was applied on the polished surface to reveal the dendrite and grain 

structure, with the etching solution of Baker's etchant (200 ml H2O and 10 ml 35vol% 

Fluoroboric acid). Grain structure characterisation was performed using Zeiss Scope A1 optical 

microscope in polarised mode. Quantitative analysis of the microstructure was performed using 

AxioVision Rel. 4.8 software. Detailed information on intermetallic phases and fractured 

surfaces was obtained using the Zeiss Supra 35 field-emission scanning electron microscope 

(FESEM), equipped with energy dispersive X-ray spectroscopy (EDS). Nano-scaled 

precipitates were examined using high resolution transmission electron microscopy, JEOL 

2100F (JEOL Ltd.). The TEM samples were cut from the T6 heat treated baseline and Zr-

modified specimens and were ground to less than 100 µm thicknesses. 3 mm diameter samples 
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were punched, and the further reduction of thickness was obtained by Gatan precision ion 

polishing system (PIPS) adjusted at 5.0 kV and at an incident angle of 4°. 

3. Results 

3.1 Microstructure characterization 

Figure 2 compares the grain size variation between the baseline and Zr-modified Al-Si-Cu-Mg 

alloys after T6 heat treatments. It was observed that the Zr-modified alloy exhibited a smaller 

grain size than that of the baseline alloy. The average α-Al grain size of the baseline alloy was 

measured 335 ±18 μm, which was decreased by 24%, to 253±41 μm for the Zr-modified alloy. 

Figure 3 shows the morphology, size, and distribution of the primary α-Al phase, eutectic, and 

Si particles in the microstructure of baseline and Zr-modified alloys. Clearly, both alloys were 

characterized by α-Al dendrites and eutectic Si particles. It is seen from Figure 3a and 3c that 

the baseline alloy exhibited relatively long α-Al dendrites with the statistically measured 

secondary dendrite arm spacing (SDAS) of 39 μm, while the Zr-modified alloy highlighted 

more dendrites with globular rosette morphology, displaying a decreased SDAS value of 28 

μm. Also, a more fraction of Al-Si eutectic was observed in the microstructure of the Zr-

modified alloy (33.1%) compared with that of baseline alloy (27.9%). This was because more 

Si contents was added in the Zr-modified alloy. The higher-magnification micrographs 

characterized the size and morphology of eutectic Si particles, showing no significant 

difference in the morphology and dimension of Si particles between the two studied alloys 

(Figure 3b and 3d). 

To quantitatively analyse the size and morphology of eutectic Si, more than 10000 individual 

Si particles for each alloy were statistically measured. The particle size distributions of Si are 

shown in Figure 4, in which Figure 4a and 4b shows the variation of number fraction and area 

fraction with the Si particle sizes, respectively. It is seen that the Si particles in the two alloys 
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displayed an undistinguishable variation trend of frequency with the particle sizes (Figure 4a). 

The Si particles with the Ferret diameter in the range of 1-12 μm took up most of the total 

number, and those with the Ferret diameters of 4 μm accounted for the pick proportion, about 

21%. The mean Ferret diameter of the baseline alloy and Zr-modified alloy was measured as 

3.3 μm and 3.1 μm, respectively, indicating a decrease, but very limited extent, in Si particle 

size after Zr modification. On the contrary, the variation of area fraction of Si particles between 

the two alloys saw a relative difference, as shown in Figure 4b. The Si particles with the sizes 

of approximately 5 μm accounted for the highest area proportion of the total Si area, exhibiting 

the pick value of 17.5% and 22.3% for baseline and Zr-modified alloys, respectively. The 

coarser (> 12 μm) Si particles represented less area fraction in Zr-modified alloy in comparison 

with the baseline alloy. This indicated that fine Si particles (<12 μm) contributed more to the 

entire area of Si particles in the Zr-modified alloy compared with those in the baseline alloy. It 

might be thus induced that Zr-modified alloy had more fine Si particles. 

Figure 5 shows the aspect ratio distribution of Si particles in the baseline and Zr-modified 

alloys. The Si particles presented a very similar variation trend of frequency with Si particle 

aspect ratios in both alloys, despite the slight higher pick value for the Zr-modified alloy. The 

mean aspect ratios were measured 1.65 and 1.61 for the baseline and Zr-modified alloy, 

respectively, indicating the indistinguishable aspect ratio of Si particles in the two studied 

alloys. 

Figure 6 presents the optical micrographs showing the morphology and size of porosities in the 

microstructure of the baseline and Zr-modified alloys. Both shrinkage pores and gas pores were 

observed in both alloys. The quantitative analysis on the size, morphology, and area fraction 

of the porosities was conducted by statistically measuring numerous porosities in different 

cross sections, as summarized in Table 2. For the baseline and Zr-modified alloys, the area 

fractions of porosities were 0.33% and 0.31%, the mean aspect ratios of porosities were 2.4 
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and 2.0, and the porosity sizes (Ferret diameters) were 110.2 and 106.1 μm. This indicated 

slight decreased porosity in the Zr-modified alloy. 

Figure 7 presents the back-scattered SEM micrographs showing the Fe-rich intermetallic 

phases in the baseline (Figure 7a and 7b) and Zr-modified (Figure 7c, d, and e) alloys. The 

corresponding chemical compositions of the individual Fe-rich intermetallic phases 

highlighted by S1, S2, S3, S4, and S5 were analysed by EDS, as shown in Figure 8. The β-

Al5FeSi phase which exhibited the needle-like morphology was readily observed in both alloys 

(Figure 7a and 7c), due to their high thermal stability. The π-Al8FeMg3Si6 intermetallics (S1 

and S4) were perceived to display the block and script morphology, taking up lower proportion 

compared with the β-Al5FeSi phase, due to the partial dissolution of the phase under T6 heat 

treatment [21], as indicated in Figure 7b and 7d. Besides, the α-Al8Fe2Si intermetallics were 

also detected with small amounts in comparison with that of the β-Al5FeSi and π-Al8FeMg3Si6 

phases. Same Fe-rich intermetallic phases were observed in the Al-Si-Cu-Mg alloys by others 

[10, 15]. Note that the Mg- and Cu- rich intermetallic phases, such as Mg2Si, θ-Al2Cu and Q-

Al5Cu2Mg8Si6, were scarcely detected in both alloys due to their complete dissolution into the 

Al matrix during solution treatment [22, 23]. 

In addition, the Zr-containing phase presented in the microstructure of Zr-modified alloy, 

exhibiting the plate-like morphology with the length of 10-50 μm and the width of several 

microns, as shown in Figure 7e. The EDS result confirmed that the Zr-containing phase 

comprised the elements of Al, Si, Zr, and Ti. Based on the ratio of each elements and previous 

literatures, this phase is very likely (AlSi)3(TiZr) [16, 10]. The Al-Si-Zr-Ti phase was formed 

during solidification and could not be dissolved under heat treatment because of its high 

stability at elevated temperatures [21]. 
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3.2 Tensile properties 

Figure 9 shows the tensile properties of the baseline and Zr-modified alloys at room and 

elevated temperatures (150, 200, and 250 oC). The detailed data of the yield strength (YS), 

ultimate tensile strength (UTS), and elongation are summarized in Table 3. Overall, the YS and 

UTS were decreased constantly and the elongations were increased monotonously as the 

temperature rose from room temperature (RT) to 250 oC. This was ascribed to the materials 

softening on the account of dissolution and coarsening of the strengthening phases. At elevated 

temperatures, dislocations can bypass the obstacles by climbing, which facilitate and accelerate 

dislocation gliding and concomitant deformation. Also, a higher number of slip systems can be 

activated with the increase of temperature [17]. 

Notably, the strengths of the Zr-modified alloy were much greater than that of the baseline 

alloy at all range of temperatures. Specifically, at ambient temperature, the YS and UTS of the 

baseline alloy was 218 and 272 MPa, which was remarkably increased by respective 34% and 

37% to 293 and 374 MPa for the Zr-modified alloy. At 150 oC, the baseline alloy possessed 

YS and UTS of 181 and 196 MPa, while the Zr-modified alloy had YS and UTS of 264 (46% 

increment) and 294 MPa (50% increment). At 200 oC, YS and UTS for baseline alloy was 160 

and 173 MPa, remarkedly increased to 232 (by 45%) and 256 MPa (by 48%). The increased 

strength was mostly attributed to the modified microstructure by Zr additions, which will be 

discussed afterwards. 

3.3 High cycle fatigue 

Figure 10 shows the stress-life (S-N) curves for the baseline and Zr-modified alloys at 150, 200, 

and 250 oC. The relation between stress amplitude (𝜎𝑎) and the number of cycles to failure 

(2𝑁𝑓) was fitted using Basquin’s equation [24]: 𝜎𝑎 = 𝜎𝑓
′ (2𝑁𝑓)

𝑏
, where 𝜎𝑓

′ refers to the fatigue 

strength coefficient and b represents the fatigue strength exponent. Overall, when the same 
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stress amplitude was applied, the Zr-modified alloy could often bear longer fatigue cycles, 

indicating the better fatigue resistance. Especially when loaded at the higher stress amplitude 

of 140-160 MPa, the Zr-modified alloy showed 8-10 times longer fatigue lives than the baseline 

alloy, dependant on stress amplitudes and temperatures. The values for the 𝜎𝑓
′ and b of the 

baseline and Zr-modified alloys were extracted from the S-N curves, as indicated in Table 4. It 

shows that at 150 oC, 200 oC, and 250 oC the respective 𝜎𝑓
′ values of the baseline alloy were 

578, 589, 515 MPa, which were significantly increased to 1412, 620, and 822 MPa for the Zr-

modified alloy. This indicated that the Zr-modified alloy possessed superior fatigue resistance 

compared with the baseline alloys, at elevated temperatures. 

3.4 Fractography 

Figure 11 shows the SEM fractography of the baseline alloys subject to HCF testing under the 

stress amplitudes of 150, 100, and 70 MPa, at 200 oC. Three distinct zones were clearly 

perceived, including the fatigue crack initiation (FCI) zone, fatigue crack growth (FCG) zone, 

and final fracture zone. The FCG zone area was increased constantly with the stress amplitudes 

decreasing from 150 to 70 MPa, as indicated by dashed white lines shown in Figure 11a, 11c, 

and 11e. This is indicative that a lower stress amplitude lengthened the crack propagation 

process and consequently delayed the final rupture process, which was in agreements with the 

S-N result showing that lower stress amplitudes caused longer fatigue lives, as shown in Figure 

10b. The regions marked by the yellow rectangles highlighted the FCI zone, with the 

corresponding magnified image shown in Figure 11b, 11c, and 11d, revealing that the crack 

initiation occurred exclusively from the pores and inclusions at the vicinity of the surface. 

These sites could act as stress concentrators facilitating the formation of fatigue cracks [25, 

26]. 
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The similar features for the fractographies appeared in the case of Zr-modified alloys after HCF 

testing at the same stress amplitudes of 150, 100, and 70 MPa at 200 oC, as shown in Figure 

12. The FCG size increased consistently with decreasing the stress amplitude, indicated by the 

dashed white lines in Figure 12a, 12c, and 12e. The enlarged FCI regions showed that the 

fatigue crack initiation originated from the porosities and inclusions at the vicinity of the 

surface (Figure 12b, 12d, and 12f). On comparison of the FCG areas between the two alloys, it 

was shown that the FCG size was larger in the Zr-modified alloys at each stress amplitude of 

150, 100, and 70 MPa (Figure 11 and Figure 12). This might indicate that the Zr-modified alloy 

exhibited slower fatigue crack growth rates. 

Figure 13 presents the higher magnified SEM fractography, showing detailed features of the 

FCG zones in the baseline and Zr-modified alloy after the fatigue test under the stress amplitude 

of 100 MPa, at 200 oC. A great area of fatigue striations and tear ridges were readily observed 

in the fracture surfaces of both studied alloys, indicative of ductile fracture modes at 200 oC. It 

has been well documented that the α-Al belongs to the faced-centred cubic (FCC) lattice, which 

has a high stacking fault energy with some propagated slipping systems, {111} <110>. Thus, 

the fatigue striations normally generated in front of the fatigue crack tip in the FCC materials 

as the result of dislocations in the plastic zone [27]. The fatigue striation propagation oriented 

along fatigue crack growth direction, as indicated by the yellow arrows in Figure 13. However, 

in some local regions, the localized FCG directions might be different to the overall crack 

propagation direction, as shown in Figure 13d, in which a local FCG direction is not in line 

with the FCG direction shown in Figure 13c. Another typical feature observed was the 

prominent micro-cliffs along the crack propagation plane (Figure 13b and 13d). These micro-

cliffs have a step-like pattern formed inside of the grain parallel to the FCG path, which seems 

to demonstrate lateral slippage at the crack tips in both alloys [28]. 
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4. Discussion 

4.1 Microstructural refinement 

A considerable grain refinement was confirmed by the quantitative analysis on the 

metallurgical microstructure of the baseline and Zr-modified alloys, with the α-Al grain size 

reduced by 24% (from 335 to 253 μm) and the SDAS decreasing by 28% (from 39 to 28 μm), 

as indicated in Table 2. Considering that the casting parameters such as the cooling rates for 

the two studied alloys were the same, the microstructure variation from solidification process 

was thus negligible. As a result, the effective grain refinement could be ascribed mainly to the 

chemical composition difference between the two studied alloys, including Cu, Mg, Si, Ti, and 

Zr elements. 

It is known that the effective grain refinement for aluminium alloys is closely related to the 

solute and nucleant particles [29, 30]. The contribution of solute is associated with the role of 

solute segregation in front of the liquid-solid interface in restricting growth of grains and 

developing constitutional undercooling that provides a driving force to activate further 

nucleation on the substrates present [31]. In the present case, since the Mg and Ti contents in 

the two studied alloys were almost identical, the increased Cu, Si concentrations and the 

additional Zr could be the reason for the remarkable decrease in the grain size and SDAS value, 

due to a stronger solute segregation effect and more nucleant particles in the Zr-modified alloy. 

The solute segregation effect is ascribed to the growth rate restriction of the dendrites during 

solidification, which can be explained using the growth restriction factor, Q [29, 32]. Briefly, 

Q is regarded as a qualitative index to estimate how fast the liquid ahead of the solidification 

front becomes constitutionally undercooled in the earliest stages of crystals growth, and can 

therefore be used as a criterion for the microstructural refinement of Al dendrites. For binary 

alloys, such as Al-Si, Al-Cu, and Al-Zr, it is defined by 𝑄 = 𝑚(𝑘 − 1)𝑐0, in which m is the 



14 

 

slope of the liquidus, k is the partition coefficient, and 𝑐0 is the initial concentration of the 

solute [33]. In multicomponent alloys, the use of growth restriction factor could be critical, 

especially in the case of strong solute-solute interactions. However, it has been reported that, 

for dilute alloys (the studied alloys are the case in terms of Cu and Zr contents), the actual 

growth restriction factor could be estimated by summing the contribution of each solute 

independently, without interaction terms [34]. It is known that Q is inversely proportional to 

the growth rate of α-Al crystals [34]. A higher amount of solute, e.g. Cu, Si, Zr, can result in a 

larger value of Q and a lower dendrite growth rate, which consequently lead to a finer α-Al 

dendrite. This is because the solutes accumulation ahead of the solidifying dendrites is 

responsible for constitutional undercooling at the dendrite tip, retarding the dendritic growth. 

However, Wang et al. [35, 36] investigated the influence of eutectic-forming elements (Si, Cu, 

and Mg) and peritectic-forming elements (Zr, Nb, and Ti) on the grain refinement for 

aluminium by using the analytical model of grain refinement (the Q-model [29, 32]), 

suggesting that the addition of Cu (0-4wt%) and Si (0-1.5wt%) to aluminium caused very 

limited extent of grain refinement; while the addition of Zr and Nb, especially when the 

concentrations are over the maximum solubility, could cause significant grain refinement. 

Based on this and considering that the Cu concentrations in the studied alloys were low and 

that the content differences in Cu and Si between the two studied alloys were relatively small, 

i.e. 0.3wt% in Cu contents and 1.8wt% in Si contents, it is thus reasonably deduced that the 

increased Cu and Si contents might be influential, but not much, to the grain refinement. 

Instead, the additionally added Zr could be attributed to the microstructure refinement, 

particularly the reduction of SDAS. 

As aforementioned, Zr, at first, serving as a certain alloying element, had a relatively positive 

effect on the grain refinement, especially the SDAS reduction, through the growth rate 

restriction approach. However, the degree of grain refinement by solute related segregating 
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power was relatively small as the Zr solute in Al liquid was considerably limited (maximum 

solubility, 𝑐𝑚, of Zr in Al is 0.11wt% [33]). Because of this, the growth rate restriction factor, 

Q, was limited to the maximum value of 0.7K, producing small degree of grain refinement. 

Nevertheless, once the Zr addition was over 0.11wt.% (𝑐𝑚 in Al), a significant grain refinement 

could be achieved by additional Zr which due to the formation of the pro-peritectic particles 

(Al3Zr, for instance), which was believed to be beneficial to the heterogeneous nucleation, 

resulting in significant grain refinement. In the present study, although no Al3Zr pro-peritectic 

particles were identified in the Zr-modified alloy, the Zr-containing pro-peritectic Al-Si-Zr-Ti 

intermetallics were readily observed (Figure 7) and it was highly possible for them to act as 

heterogeneous nucleation points for the Al dendrites. This was reported by others [37]. 

The quantitative analysis of eutectic Si particles revealed that Zr had no evident effect on the 

Si particle size and aspect ratio, since their values maintained almost constant in the two studied 

alloys, as shown in Table 2. A higher fraction of eutectic regions was observed in the Zr-

modified alloy, due to more Si contents added. Further analysis on the characteristic of 

porosities in both alloys suggested that Zr addition seemed to have a positive effect on reducing 

the porosity, despite of the very limited extent. The mean aspect ratio and the mean Ferret 

diameter of the porosities were also reduced in the Zr modified alloy. This was attributable to 

the grain refinement. A finer microstructure could be beneficial to the reduction of the porosity 

[38]. 

4.2 Tensile and high cycle fatigue properties 

It has been evidenced that the tensile strengths of the Zr-modified alloys were superior to the 

baseline alloys at all test temperatures of 150, 200 and 250 oC. This could be mainly attributed 

to the following reasons. First, the Zr-modified alloy possessed finer primary α-Al dendrites 

and SDAS compared with the baseline alloy (Table 2). According to Hall-Petch relation [39, 
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40], the finer grains brought more grain boundaries which could improve the alloy strength 

(yield strength and hardness), due to the enhanced boundary strengthening. Second, more 

eutectic Si particles in the Zr-modified alloy intensify the effect of secondary phase 

strengthening, because of the Si particles acting as the barriers for the dislocations motion 

during straining/deformation. 

Significantly, the precipitate strengthening was the dominant strengthening mechanism for the 

studied Al-Si-Cu-Mg alloys subjected to T6 heat treatments. Figure 14 shows the bright-field 

TEM micrographs and the EDS analysis of the studied Al-Si-Cu-Mg alloys after T6 heat 

treatments. Figure 14a presents the TEM micrograph taken along <001>α-Al axis, showing the 

β΄΄, θ΄, and Q΄ precipitate phases in the baseline alloy, as indicated by the arrows [17, 41]. The 

corresponding selected area diffraction pattern (SADP) of α-Al matrix and precipitates is 

shown in Figure 14b, the bright points are diffraction points of α-Al matrix, while the grey 

cross lines between the bright points are diffraction patterns of precipitates, which 

demonstrated that the precipitates were in the metastable state and the heat-treated alloy was 

in the peak strength state [41]. It is noted that the β΄΄, θ΄, and Q΄ phases with similar 

morphologies and sizes were also detected in the Zr-modified alloy which was not presented 

here. In addition to the β΄΄, θ΄, and Q΄ precipitates, the Zr-containing precipitate was readily 

perceived in the Zr-modified alloy, as shown in Figure 14c and 14d. The EDS analysis 

confirmed the composition of the Zr-containing precipitate consisting of Al, Si, Zr, and Ti 

elements (Figure 14e). 

The β΄΄, θ΄, and Q΄ precipitate phases served as the main strengthening phases to retard 

dislocation gliding and interacted with dislocations through Orowan strengthening mechanism 

[42]. The high Cu contents could provide more θ΄, and Q΄ phases in the Zr-modified alloy, 

enhancing the precipitate strengthening [43]. Note that the Cu-containing precipitates, 

particularly the Q΄ phase are relatively stable at elevated temperature (<300 oC) [23], as a result, 
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it could benefit to the strength at elevated temperatures of 150, 200, and 250 oC [44]. Most 

importantly, the addition of Zr has introduced additional Al-Si-Zr-Ti strengthening 

precipitates, which displayed elliptical morphology with the size of 80-200 nm, as identified 

here (Figure 14) and in our previous work [17]. The Al-Si-Ti-Zr precipitate showed small 

diffusivity in Al matrix at elevated temperatures and could largely enhance the mechanical 

properties of Al-Si-Cu-Mg alloys at high temperatures [17]. 

It is generally accepted that the resistance to monotonic loading, to a large extent, determine 

the ability of the material to resist cyclic loading, when no obvious casting defects like porosity 

and oxides presented. The fatigue strength of Zr-modified alloys were much better than that of 

the baseline alloys at all temperatures of 150, 200, and 250 oC, as shown in Figure 10 and Table 

4. For instance, notably, at 200 oC, the fatigue life of Zr-modified alloys was measured almost 

ten times longer than that of the baseline alloys at all stress amplitude levels (Figure 10b). This 

could be greatly related to the boosted precipitate strengthening effect caused by higher amount 

of Cu-containing precipitates and additional Al-Si-Zr-Ti precipitates, which improved the 

resistance to dislocation gliding during cyclic straining through Orowan strengthening effect. 

The fatigue life is primarily spent by the fatigue crack initiation and crack propagation 

processes in HCF tests [45]. When the porosity presents, the porosity has the most detrimental 

effect on fatigue properties, especially when porosities display in large numbers, dimensions, 

and complex shapes, because of the high stress/strain concentrations near the porosity [46, 47]. 

When the number and the size of porosities remain below a critical level, oxide inclusions 

become the next operational mechanism in the hierarchy [48]. This was well evidenced by the 

fracture surface features, showing that the crack initiated exclusively from the shrinkage 

porosity and/or inclusions, as indicated in Figure 11 and Figure 12. The Ferret sizes of the 

porosities where cracks initiated were smaller in the Zr-modified alloy at all stress levels of 

150, 100, and 70 MPa. From Table 2, it is shown that the area fraction, mean Ferret diameter, 
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and mean aspect ratio of the porosity in the Zr-modified alloy exhibited lower values compared 

to the baseline alloy. The reduced porosity in Zr-modified alloys was closely associated with 

the reduced grain size and finer SDAS, which was believed to be beneficial to the reduction of 

porosity [45]. It is worthy noted that the maximum size of the porosity was more detrimental 

than the mean size of the porosity [46]. This could be indirectly evidenced by the fact that the 

Ferret size of the porosity where the crack initiated was approximately 472, 727, 547 μm at the 

stress amplitudes of 150, 100, and 70 MPa at 200 oC (Figure 11) for the baseline alloy, on the 

contrary, these values were reduced to 411, 352, 402 μm, respectively, for the Zr-modified 

alloys when tested at same stress states (Figure 12). 

Upon initiation, the crack propagated under the cyclic stress/strain, across the α-Al dendrites 

and eutectic regions. Microstructural features including the α-Al matrix, SDAS, porosity, and 

Si particles play roles in the crack propagation process. As aforementioned, the strengthened 

α-Al matrix by solute solution and precipitates could boost the resistance to the motion of the 

crack tip. In addition, the size and morphology of Si particles affected the fatigue crack growth 

characteristics of cast Al-Si alloys [49]. Fine Si particles (<2.5 μm) resulted in decohesion of 

the particle/matrix interface, coarse Si particles (5.5-9 μm) generally caused cleavage crack 

growth, while the intermediate size range of Si particles (2.5-5.5 μm) could give rise to both 

particle cleavage and decohesion. Also, the Si particles with large aspect ratio could result in 

higher strain/stress concentration and cause easier breakup or decohesion. The Si particle sizes 

in the studied alloys were similar, approximately 3 μm, exhibiting undistinguishable variation, 

and the aspect ratios were also similar, indicating that the effect of morphology and the size of 

the Si particles may not cause a significant difference of crack propagation. 
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5. Conclusions 

The Zr-modified Al-Si-Cu-Mg alloy with 0.14wt%Zr addition was studied against the 

counterparts of commercially used EN-AC-42000 (Al7Si0.5Cu) baseline alloy for the effect of 

Zr on the high cycle fatigue and tensile properties at elevated temperatures of 150, 200, 250 

oC. The microstructural features and mechanical properties of the alloys subject to T6 heat 

treatments were thoroughly studied. Main conclusions can be drawn as follows: 

(1) The addition of Zr significantly refined the microstructure of Al-Si-Cu-Mg baseline 

alloy, with the α-Al grain size decreasing from 335 to 253 μm and the SDAS decreasing 

from 39 to 28 μm. The microstructure refinement could be resulted from the solute 

segregation effect and the heterogeneous nucleation via pro-peritectic Zr-containing 

phase serving as the effective nucleant particles. The eutectic Si particles in both studied 

alloys displayed no distinct differences in terms of the size and morphology, with the 

diameter of approximately 3.3 μm and mean aspect ratio of 1.65. The area fraction, 

aspect ratio and the size of porosities were slightly reduced by Zr addition, while the 

measured maximum size of porosity was largely decreased. 

(2) The fatigue property was considerably improved by addition of Zr, with the fatigue life 

increased by almost 8-10 times at the stress amplitude of 140-160 MPa for all 

temperature conditions. The fatigue strength coefficient of the baseline alloy was 574.9, 

589.8, and 514.8 MPa at 150, 200, and 250 oC, respectively. The respective value was 

significantly increased to 1412.3, 620.1, and 821.6 MPa in the Zr-modified alloy. 

(3) Tensile results showed that the strengths were remarkedly improved after addition of 

Zr. At room temperature, the yield strength (YS) and ultimate tensile strength (UTS) of 

the baseline alloy was respective 218 and 272 MPa, which was substantially increased 

by 34% and 37%, respectively, to 293 and 374 MPa for the Zr-modified alloy. At 150 

oC, the YS and UTS was increased by 46% (from 181 to 264 MPa) and 50% (from 196 
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to 294 MPa). At 200 oC, the YS and UTS rose by 45% (160 to 232 MPa) and 48% (from 

173 to 256 MPa). 

(4) The improved fatigue and mechanical properties in the Zr-modified alloy could closely 

related to: (1) the refined microstructure, with α-Al grain size decreasing from 335 to 

253 μm and the secondary dendrite arm spacing (SDAS) dropping from 39 to 28 μm; 

(2) the reduced porosity, in particular large sized porosities; (3) the additional Zr-

containing precipitates strengthening effect. 
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