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Abstract: 24 

 25 

In this study, a coupled ensemble filtering and probabilistic collocation (EFPC) 26 

approach is proposed for uncertainty quantification of hydrologic models. This 27 

approach combines the capabilities of the ensemble Kalman filter (EnKF) and the 28 

probabilistic collocation method (PCM) to provide a better treatment of uncertainties 29 

in hydrologic models. The EnKF method would be employed to approximate the 30 

posterior probabilities of model parameters and improve the forecasting accuracy 31 

based on the observed measurements; the PCM approach is proposed to construct a 32 

model response surface in terms of the posterior probabilities of model parameters to 33 

reveal uncertainty propagation from model parameters to model outputs. The 34 

proposed method is applied to the Xiangxi River, located in the Three Gorges 35 

Reservoir area of China. The results indicate that the proposed EFPC approach can 36 

effectively quantify the uncertainty of hydrologic models. Even for a simple 37 

conceptual hydrological model, the efficiency of EFPC approach is about 10 times 38 

faster than traditional Monte Carlo method without obvious decrease in prediction 39 

accuracy. Finally, the results can explicitly reveal the contributions of model 40 

parameters to the total variance of model predictions during the simulation period.  41 

 42 
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1. Introduction 47 

Hydrologic models are simplified, conceptual representations of a part of the 48 

hydrologic cycle, which use relatively simple mathematical equations to 49 

conceptualize and aggregate the complex, spatially distributed, and highly interrelated 50 

water, energy, and vegetation processes in a watershed (Vrugt et al., 2005). Such 51 

conceptualization and aggregation lead to extensive uncertainties involved in both 52 

model parameters and structures, and consequently produce significant uncertainties 53 

in hydrologic predictions. Uncertainty in hydrologic predictions can originate from 54 

several major sources, including model structures, parameters, and measurement 55 

errors in model inputs (Ajami et al., 2007; Liu et al., 2012). Therefore, effective 56 

uncertainty quantification and reduction methods are required to produce reliable 57 

hydrologic forecasts for many real-world water resources applications, such as 58 

flooding control, drought management and reservoir operation (Fan et al., 2012; Kong 59 

et al., 2015; Fan et al., 2015a).  60 

Previously, a number of probabilistic estimation methods have been proposed for 61 

quantifying uncertainty in hydrologic predictions. The probabilistic estimation 62 

methods approximate the posterior probability distributions of the hydrological 63 

parameters through the Bayesian theorem, conditioned on the streamflow 64 

observations. The generalized likelihood uncertainty estimation (GLUE) (Beven and 65 

Binley, 1992), Markov Chain Monte Carlo (Vrugt et al., 2009; Han et al., 2014), 66 

Bayesian model averaging (BMA) (Diks and Vrugt., 2010), and approximate 67 

Bayesian computation (Vrugt and Sadegh, 2013) methods are those extensively used 68 

probabilistic estimation methods. For instance, Madadgar and Moradkhani (2014) 69 

improved Bayesian Multi-modeling predictions through integration of copulas and 70 

Bayesian model averaging methods. DeChant and Moradkhani (2014b) proposed a 71 



full review of uncertainty quantification methods.  72 

In a separate line of research, sequential data assimilation methods have been 73 

developed to explicitly handle various uncertainties and optimally merging 74 

observations into uncertain model predictions (Xie and Zhang, 2013; Zhang et al., 75 

2012a,b; Zhang and Yang, 2013, 2014; Chang and Sayemuzzaman, 2014; Assumaning 76 

and Chang, 2014). In contrast to classical model calibration strategies, sequential data 77 

assimilation approaches continuously update the states and parameters to improve 78 

model forecasts when new measurements become available (Vrugt et al., 2005). The 79 

prototype of sequential data assimilation techniques, the Kalman filter (KF) (Kalman, 80 

1960) and the ensemble Kalman filter (EnKF) (Evensen, 1994), provide optimal 81 

frameworks for linear dynamic models with Gaussian uncertainties. The EnKF 82 

approach is one of the most frequently used data assimilation methods in hydrology 83 

due to its attractive features of real-time adjustment and easy implementation (Reichle 84 

et al., 2002). The EnKF method can provide a general framework for dynamic state, 85 

parameter, and joint state-parameter estimation in hydrologic models. For example, 86 

Moradkhani et al. (2005a) proposed a dual-state estimation approach based on EnKF 87 

for sequential estimation for both parameters and state variables of a hydrologic 88 

model. Weerts and El Serafy (2006) compared the capability of EnKF and particle 89 

filter (PF) methods in reducing uncertainty in the rainfall-runoff update and internal 90 

model state estimation for flooding forecasting purposes. Parrish et al. (2012) 91 

integrated Bayesian model averaging and data assimilation to reduce model 92 

uncertainty. DeChant and Moradkhani (2014a) combined ensemble data assimilation 93 

and sequential Bayesian methods to provide a reliable prediction of seasonal forecast 94 

uncertainty. Shi et al. (2014) conducted multiple parameter estimation using 95 

multivariate observations via the ensemble Kalman filter (EnKF) for a physically 96 



based land surface hydrologic model. However, due to the local complex 97 

characteristics of the watershed, some parameters in the hydrologic model may not be 98 

clearly identifiable and show slow convergence (Moradkhani et al., 2005b, 2012). 99 

Moreover, the same hydrologic model parameter may even show contrary 100 

convergence characteristics when different data assimilation methods are used. As 101 

shown by Moradkhani et al. (2005a, b), the Cmax parameter for the Hymod was 102 

identifiable by using particle filter method but unidentifiable by using EnKF. Such 103 

unidentifiable parameters would lead to extensive uncertainties in hydrologic 104 

forecasts. Moreover, stochastic perturbations are usually added to the model inputs 105 

(e.g. precipitation, potential evapotranspiration etc.) and observations (e.g. 106 

streamflow) to account for uncertainties in actual measurements. Such random noise 107 

would results in uncertainties in model parameters. Consequently, efficient forward 108 

uncertainty quantification methods (i.e. from model parameters to model predictions) 109 

are still desired for further analyzing the uncertainty in hydrologic predictions. Such 110 

methods can reveal the uncertainty evolution and propagation in hydrologic 111 

simulation. 112 

Previously, Monte Carlo simulations are usually employed to quantify the 113 

uncertainty of hydrologic predictions resulting from uncertain model parameters 114 

(Knighton et al., 2014; Houska et al., 2014). In such a MC simulation process, model 115 

parameters would be sampled from known distributions, and each sample of model 116 

parameters would be entered into the hydrologic model to obtain statistics or density 117 

estimates of the model predictions. However, with complex hydrologic models such 118 

as distributed hydrologic models, this sampling approach is computationally intensive 119 

(Herman et al., 2013). The polynomial chaos expansions (PCEs) are effective for 120 

uncertainty propagation in stochastic processes, which represent the random variables 121 



through polynomial chaos basis and obtain the unknown expansion coefficients by the 122 

Galerkin technique or probabilistic collocation method (PCM) (Li and Zhang, 2007; 123 

Shi et al., 2009). The PCE-based methods have been widely used for uncertainty 124 

quantification of subsurface flow simulation in porous media (Li and Zhang, 2007; 125 

Shi et al., 2009), water quality modelling (Zheng et al., 2011), vehicle dynamics 126 

(Kewlani et al., 2012), mechanical systems (Blanchard, 2010), and so on. Fan et al. 127 

(2015c) integrated PCM into a hydrologic model for exploring the uncertainty 128 

propagation in hydrologic simulation, but it is only suitable for quantifying 129 

uncertainty of hydrologic models with specific distributions for model parameters 130 

(e.g. uniform, normal). However, in real-world hydrologic simulation, the posterior 131 

distributions of model parameters, after calibration through probabilistic estimation 132 

approaches, may be arbitrary.  133 

In this study, a coupled ensemble filtering and probabilistic collocation (EFPC) 134 

method is proposed for uncertainty quantification of hydrologic models. In EFPC, the 135 

posterior distributions of model parameters will be approximated through EnKF; the 136 

obtained posterior distributions will be used as inputs for the probabilistic collocation 137 

method, in which PCEs will be constructed to connect the model parameters with the 138 

model responses. Such PCEs will reflect the uncertainty propagation between model 139 

parameters and its outputs. Therefore, the proposed EFPC will enable improved 140 

quantification of uncertainties existing in hydrologic predictions, model parameters, 141 

inputs and their interrelationships, and further reveal the uncertainty evolution 142 

through the obtained PCEs. Furthermore, a Gaussian anamorphosis (GA) approach 143 

will be presented to convert the obtained posterior distributions into standard normal 144 

random variables, which can be directly used as the inputs for PCM. The proposed 145 



approach will be applied to the Xiangxi River basin based on a conceptual rainfall-146 

runoff model. The Xiangxi River basin, located in the Three Gorges Reservoir area of 147 

China, is one of the main tributaries in Hubei Province, with a draining area of about 148 

3,200 km2. The Hymod, which has been used in many catchments, will be employed 149 

in this study (van Delft, 2007; Wang et al., 2009; Dechant and Moradkhani, 2012; 150 

Moradkhani et al., 2012). This application will help demonstrate the strength and 151 

applicability of the proposed methodology.  152 

 153 

2. Methodology 154 

2.1. Ensemble Kalman Filter 155 

The data assimilation methods have attracted increasing attention from 156 

hydrologists for exploring more accurate hydrological forecasts based on real-time 157 

observations (Moradkhani et al., 2005a; Weerts and EI Serafy, 2005; Wang et al., 158 

2009; DeChant and Moradkhani, 2011a,b; Plaza Guingla et al., 2013). Sequential data 159 

assimilation is a general framework where system states and parameters are 160 

recursively estimated/corrected when new observations are available. In a sequential 161 

data assimilation process, the evolution of the simulated system states can be 162 

represented as follows: 163 

 (1) 164 

where f is a nonlinear function expressing the system transition from time t-1 to t, in 165 

response to model input vectors  ut and θ;  is the analyzed (i.e. posteriori) 166 

estimation (after correction) of the state variable x at time step t – 1;  is the 167 

forecasted (i.e. priori) estimation of the state variable x at time step t; θ represents 168 
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time-invariant vectors, and  is considered as process noise. 169 

When new observations are available, the forecasted states can be corrected 170 

through assimilating the observations into the model, based on the output model 171 

responding to the state variables and parameters. The observation output model can be 172 

written as: 173 

 (2) 174 

where h is the nonlinear function producing forecasted observations; vt is the 175 

observation noise.  176 

The essential methods for states updating are based on Bayesian analysis, in 177 

which the probability density function of the current state given the observations is 178 

approximated by the recursive Bayesian law: 179 

 (3) 180 

where represents the prior information;  is the 181 

likelihood;  represents the normalizing constant. If the model is assumed 182 

to be Markovian, the prior distribution can be estimated via the Chapman-183 

Kolmogorov equation: 184 

 (4) 185 

Similarly, the normalizing constant  can be obtained as follows: 186 

 (5) 187 

The optimal Bayesian solutions (i.e. equations (3) and (4)) are difficult to 188 

determine since the evaluation of the integrals might be intractable (Plaza Guingla et 189 

al., 2013). Consequently, approximate methods are applied to treat above issues. 190 
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Ensemble Kalman Filter (EnKF) and particle filter (PF) are the two widely used 191 

methods, in which EnKF can recursively result in optimal estimation for linear 192 

dynamic models with Gaussian uncertainties, and PF is suitable for non-Gaussian 193 

nonlinear dynamical models (Xie and Zhang, 2013). Particularly, the PF can provide a 194 

more accurate update for model states and parameters by adjusting the 195 

hyperparameters (e.g., observation perturbation characteristics) based on the 196 

observations and ensemble predictions, which avoid excessive adjustment of the 197 

ensemble spread while still allowing for a relatively quick response when 198 

observations fall outside the prediction bound (Moradkhani, 2008; Leisenring and 199 

Moradkhani, 2012). The central idea of EnKF and PF is to quantify the probability 200 

density functions (PDF) of model states by a set of random samples. The difference 201 

between these two methods lies in the way of recursively generating an approximation 202 

for a state PDF (Weerts and EI Serafy, 2005). In EnKF, the distributions are 203 

considered to be Gaussian. The Monte Carlo approach is applied to approximate the 204 

error statistics and compute the Kalman gain matrix for updating model parameters 205 

and state variables. 206 

Consider a general stochastic dynamic model with the transition equations of the 207 

system state expressed as:  208 

, i = 1, 2, …, ne (6) 209 

where xt is the states vector at time t; θ is the system parameters vector assumed to be 210 

known and time invariant; the superscript “-” indicates the “forecasted” sates; the 211 

superscript “+” indicates the “analyzed” states; ne represents the number of 212 

ensembles; ut is the input vector (deterministic forcing data); f represents the model 213 

- + -
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structure; ωt is the model error term, which follows a Gaussian distribution with zero 214 

mean and covariance matrix . For the evolution of the parameters, it is assumed 215 

that the parameters follow a random walk presented as: 216 

,   (7) 217 

Prior to update of the model states and parameters, an observation equation is applied 218 

to transfer the states into the observation space, which can be characterized as:  219 

,   (8) 220 

where yt+1 is the observation vector at time t +1; h is the measurement function 221 

relating the state variables and parameters to the measured variables; vk +1,i reflects the 222 

measurement error, which is also assumed to be Gaussian with zero mean and 223 

covariance matix . The model and observation errors are assumed to be 224 

uncorrelated, i.e. . After the prediction is obtained, the posterior states 225 

and parameters are estimated with the Kalman update equations as follows (DeChant 226 

and Moradkhani, 2012): 227 

 (9) 228 

 (10) 229 

where yt is the observed values;  represents the observation errors; Kxy and Kθy are 230 

the Kalman gains for states and parameters, respectively (DeChant and Moradkhani, 231 

2012):  232 

 (11) 233 

 (12) 234 

Here Cxy is the cross covariance of the forecasted states  and the forecasted 235 
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output ; Cθy is the cross covariance of the parameter ensembles  with the 236 

predicted observation ; Cyy is the variance of the predicted observation; Rt is the 237 

observation error variance at time t. 238 

 239 

2.2. Probabilistic Collocation Method (PCM) 240 

2.2.1. Polynomial chaos expression (PCE) 241 

For a system dynamic model, its outputs are correlated to its input fields. In 242 

terms of random characteristics in model inputs, the outputs can be characterized by a 243 

nonlinear function with respect to the set of random variables. Polynomial chaos (PC) 244 

methods are usually applied to express the evolution of uncertainty in a dynamic 245 

system with random inputs. The PC method was first introduced by Wiener (1938), 246 

where the model stochastic process is decomposed by Hermite polynomials in terms 247 

of Gaussian random variables. The polynomial chaos expansion (PCE) can be seen as 248 

a mathematically optimal way to construct and obtain a model response surface in the 249 

form of a high-dimensional polynomial to uncertain model parameters (Oladyshkin 250 

and Nowak, 2012). This technique includes representing the system outputs through a 251 

polynomial chaos basis of random variables which are used to represent input 252 

stochasticity, and deriving the unknown expansion coefficients using intrusive (e.g. 253 

stochastic Galerkin technique) and non-intrusive (e.g. probabilistic collocation 254 

method) approaches. The original PCE is based on Hermite polynomials, which are 255 

optimal for normally distributed random variables (Oladyshkin and Nowak, 2012). 256 

However, for non-Gaussian random input variables (e.g. Gamma and uniform), the 257 

convergence of Herminte polynomial expansion is not optimal (Xiu and Karniadakis, 258 

2003). Xiu and Karniadakis (2002) proposed generalized polynomial chaos expansions 259 

for non-Gaussian distributions. The general polynomial chaos expansion can be written 260 

-

1,t iy +

-

1,t i +

-

1,t iy +



in the form: 261 

 (13) 262 

where y is the output and are the polynomial chaos of order p in terms 263 

of the multi-dimensional random variables . For standard normal variables, the 264 

Hermite polynomial will be used, which is expressed as: 265 

 (14) 266 

where  (ζ is the vector form) are the standard normal random variables 267 

(SRV). The polynomial with an order greater than one has zero mean; polynomials of 268 

different orders are orthogonal to each other, and so are polynomials of the same order 269 

but with different arguments (Huang et al., 2007).   270 

Previous studies have demonstrated that accurate approximations can be 271 

obtained through a truncated PCE with only low order terms (Lucas and Prinn, 2005; 272 

Li and Zhang, 2007; Shi et al., 2009; Zheng et al., 2011). The computational 273 

requirement increases as the order of PCE increases. The total number of the 274 

truncated terms N for PCE is related to the dimension of the random variables M and 275 

the highest order of the polynomial p: 276 

 (15) 277 

Table 1 contains some explicit values of N for given dimension of the random 278 

variables M and the order of the polynomial p. Thus Equation (10) can be written 279 

simply as: 280 

  (16) 281 
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in which there is a one-to-one mapping between  and , and 282 

also between cj and . For instance, the 2-order 2-dimensional PCE can be 283 

expressed as: y = c0 + c1ζ1 + c2ζ2 + c3(ζ1
2 – 1) + c4(ζ2

2 – 1) + c5ζ1ζ2; the 2-order 3-284 

dimensional PCE can be written as: y = c0 + c1ζ1 + c2ζ2 + c3ζ3 + c4(ζ1
2 – 1) + c5(ζ2

2 – 285 

1) + c6(ζ3
2 – 1) + c7ζ1ζ2 + c8ζ1ζ3 + c9ζ2ζ3. 286 

 287 

--------------------------------------- 288 

Place Table 1 Here 289 

--------------------------------------- 290 

 291 

2.2.2. Selection of collocation points for PCM 292 

The basic idea of the probabilistic collocation method (PCM) is to let the 293 

polynomial chaos expansion (PCE) in terms of random inputs to be the same as the 294 

model simulation results at selected collocation points. The collocation points can be 295 

specified by various algorithms. In this study, the collocation points are derived from 296 

combinations of the roots of a Hermite polynomial with one order higher than the 297 

order of PCE. For a 2-order PCE, the collocation points are combinations of the roots 298 

of the 3-order Hermite polynomial , which are (- , 0, ). For 299 

example, for a 2-order 2-dimensional PCE expressed as: y = y = c0 + c1ζ1 + c2ζ2 + 300 

c3(ζ1
2 – 1) + c4(ζ2

2 – 1) + c5ζ1ζ2, the collocation points (ζ1,i, ζ2,i) are chosen from the 301 

combinations of the three roots of the 3-order Hermite polynomial, which consists of 302 

a total of 9 collocation points which are expressed as: (- ,- ) (- , 0), (- ,303 

), (0, - ), (0, 0), (0, ), ( ,- ), ( , 0), ( , ). For a 3-order PCE, 304 

the collocation points are chosen based on the values of , which are the 305 

1 2
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1 2 ... pi i ia

3
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roots of the 4-order Hermite polynomial . Furthermore, the 306 

selection is also expected to capture regions of high probability (Huang et al., 2007; 307 

Li and Zhang, 2007). The value of zero has the highest probability for a standard 308 

normal random variable, and thus the collocation points for 3-order PCE are the 309 

combinations of (0, ). The potential collocation points for the 2- and 3-310 

order PCEs with two standard random variables are presented in Table 2.  311 

 312 

--------------------------------------- 313 

Place Table 2 Here 314 

--------------------------------------- 315 

 316 

2.2.3. Unknown Parameter Estimation 317 

Probabilistic collocation method (PCM) is implemented through approximating a 318 

model output with a polynomial chaos expansion (PCE) in terms of random inputs 319 

(Zheng et al., 2011). The unknown coefficients contained in the expansion can be 320 

determined based on model simulations at selected collocation points (each 321 

collocation point is a realization of the random inputs). Generally, there are two 322 

methods to obtain the unknown coefficients in PCE. The first one is to solve a linear 323 

equations system expressed as: N × a = f, where N is a space-independent matrix of 324 

dimension P × P, consisting of Hermite polynomials evaluated at the selected 325 

collocation points; a is the unknown coefficient vector of the PCE; f is the realization 326 

of the simulation model at the selected collocation points. However, such a method 327 

may be unstable and the approximation results are highly dependent on the selection 328 

of the collocation points (Huang et al., 2007). Consequently, Huang et al. (2007) 329 

modified the collocation method to employ more collocation points than the number 330 

4 2

4( ) 6 3H   = − +

3 6 



of unknown coefficients through a regression based method. In this study, we will 331 

employ the regression-based method to obtain the unknown coefficients in PCE. The 332 

detailed process for PCM method is illustrated in Figure 1.  333 

----------------------- 334 

Place Figure 1 here 335 

----------------------- 336 

 337 

2.3. Uncertainty Quantification for the Hydrological Model based on Coupled 338 

Ensemble Filtering and Probabilistic Collocation (EFPC) Method 339 

Hydrologic models contain parameters that cannot be measured directly, and 340 

must therefore be estimated using measurements of the system inputs and outputs 341 

(Vrugt et al., 2005). Sequential data assimilation (SDA) is a class of methods that 342 

provide a general framework for explicitly dealing with input, output and model 343 

structural uncertainties. Of these SDA techniques, the ensemble Kalman filter (EnKF) 344 

is one of the most widely used methods in hydrologic community (Moradkhani et al., 345 

2005a; DeChant and Moradkhani, 2012; Leisenring and Moradkhani, 2011; Li et al., 346 

2013; Liu et al., 2012). The EnKF method is much more effective for reducing 347 

uncertainty and characterizing posterior distributions for model parameters as it can 348 

merge the observations and model outputs to improve the model predictions, and 349 

further characterize the initial condition of uncertainty of the catchment. However, 350 

uncertainty propagation and evolution from model parameters to model outputs can 351 

hardly be revealed just merely through EnKF. Consequently, in this study, we will 352 

integrate the ensemble Kalman filter (EnKF) and the probabilistic collocation 353 

methods (PCM) into a general framework to quantify the uncertainty of hydrological 354 

predictions. The posterior probability distributions of model parameters are estimated 355 



by EnKF, and the uncertainty propagation and evolution from uncertainty parameters 356 

to model outputs are further characterized by PCM.  357 

 358 

2.3.1. Gaussian Anamorphosis Transformation for Non-Gaussian Distributions  359 

When the polynomial chaos expansion (PCE) is applied to express the evolution 360 

of uncertainty in a dynamic system with random inputs, those random inputs should 361 

be transformed to random variables with specific distributions. For example, as 362 

proposed in Equation (14), for the stochastic process decomposed by Hermite 363 

polynomials, the random inputs should be first expressed through the standard 364 

Gaussian random variables. The EnKF method can continuously update the states and 365 

parameters in the model when new measurements become available. After the EnKF 366 

update process, the distributions of model parameters can hardly be normally 367 

distributed, even though their prior distributions are assumed to be normal. Moreover, 368 

the distributions of the updated parameters can hardly be expressed through some 369 

specific distributions (e.g. gamma, uniform, etc.) in many cases.  370 

Consequently, in order to further quantify the inherent uncertainty of the 371 

hydrologic model after the data assimilation process, transformation techniques 372 

should applied to convert the posterior distributions of the updated parameters into 373 

standard Gaussian distributions. In this study, a nonlinear, monotonic transform 374 

technique known as Gaussian anamorphosis (GA), will be applied to transform the 375 

posterior distributions of model parameters to standard normal distributions. For the 376 

original random variable x and the transformed random variable y = f(x), the idea of 377 

GA is to find a function f to define a change of the variable (anamorphosis) such that 378 

the random variable y obeys a standard Gaussian distribution. Such a transformation 379 

technique was applied in biogeochemical ocean model (Simon and Bertino, 2009), 380 



physical-biogeochemical ocean model (Béal et al., 2010) and subsurface hydraulic 381 

tomography model (Schöniger et al., 2012). In this study, the GA method will be 382 

applied to combine the EnKF and PCM method together to quantify the uncertainty of 383 

hydrologic models.  384 

Consider an arbitrarily distributed variable y and its Gaussian transform variable 385 

z; they can be linked through their cumulative distribution functions (CDFs) as 386 

follows: 387 

 (17) 388 

where F(y) is the empirical CDF of y, G is the theoretical standard normal CDF of z. 389 

since G is monotonously increasing, the inverse G-1 exists. Equation (17) is called 390 

Gaussian anamorphosis function. 391 

Following the method proposed by Johnson and Wichern (1988), the empirical 392 

CDF of y can be obtained based on its sample values as follows: 393 

 (18) 394 

where j are the rank of the sample value of y; N is the sample size of y (rendered as 395 

the ensemble size of EnKF in this study). From Equations (17) and (18), the sample 396 

values of the Gaussian transform variable z can be obtained, which correspond to the 397 

sample values of y. Also, the sample range of z can be determined as follows: 398 

 (19) 399 

 (20) 400 

 401 

2.3.2. The Detailed Procedures of the EFPC mehtod 402 

The process of the proposed EFPC method mainly involves two components: the 403 

EnKF update procedures for uncertainty reduction and the PCM procedures for 404 
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uncertainty quantification. The detailed process of EFPC includes the following steps: 405 

Step (1). Model state initialization: initialize Nx-dimensional model state variables and 406 

parameters for ne samples: x-
t,i, i = 1, 2, …, ne, ;θt,i, i = 1, 2, …, ne, . 407 

Step (2). Model state forecast step: propagate the ne state variables and model 408 

parameters forward in time using model operator f: 409 

, , i = 1, 2, …, ne 410 

Step (3). Observation simulation: use the observation operator h to propagate the 411 

model state forecast: 412 

, , i = 1, 2, …, ne 413 

Step (4). Parameters and states updating: update the parameters and states via the 414 

EnKF updating equations: 415 

 416 

 417 

Step (5) Parameter perturbation: take parameter evolution to the next stage through 418 

adding small stochastic error around the sample: 419 

,  420 

Step (6). Check the stopping criterion: if measurement data is still available in the 421 

next stage, t = t + 1 and return to step 2; otherwise, continue to the next step. 422 

Step (7). Convert the parameter θ into standard Gaussian variables through GA. 423 

Step (8). Approximate the outputs of interest using the polynomial chaos expansion in 424 

terms of the standard Gaussian variables. 425 

Step (9). Select the collocation points according to the dimensions of the stochastic 426 

vector and the order of the applied polynomial chaos expansion. 427 

Step (10). Determine the unknown coefficients in the polynomial expansion through 428 

xN
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statistical regression techniques. 429 

Step (11). Evaluate the inherent statistical properties of the outputs stemming from the 430 

uncertainty of the parameters. 431 

 432 

3. Experimental Setup 433 

3.1. The Conceptual Hydrologic Model 434 

The Hymod, which is a well-known conceptual hydrologic model, will be used in this 435 

study. Hymod is a non-linear rainfall-runoff conceptual model which can be run in a 436 

minute/hour/daily time step (Moore, 1985). The general concept of the model is based 437 

on the probability distribution of soil moisture modeling proposed by Moore (1985, 438 

2007). In Hymod the catchment is considered as an infinite amount of points each of 439 

which has a certain soil moisture capacity denoted as c [L] (Wang et al., 2009). Soil 440 

moisture capacities vary within the catchment due to spatial variability such as soil 441 

type and depth and a cumulative distribution function (CDF) is proposed to describe 442 

such variability, expressed as (Moore, 1985, 2007): 443 

, 0 ≤ c ≤ Cmax  (21) 444 

where Cmax [L] is the maximum soil moisture capacity within the catchment and bexp 445 

[-] is the degree of spatial variability of soil moisture capacities and affects the shape 446 

of the CDF.  447 

 448 

As shown in Figure 2, the Hymod conceptualizes the rainfall-runoff process through a 449 

nonlinear rainfall excess model connected with two series of reservoirs (three 450 

identical quick-flow tanks representing the surface flow in parallel with a slow-flow 451 

tank representing the groundwater flow). The Hymod has five parameters to be 452 
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calibrated: (i) the maximum storage capacity in the catchment Cmax, (ii) the degree of 453 

spatial variability of the soil moisture capacity within the catchment, (iii) the factor 454 

partitioning the flow between the two series of linear reservoir tanks α, (iv) the 455 

residence time of the linear quick-flow tank Rq, and (v) the residence time of the slow-456 

tank Rs. The model uses two input variables: mean areal precipitation, P (mm/day), 457 

and potential evapotranspiration, ET (mm/day).  458 

 459 

--------------------------------------- 460 

Place Figure 2 Here 461 

--------------------------------------- 462 

3.2. Site Description 463 

The Xiangxi River basin, located in the Three Gorges Reservoir area (Figure 3), 464 

China, is selected to demonstrate the effectiveness of the proposed forecasting 465 

algorithm. The Xiangxi River is located between 30.96 ~ 31.67 0N and 110.47 ~ 466 

111.130E in the Hubei part of the China Three Gorges Reservoir (TGR) region, with a 467 

draining area of approximately 3,200 km2. The Xiangxi River originates in the 468 

Shennongjia Nature Reserve with a main stream length of 94 km and a catchment area 469 

of 3,099 km2 and is one of the main tributaries of the Yangtze River (Han et al., 2014; 470 

Yang and Yang, 2014; Miao et al., 2014). The watershed experiences a northern 471 

subtropical climate. The annual precipitation is about 1,100 mm and ranges from 670 472 

to 1,700 mm with considerable spatial and temporal variability (Xu et al., 2010; 473 

Zhang et al., 2014). The main rainfall season is from May through September, with a 474 



flooding season from July to August. The annual average temperature in this region is 475 

15.6 0C and ranges from 12 0C to 20 0C. 476 

--------------------------- 477 

Place Figure 3 here 478 

--------------------------- 479 

 480 

3.3. Synthetic Data Experiment 481 

In this study, a synthetic case will be initially applied to demonstrate the applicability 482 

of the EFPC method in quantifying prediction uncertainty. For the synthetic 483 

experiment, “truth” is defined when the model is run for a set of meteorological and 484 

initial conditions (Moradkhani, 2008). In detail, the model parameter values are 485 

predefined as the “true” values presented in Table 3. The model inputs, including the 486 

potential evapotranspiration, ET (mm/day), and mean areal precipitation, P (mm/day), 487 

are the observed data collected at Xingshan Hydrologic Station (110045’0’’ E, 488 

31013’0’’ N) on the main stream of the Xiangxi River. These data are provided by the 489 

Water Conservancy Bureau of Xiangshan County. Using these model inputs and 490 

parameter values, the “true states” and “true streamflow observations” can be 491 

generated by running Hymod. Such generated streamflow values are considered as the 492 

observations in the EnKF updating process. Moreover, as with any data assimilation 493 

framework, it is necessary to assume error values for any quantity that contains 494 

uncertainties (DeChant and Moradkhani, 2012). In the synthetic experiment, the 495 

model structure is assumed to be perfect. Thus, random perturbations would be added 496 

to precipitation and potential evapotranspiration (ET) observations to account for their 497 

uncertainties. In this study, these random perturbations are assumed to be normally 498 

distributed with the mean values being 0 and the standard errors being proportional to 499 



the magnitude of true values. The proportional coefficients for precipitation, potential 500 

evapotranspiration, and streamflow observations are all set to be 0.1. This means that 501 

precipitation, ET, and streamflow observations are assumed to have normal 502 

distributions with relative errors of 10%. However the study proposed by DeChant 503 

and Moradkhani (2011a; 2011b) showed that the log-norm perturbation for 504 

precipitation is more appropriate. The comparison among norm and log-norm 505 

perturbation for precipitation will be conducted in the subsequent real-case study. 506 

 507 

--------------------------------------- 508 

Place Table 3 Here 509 

--------------------------------------- 510 

3.4. Evaluation Criteria 511 

To evaluate the performance of the proposed EFPC approach, some indices are 512 

introduced. In detail, root-mean-square error (RMSE), the Nash-Sutcliffe efficiency 513 

(NSE) coefficient and the percent bias (%BIAS) will be employed to evaluate the 514 

performance of the proposed method, which are expressed as follows: 515 
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where N is the total number of observations (or predictions), Qi are the observed 520 

values, Pi are the estimated values, and 𝑄̅ is the mean of all observed and estimated 521 

values 522 

 523 

4. Results Analysis of Synthetic Experiment 524 

4.1. Uncertainty Characterization of Hymod through EnKF 525 

To demonstrate the capability of EnKF in model parameter estimation and 526 

uncertainty reduction, the five parameters of Hymod (i.e. Cmax, bexp, α, Rq Rs) are 527 

initialized to be varied within predefined intervals, as presented in Table 3. The 528 

ensemble size in this study was set to be 50. This ensemble size is set based on the 529 

conclusion from Yin et al. (2015). They tested the optimal ensemble size of EnKF in 530 

sequential soil moisture data and found that the standard deviation decreases sharply 531 

with ensemble size increasing when the ensemble size was less than 10, and this 532 

tendency was to slow down when the ensemble size was greater than 10 (Yin et al., 533 

2015). Particularly, for larger ensemble sizes, the error variance did not decrease 534 

much further, suggesting that the EnKF estimates at the final times might not 535 

converge to the optimal smoothing solution when the ensemble size became too large 536 

(Yin et al., 2015). The random perturbation for parameter evolution in Equation (7) is 537 

set to have a normal distribution with a relative error of 10%. The initial samples of 538 

the five parameters are uniformly sampled from those predefined intervals and the 539 

total data assimilation steps would be one year (i.e. 365 days). 540 

Figure 4 shows the comparison between the ensembles of the forecasted 541 

streamflow and the synthetic-generated true discharge. The results indicate that the 542 

ensemble means of streamflow predictions can track the observed discharge data. The 543 

ranges formulated by 5 and 95% percentiles (i.e. 90% confidence intervals) of 544 



streamflow predictions can adequately bracket the observations. Figure 5 depicts the 545 

evolution of the sampled marginal posterior distributions for the five parameters of 546 

Hymod during the EnKF assimilation period. From Figure 5, it is observed that bexp, 547 

α, Rq and Rs are identifiable, while in comparison, the Cmax parameter is less 548 

identifiable than the other four parameters. This means that the marginal distribution 549 

of Cmax exhibits considerable uncertainty and move intermittently throughout the 550 

feasible parameter space. For bexp, α, Rq and Rs, one year discharge observations are 551 

deemed sufficient to estimate their values. Table 3 presents the final fluctuating 552 

intervals for these five parameters after one year data assimilation period. It is 553 

indicated that the EnKF method estimated Cmax bexp, Rs accurately, while there are 554 

small differences between the true values and the final estimated intervals for α and 555 

Rq. The extensive uncertainty of Cmax indicates that, in this synthetic experiment, the 556 

Cmax is low sensitivity to the model prediction performance. 557 

 558 

--------------------------------------- 559 

Place Figures 4 and 5 Here 560 

--------------------------------------- 561 

 562 

In this study, we set the ensemble size to be 50. To confirm the effectiveness of this 563 

ensemble size, we compare the performance of EnKF under different ensemble sizes. 564 

In detail, six ensemble size scenarios are assumed, and under each scenario, the 565 

synthetic experiment is run 10 times. The results of the mean values of NSE, RMSE, 566 

and PBIAS are presented in Table 4. The results show that as the increase in ensemble 567 

size, the performance of EnKF would not be improved significantly; conversely, 568 



EnKF performed slightly worse as ensemble size larger than 150. This may because 569 

that the EnKF estimates at the final times might not converge to the optimal 570 

smoothing solution when the ensemble size became too large (Yin et al., 2015). 571 

Therefore, in this study, the ensemble size being 50 seems to be appropriate in this 572 

study.  573 

 574 

--------------------------------------- 575 

Place Table 4 Here 576 

--------------------------------------- 577 

 578 

EnKF can merge the observations and model outputs to improve the model 579 

predictions, and further characterize the initial condition uncertainty. The posterior 580 

probability distributions for model parameters can be estimated through EnKF, and 581 

the uncertainty in model parameters can be significantly reduced. However, as 582 

presented in Table 3, the parameters of Hymod still contain some uncertainties. These 583 

uncertainties may result from random errors in the precipitation, potential 584 

evaporation, streamflow observation and model prediction. Consequently, further 585 

exploration would be required to characterize uncertainty propagation in hydrologic 586 

simulation and analyze the inherent statistic characteristics of the hydrologic 587 

predictions after data assimilation. 588 

 589 

4.2. Uncertainty Quantification of Hymod through the Probabilistic Collocation Method. 590 

In this study, the Hermite polynomial chaos expansion is employed to quantify 591 

the evolution of uncertainty in Hymod stemming from the uncertain parameters. 592 



Consequently, the posterior distributions of model parameter estimated by EnKF 593 

would be firstly converted into standard Gaussian distribution. As presented in Table 594 

3, after the data assimilation process through EnKF, there is still some extent of 595 

uncertainty existing in the five parameters of Hymod. Since the value of Rq changes 596 

within a very small interval (i.e. [0.75, 0.76]), it will be considered to be deterministic 597 

in further uncertainty quantification through PCM. The other four parameters (i.e. 598 

Cmax, bexp, α, Rs) are transformed to standard Gaussian distributions according to GA 599 

method proposed by Equations (17) - (19). Figure 6 shows the histogram of original 600 

data, empirical anamorphosis function, histogram of transformed data, and normal 601 

probability plot of transformed data for Cmax. Obviously, after transformation through 602 

GA, the sample values of Cmax are well fitted to a standard Gaussian distribution. 603 

Similarly, the posterior distributions of bexp, α, Rs can also be converted to standard 604 

Gaussian distributions through the GA method. These transformed data can be 605 

introduced into the PCM method to further quantify the uncertainty of Hymod. 606 

 607 

--------------------------------------- 608 

Place Figure 6 Here 609 

--------------------------------------- 610 

 611 

The 2-order polynomial chaos expansion (PCE) is employed to quantify the 612 

uncertainty in the Hymod predictions. Since there are four parameters in Hymod (i.e. 613 

Cmax, bexp, α, Rs), the PCE used to represent the output of interest (i.e. streamflow) 614 

would be four-dimensional and two order. The detailed polynomials of the 4-615 

dimensional 2-order PCE are expressed by Equation (16). There are total of 15 616 

unknown coefficients in this 4-dimensional 2-order PCE. The potential collocation 617 



points are obtained through combining the roots (i.e. (- , 0, )) of the 3-order 618 

Hermite polynomial . For a 4-dimensional 2-order PCE, there are 81 619 

(i.e. 34) potential collocation points. For each collocation point, the probability can be 620 

obtained through the standard CDF G in Equation (17), and consequently, the 621 

corresponding rank j can be calculated through Equation (18). Since j may not be an 622 

integer, the original value of Cmax, bexp, α, or Rs corresponding to the collocation point 623 

of ζ would be obtained through linear interpolation method based on the two adjacent 624 

original data. In this paper, all the collocation points would be used to establish the 625 

linear regression equations and generate the values of unknown coefficients of PCE. 626 

Afterward, 2,000 values are independently sampled from the standard Gaussian 627 

distribution for ζ1, ζ2, ζ3, and ζ4, respectively, and 2,000 realizations would be 628 

generated through both the obtained PCE and Hymod. The latter 2,000 realizations 629 

obtained through Hymod are considered as Monte Carlo simulation results.  630 

Figure 7 shows the comparison for the mean values of the streamflow obtained 631 

through 2-order PCE and Monte Carlo (MC) simulation methods. It indicates that the 632 

mean values obtained through 2-oder PCE are highly identical to the MC simulation 633 

results. This means that the 2-order PCE can generally replace the hydrologic model 634 

(i.e. Hymod) to reflect the temporal variations for the streamflow. Figure 8 compares 635 

the standard deviations of the streamflow, at each time step, obtained through 2-order 636 

PCE and MC simulation methods, respectively. It suggests that the standard deviation 637 

of 2-order PCE and MC simulation is identical at low uncertain conditions (i.e. low 638 

standard deviation values). During the high streamflow periods, the standard deviation 639 

obtained by the 2-order PCE would be slightly less than the actual values (i.e. MC 640 

results). However, the PCE results would generally fit well with the MC simulation 641 

results in both means and standard deviations. As shown in Figure 9, the relative 642 
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errors between the standard deviations from MC simulation and 2-order PCE 643 

prediction results are relatively small, and most of them are located within [-0.10, 644 

0.10]. Moreover, Figure 10 shows the comparison between the 90% confidence 645 

intervals from the MC simulation and 2-order PCE prediction results. It indicates that 646 

the predicted intervals of streamflow from MC simulation and 2-order PCE are highly 647 

consistent under the 90% confidence level. 648 

 649 

--------------------------------------- 650 

Place Figures 7 to 10 Here 651 

--------------------------------------- 652 

 653 

To further compare the accuracy between 2-order PCE and MC simulation 654 

results, the detailed statistical characteristics would be analyzed at specific time 655 

periods. The specific time periods are selected artificially through screening the mean 656 

streamflow values, as shown in Figure 7, over the simulation period so that the low, 657 

medium, and high streamflow levels are all considered. Consequently, the streamflow 658 

predictions from MC simulation and PCE at the day 23, 145, 181, 182, 218, 350 are 659 

chosen, and their inherent statistical properties are further analyzed. These statistical 660 

properties, including mean, standard deviation, kurtosis and skewness, are presented 661 

in Table 5. The results show that the probability density distributions obtained through 662 

2-order PCE would be similar with those obtained by MC simulation. However, the 663 

shape of those probability density distributions generated by 2-order PCE would be 664 

slightly steeper (i.e. lower standard deviation and higher kurtosis) than those from MC 665 

simulation method. For example, at the 181th day, the mean, standard deviation, 666 

kurtosis, skewness values obtained by 2-order PCE would be 613.59, 76.32, 3.01, 667 



0.23, respectively, while those values generated by MC simulation method would be 668 

615.01, 84.43, 2.07, 0.12, respectively. Figure 11 shows the histograms of 2-order 669 

PCE and MC simulation results at the selected time periods. In Figure 11, the left 670 

column in each subfigure represents the histogram obtained through MC method, 671 

while the right one express the histogram obtained by PCE results. It can be seen from 672 

Figure 11 that the shapes of the probability distributions obtained by 2-order PCE 673 

have similar shapes with those obtained from the MC simulation results. This 674 

suggests that the PCE model obtained by the proposed EFPC can be effective to 675 

replace the original hydrologic model to characterize the uncertainty in hydrologic 676 

predictions. 677 

 678 

--------------------------------------- 679 

Place Table 5 and Figure 11 Here 680 

--------------------------------------- 681 

 682 

Generally, after the data assimilation process by EnKF, the uncertainty of Hymod 683 

would be significantly reduced, and the posterior probability of model parameters 684 

would be estimated. The probabilistic collocation method (PCM) can further 685 

characterize the uncertainty propagation through establishing a PCE model between 686 

the model parameters and model outputs. Such a model can well reveal uncertainty 687 

evolution in hydrologic simulations. Even based on the 2-order PCE, the mean and 688 

standard deviation values of this PCE model would be consistent with those obtained 689 

by MC simulation method. Moreover, the detailed probability densities generated by 690 

2-order PCE at each time step would have similar shapes than those obtained through 691 

MC simulation method.  692 



 693 

5. Real Case Study 694 

5.1. Model Setup 695 

 696 

A real-case study will be performed to further demonstrate the applicability of 697 

the proposed EFPC method in quantifying uncertainty for hydrologic models. This 698 

real-case study is set up based on on-site measurements for daily precipitation, 699 

potential evapotranspiration, and streamflow discharge from 1991 to 1993 at the 700 

Xingshan Hydrologic Station on the Xiangxi River.  701 

The EnKF method can quantify model errors, which may be caused by 702 

uncertainties in model inputs, structures, and parameter values, by using the variance 703 

of streamflow predictions from an ensemble of model realizations (McMillan, 2013).  704 

Random perturbations are added to model inputs, outputs, and parameters to reflect 705 

their inherent uncertainties. In the synthetic experiment, random perturbations were 706 

added to precipitation and potential evapotranspiration (ET) observations, which were 707 

normally distributed with standard errors being 10% of the true values. In order to 708 

investigate the impact of relative errors on the performance of EnKF, five relative 709 

error scenarios would be assumed. In detail, precipitation is assumed to be normally 710 

distributed with relative error being 10, 15, 20, 25, and 30% of the true values, 711 

respectively, and ET is also normally distributed having the same relative errors. For 712 

the streamflow measurements, several studies set the standard deviation of the 713 

observed error to be proportional to the true discharge (Dechant and Moradkhai, 714 

2012; Moradkhani et al., 2012; Abaze, et al., 2014), while some research works 715 

assumed the error to be proportional to the log discharge (Clark et al, 2008; McMillan 716 

et al., 2013). In our study, five relative errors would be selected (i.e. 10, 15, 20, 25 and 717 



30%) in order to characterize their impacts on the performance of EnKF. Also, these 718 

five error scenarios are assumed to account for the uncertainty in the model 719 

predictions.  720 

 721 

5.2. Impact of Stochastic Perturbation on the Performance of EnKF 722 

Table 6 shows the performance of EnKF under different relative error scenarios. 723 

The results indicate that the stochastic perturbation can influence the performance of 724 

EnKF. In detail, large relative errors may better reflect the uncertainties in the 725 

catchment, and thus leading to better model performance. In this study, the 726 

performance of EnKF would be improved as the relative error increases from 10% to 727 

20%. However, such a trend would not keep going as the relative larger than 20%. 728 

Consequently, for the Xiangxi River, the relative error of 20% may be the appropriate 729 

stochastic perturbation to account for the uncertainties in the precipitation, potential 730 

evapotranspiration and streamflow observation. 731 

 732 

--------------------------------------- 733 

Place Table 6 Here 734 

--------------------------------------- 735 

 736 

5.3. Uncertainty Quantification  737 

Based on the EnKF approach, the posterior probabilities of model parameters 738 

would be identified. However, uncertainties in hydrologic predictions, stemming from 739 

the uncertainties in hydrologic parameters, are still required to be characterized. 740 

Previous research works mainly address this issue through the Monte Carlo method, 741 

in which random samples are drawn from the posterior distributions of hydrologic 742 



parameters to run the original hydrologic model (Lu and Zhang, 2003; Khu and 743 

Werner, 2003; Demaria et al., 2007). This approach may be insufficient, especially for 744 

complex hydrologic models, which requires a large number of runs to establish a 745 

reliable estimate of model uncertainties (Khu and Werner, 2003). Moreover, 746 

traditional Monte Carlo method can hardly reveal how these model parameters would 747 

affect the uncertainties in model predictions. Therefore, the developed ensemble 748 

filtering and probabilistic collocation (EFPC) method can better address the above 749 

issues, in which the posterior probabilities of model parameters would be estimated 750 

through EnKF and the probabilistic collocation method (PCM) would be further 751 

proposed to establish a proxy for the hydrologic model, with respect to the posterior 752 

distributions of model parameters, to reveal the uncertainty evolution in the 753 

hydrologic simulation.  754 

The results in Table 6 show that a relative error of 0.2 may be appropriate to 755 

account for the inherent uncertainty in the Xiangxi River. The potential 756 

evapotranspiration, streamflow observations, and model predictions are normally 757 

distributed with the standard errors being 20% of the true values. For the 758 

precipitation, it is first assumed to be normally distributed with a relative error of 759 

20%. Based on the proposed EFPC approach, a polynomial chaos expansion (PCE) 760 

can be obtained at each time period, which expresses the relationship between the 761 

discharge prediction and the uncertain model parameters.  762 

Figure 12 shows the comparison between predicting means of hydrologic model 763 

and observations as well as PCE results and observations. This figure is obtained 764 

under the assumption of normal error distribution for precipitation. Figure 12(a) 765 

indicates the mean predictions of hydrologic model and observations. The mean 766 

predictions in Figure 12(a) are obtained through Monte Carlos method in which the 767 



parameters values of the hydrologic model are sampled based on their posterior 768 

probabilities estimated through EnKF. Figure 12(b) shows the mean predictions of 769 

PCE and observations. This figure suggests that the predictions from hydrologic 770 

model and PCE show similar trend. The mean predictions from both hydrologic 771 

model and PCE can well track the observed streamflow data, except some 772 

underestimates during some extreme flow periods. To evaluate the performance of 773 

hydrologic model and PCE obtained by the proposed EFPC method, the values of 774 

RMSE, PBIAS, and NSE are calculated based on the prediction means and 775 

observations. Table 7 compares the results of RMSE, PBIAS, and NSE values 776 

obtained through the original hydrologic model and PCE. The comparison process is 777 

as follows: (i) choosing N samples from the standard Gaussian distribution, (ii) 778 

generating the associated parameter values of the hydrologic model based on the 779 

relationships between posterior distributions and standard Gaussian distribution 780 

established by the GA approach, (iii) running PCE and hydrologic model respectively, 781 

(iv) obtaining the evaluation criteria results. The results in Table 7 indicate good 782 

performance of hydrologic model and PCE in tracking the streamflow dynamics in the 783 

Xiangxi River, with high NSE values and low PBIAS and RMSE values. Particularly, 784 

the hydrologic model performs slightly better than the PCE approach. This is because 785 

the PCEs generated by the proposed EFPC method is a proxy of the hydrologic 786 

model. However, the results in Table 7 suggest that the PCE can adequately represent 787 

the hydrologic model. Figure 13 compares the 90% confidence intervals of hydrologic 788 

model vs. observations and 90% confidence intervals of PCE predictions vs. 789 

observations. This figure shows that 90% prediction intervals from hydrologic model 790 

and PCE can encompass most observations.  791 

--------------------------------------- 792 



Place Table 7 and Figures 12 and 13 Here 793 

--------------------------------------- 794 

 795 

As recommended by DeChant and Moradkhani (2011a; 2011b), the log-norm 796 

perturbation for precipitation is more appropriate. Thus the proposed EFPC approach 797 

is further tested through adding 20% log-normal perturbation to the precipitation and 798 

20% normal perturbations for the model prediction, streamflow observation, and 799 

potential evapotranspiration. Table 8 shows related RMSE, PBIAS, and NSE values. 800 

Compared with results in Table 7, adding log-normal perturbation in the precipitation 801 

can improve the performance of the proposed method, with the NSE value larger than 802 

0.7. Figure 14 presents the comparison between predictions from the hydrologic 803 

model and observations as well as PCE results and observations. Figure 15 compares 804 

prediction intervals from the hydrologic model and PCE with observations. Both of 805 

them show good agreement between model predictions and real observations. 806 

--------------------------------------- 807 

Place Table 8 and Figures 14 and 15 Here 808 

--------------------------------------- 809 

 810 

5.4. Computational Efficiency of the EFPC Method 811 

The essential ideal of the EFPC approach is to use the ensemble Kalman filter 812 

method to estimate the posterior distributions of model parameters and then apply 813 

probabilistic collocation method (PCM) to reveal the uncertainty evolution of 814 

hydrologic models. Such a method has two advantages in quantifying the uncertainty 815 

in hydrologic simulation: (i) the original samples can be drawn from the standard 816 



Gaussian distribution, which is easily conducted; (ii) the computational efficiency can 817 

be highly improved.  818 

The first advantage is straightforward. The second advantage of EFPC will be 819 

illustrated through comparing it with traditional Monte Carlo (MC) method. Tables 6 820 

and 7 shows the computation efficiency of Monte Carlo method and PCE which are 821 

obtained through the proposed EFPC method. In this study, five sample sizes (n = 822 

500, 1,000, 1,500, 2,000, 2,500) are selected to compare the computation efficiency of 823 

MC and the obtained PCE through EFPC. As the sample size increases, the 824 

performance of the hydrologic model and PCE would not vary significantly. Both the 825 

hydrologic model and PCE produce satisfactory streamflow forecasting in the Xiangxi 826 

River. However, the computational efficiency of PCE would be more than ten times 827 

faster than the MC method. For example, when n = 500, the computational time of 828 

MC method would be 54.7 (s), as shown in Table 7, while the computational time of 829 

PCE is just 5.3 (s). The ratio of computational efficiency between PCE and MC (time 830 

(MC)/time (PCE)) is 10.3. Such a ratio would increase for larger sample sizes (e.g. the 831 

ratio is 11.9 for n = 2,500). Consequently, the proposed EFPC approach would greatly 832 

improve the computational efficiency for uncertainty quantification of hydrologic 833 

models 834 

In this study, the Hymod was applied to demonstrate the efficiency of the 835 

proposed approach. This model is a simple conceptual hydrologic model with five 836 

parameters to calibrate. Consequently, the computational requirement for this model is 837 

relatively low when compared with other sophisticated models such as semi-838 

distributed and distributed hydrologic models. However, the proposed EFPC approach 839 

is more than 10 times faster in computational efficiency for such a simple hydrologic 840 



model. The computational efficiency would be improved even more significantly for 841 

other complex hydrologic models. 842 

 843 

5.4. Uncertainty Assessment of Model Parameters 844 

One of the most attraction features for the proposed method is that the 845 

polynomial chaos expansion (PCE), with respect to the posterior probabilities of 846 

model parameters, can be obtained through the proposed EFPC approach. Such a PCE 847 

model can explicitly reveal the contributions of model parameters and their 848 

interactions to the total variation in model predictions.  849 

In this study, the 5-dimensional 2-order PCE is advanced to reflect the 850 

uncertainty propagation of model uncertainty resulting from uncertainty in model 851 

parameters. The detailed expression for a 5-dimensional 2-order PCE can be 852 

expressed as: y = a0 + a1ζ1 + a2ζ2 + a3ζ3 + a4ζ4 + a5ζ5 + a6(ζ1
2 – 1) + a7(ζ2

2 – 1) + 853 

a8(ζ3
2 – 1) + a9(ζ4

2 – 1) + a10(ζ5
2 – 1) + a11ζ1ζ2 + a12ζ1ζ3 + a13ζ1ζ4 + a14ζ1ζ5 + a15ζ2ζ3 + 854 

a16ζ2ζ4 + a17ζ2ζ5 + a18ζ3ζ4 + a19ζ3ζ5 + a20ζ4ζ5, where ζ1, ζ2, ζ3, ζ4, ζ5 are independent 855 

standard normal variable representing Cmax, bexp, α, Rq and Rs, respectively. Since the 856 

variables ζ1, ζ2, ζ3, ζ4, ζ5 are standard normal variables, the variance of y can be easily 857 

derived, which can be obtained as: Var(y) = Var(a0 + a1ζ1 + a2ζ2 + a3ζ3 + a4ζ4 + a5ζ5 + 858 

a6(ζ1
2 – 1) + a7(ζ2

2 – 1) + a8(ζ3
2 – 1) + a9(ζ4

2 – 1) + a10(ζ5
2 – 1) + a11ζ1ζ2 + a12ζ1ζ3 + 859 

a13ζ1ζ4 + a14ζ1ζ5 + a15ζ2ζ3 + a16ζ2ζ4 + a17ζ2ζ5 + a18ζ3ζ4 + a19ζ3ζ5 + a20ζ4ζ5) = a1
2 + a2

2 + 860 

a3
2 + a4

2 + a5
2 + 2a6

2 + 2a7
2 + 2a8

2 + 2a9
2 + 2a10

2 + a11
2 + a12

2 + a13
2 + a14

2 + a15
2 + 861 

a16
2 + a17

2 + a18
2 + a19

2 + a20
2. Such an expression can explicitly reflect the 862 

contribution of the variation in model parameters to the uncertainty of model 863 

predictions.   864 

Figure 16 shows the comparison of the contributions for different parameters to 865 



the total uncertainty in model predictions. The variance ratio is calculated through the 866 

coefficients of the obtained PCE and the total variance. For instance the variance ratio 867 

of the main effect for Cmax is generated by a1
2/ Var(y). As shown in Figure 16, for the 868 

main effect of each parameter, namely ζ1, ζ2, ζ3, ζ4, ζ5, the variable of ζ5, indicating the 869 

parameter Rq, contributes most to the total variance in model predictions, and also ζ3 870 

and ζ4, which respectively represent α and Rs, present apparent contributions to the 871 

uncertainty in model outputs. For the quadratic terms, ζ5
2 would be most sensitive to 872 

the uncertainty in model predictions, but other quadratic terms do not show apparent 873 

contributions, with all the values less than 0.1 in most simulation periods. Moreover, 874 

as shown in Figure 16(c), the interactions among those five parameters only 875 

contribute slightly to the variance in model predictions, with the highest variance ratio 876 

less than 0.06. Among these interactive effects, the interaction between ζ3 and ζ5 877 

contributes most to the total variance, followed by the interaction between ζ3 and ζ4. 878 

--------------------------------------- 879 

Place Figure 16 Here 880 

--------------------------------------- 881 

 882 

The proposed EFPC approach can effectively quantify the uncertainty 883 

propagation in model simulation resulting from uncertainty model parameters. 884 

Particularly, the obtained PCEs are able to express how the uncertainty in model 885 

parameters can affect the uncertainty in model predictions, and further identify the 886 

main, quadratic and interactive effects of model parameters on the variation in model 887 

outputs. Moreover, based on the obtained PCEs, the global sensitivity analysis can be 888 

easily conducted without running the original hydrologic model through Monte Carlo 889 

method. Such PCE-based global sensitivity analysis has been conducted in our 890 



forthcoming paper (Fan et al., 2015b).  891 

 892 

6. Conclusions 893 

Hydrologic models are designed to simulate the rainfall-runoff processes through 894 

conceptualizing and aggregating the complex, spatially distributed and highly 895 

interrelated water, energy, and vegetation processes in a watershed into relatively 896 

simple mathematical equations. A significant consequence of process 897 

conceptualization is that the model parameters exhibit extensive uncertainties, leading 898 

to significant uncertainty in hydrologic forecasts. This study proposed an integrated 899 

framework for uncertainty quantification of hydrologic models through a coupled 900 

ensemble filtering and probabilistic collocation (EFPC) approach. This developed 901 

EFPC method combined the backward and forward uncertainty quantification 902 

methods together, in which the backward uncertainty quantification method (i.e. 903 

EnKF) was employed to reduce model uncertainty and improve the forecast accuracy 904 

based on the observed measurements, and the forward method (i.e. PCM) was further 905 

used to quantify the inherent uncertainty of the hydrologic model after a data 906 

assimilation process. 907 

The conceptual hydrologic model, Hymod, was used to demonstrate the 908 

applicability of the proposed method in quantifying uncertainties of the hydrologic 909 

forecasts. A synthetic experiment was firstly conducted based on a short simulation 910 

period (i.e. 365 days). A set of predefined values for model parameters of Hymod 911 

were provided to generate streamflows which were considered as the observations in 912 

the EnKF adjusting process. After one-year data assimilation process by EnKF, the 913 

uncertainty of model parameters (i.e. bexp, α, Rs, Rq) was significantly reduced except 914 

the parameter Cmax. Meanwhile, the uncertainty of the Hymod predictions was also 915 



reduced. Afterward, a probabilistic collocation method (PCM) was used to quantify 916 

the uncertainty in the Hymod predictions. In PCM, a 4-dimensional 2-order 917 

polynomial chaos expansion (PCE) (Rq is considered to be deterministic) was used to 918 

approximate the forecasted streamflow, and all potential collocation points were 919 

applied to formulate linear regression equations to estimate the unknown coefficients 920 

in PCE. The results indicated that the PCE reflected the uncertainty of the streamflow 921 

results. The mean and standard deviation values of PCE were consistent with those 922 

obtained by Monte Carlo (MC) simulation method, except slight errors existing in the 923 

standard deviation values. For the detailed probability density functions, the 924 

histograms formulated by the PCE predictions hold similar but slightly steeper shapes 925 

to the MC simulation results. 926 

The proposed EFPC method was then applied to a real-world watershed in the 927 

Three Gorges Reservoir area in China. The impact of relative errors was evaluated for 928 

the performance of EnKF for estimating the posterior distributions of hydrologic 929 

model parameters. The results showed that 20% of relative error may be appropriate 930 

to account for the uncertainties in precipitation, potential evapotranspiration, and 931 

streamflow observations in Xiangxi River. The results showed that the polynomial 932 

chaos expansion (PCE) is a good representation of the hydrologic model for 933 

streamflow forecasting and uncertainty quantification. Specifically, the efficiency of 934 

the PCE would be more than 10 times faster than the hydrologic model. 935 

This study proposed a coupled ensemble filtering and probabilistic collocation 936 

(EFPC) method for quantifying the uncertainty of hydrologic models. The innovation 937 

of this study is to integrate EnKF and PCM into a framework, in which the posterior 938 

distributions of model parameters are estimated through EnKF, and the uncertainty 939 

propagation and evolution from model parameters to hydrologic predictions are 940 



characterized by the probabilistic collocation method. Compared with a classic Monte 941 

Carlo simulation method, the proposed method can be easily implemented, avoiding 942 

drawing samples from arbitrary probability distributions. The computation efficiency 943 

can be highly improved by the proposed method. 944 
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Figure 1. The process of the PCM approach 1189 
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Figure 2 Description of Hymod (modified from Vrugt et al., 2003) 1192 
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Figure 3: The location of the studied watershed 1195 
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Figure 4. Comparison between the ensembles of the forecasted and synthetic-1198 

generated true discharge 1199 
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Figure 5. Convergence of the parameter through the EnKF for the synthetic 1206 

experiment over data assimilation period 1207 
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Figure 6. Histogram of untransformed variable, empirical CDF, histogram of 1210 

transformed variable, and normal probability plot for Cmax (unit (mm)). 1211 
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Figure 7. The comparison between the mean values of the MC simulation and 2-1214 

order PCE results 1215 
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Figure 8. The comparison between the standard deviation values of MC simulation 1220 

and 2-order PCE results 1221 
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Figure 9. The distribution of the relative errors between the standard deviations 1225 

from MC simulation and 2-order PCE prediction results 1226 
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Figure 10. The comparison between the prediction intervals of MC simulation and 1229 

2-order PCE results 1230 
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 1233 

 1234 

Figure 11. The comparison of histograms between MC simulation and 2-order PCE 1235 

results (note: in each subfigure, the left column represent MC results and the right one 1236 

represents the PCE results) 1237 
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Figure 12. Comparison between the predication means and observations under normal 1240 

error assumption for precipitation: (a) hydrologic model predictions vs. observations, 1241 

(b) PCE results vs. observation 1242 
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Figure 13. Comparison between the predication intervals and observations under 1245 

normal error assumption for precipitation: (a) hydrologic model prediction intervals 1246 

vs. observation, (b) PCE predicting intervals vs. observation 1247 
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 1249 
Figure 14. Comparison between the predication means and observations under 1250 

lognormal error assumption for precipitation: (a) hydrologic model predictions vs. 1251 

observations, (b) PCE results vs. observation 1252 
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 1255 
Figure 15. Comparison between the predication intervals and observations under 1256 

lognormal error assumption for precipitation: (a) hydrologic model prediction 1257 

intervals vs. observation, (b) PCE predicting intervals vs. observation 1258 
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 1261 
Figure 16. Contributions of model parameters to the uncertainty in model predictions over the simulation period 1262 
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 1280 

Table 1. Number of the truncated terms for M-dimensional pth order PCE 1281 

 M = 1 M = 2 M = 3 M = 4 M = 5 

p = 1 2 3 4 5 6 

p = 2 3 6 10 15 21 

p = 3  4 10 20 35 56 

 1282 

  1283 



Table 2. All collocation points for the 2-dimensional 2- and 3-ord PCEs 1284 

Collocation 

points 

Second order   Third order   

ζ1 ζ2 ζ1 ζ2 

1 -1.73 -1.73 0.00 0.00 

2 -1.73 0.00 0.00 -2.33 

3 -1.73 1.73 0.00 -0.74 

4 0.00 -1.73 0.00 0.74 

5 0.00 0.00 0.00 2.33 

6 0.00 1.73 -2.33 0.00 

7 1.73 -1.73 -2.33 -2.33 

8 1.73 0.00 -2.33 -0.74 

9 1.73 1.73 -2.33 0.74 

10     -2.33 2.33 

11     -0.74 0.00 

12     -0.74 -2.33 

13     -0.74 -0.74 

14     -0.74 0.74 

15     -0.74 2.33 

16     0.74 0.00 

17     0.74 -2.33 

18     0.74 -0.74 

19     0.74 0.74 

20     0.74 2.33 

21     2.33 0.00 

22     2.33 -2.33 

23     2.33 -0.74 

24     2.33 0.74 

25     2.33 2.33 

 1285 

  1286 
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 1288 

Table 3. The predefined true values and fluctuating ranges for the parameters of Hymod 1289 

 Parameters     

 Cmax (mm) bexp α Rs (1/day) Rq (1/day) 

True 175.40 11.68 0.46 0.11 0.82 

Primary range [100, 700] [0.10, 15] [0.10, 0.80] [0.001, 0.20] [0.10, 0.99] 

EnKF results [110.9, 690.6] [10.2, 13.8] [0.56, 0.73] [0.10, 0.16] [0.75, 0.76] 

 1290 
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Table 4. Comparison of the performance of EnKF under different ensemble sizes 1292 

Ensemble Size 30 50 100 150 200 300 

NSE 0.771 0.731 0.727 0.672 0.652 0.738 

PBIAS 8.917 10.172 10.424 13.023 10.429 12.029 

RMSE 32.186 34.880 35.236 38.415 39.480 49.831 

 1293 

 1294 

Table 5. Comparison of statistic characteristics of the 2-order PCE and MC 1295 

simulation results at specific time periods 1296 

Time (d) Mean Standard Deviation Kurtosis Skewness 

 PCE MC PCE MC PCE MC PCE MC 

23 7.38 7.35 3.35 3.22 4.30 4.07 1.27 1.38 

145 292.05 292.17 54.04 56.88 2.93 2.63 0.56 0.48 

181 649.71 647.20 73.11 76.28 2.70 2.56 0.20 0.13 

182 558.05 555.92 52.64 55.47 2.67 2.53 0.02 -0.04 

218 263.00 261.77 14.19 15.00 3.27 2.98 -0.68 -0.70 

350 0.05 0.05 0.03 0.03 4.64 5.59 1.35 1.67 

 1297 
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Table 6 Performance of EnKF under different relative error scenarios 1299 

 1300 

Relative error 10% 15% 20% 25% 30% 

RMSE 42.4 43.8 37.1 37.4 39.2 

PBIAS(%) 27.4 22.5 6.0 13.8 13.6 

NSE 0.63 0.64 0.65 0.64 0.64 

 1301 

 1302 
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Table 7 Comparison between hydrologic model and PCE with normal error perturbation for 1304 

precipitation 1305 

Sample size 500 1000 1500 2000 2500 

Hydrologic 

Model 

RMSE 37.118 37.134 37.107 37.099 37.101 

PBIAS(%) 6.043 6.124 6.053 5.755 5.857 

NSE 0.6475 0.6473 0.6476 0.6478 0.6468 

Time (s) 54.697 111.478 166.210 232.847 334.471 

PCE 

RMSE 37.394 37.349 37.360 37.310 37.339 

PBIAS(%) 7.062 7.444 7.257 7.222 7.238 

NSE 0.6441 0.6417 0.6433 0.6429 0.6423 

Time (s) 5.278 8.750 14.044 19.050 28.232 

 1306 

 1307 
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Table 8. Comparison between hydrologic model and PCE with lognormal error perturbation for 1309 

precipitation 1310 

Sample size 500 1000 1500 2000 2500 

Hydrologic 

Model 

RMSE 27.1144 27.1248 27.1438 27.1004 27.1379 

PBIAS(%) 18.7209 18.5018 18.4552 18.5887 18.4069 

NSE 0.7185 0.7182 0.7178 0.7187 0.7179 

Time (s) 56.8370 107.4660 173.3930 240.7350 305.1020 

PCE 

RMSE 27.3754 27.4964 27.4632 27.3709 27.4515 

PBIAS(%) 18.6222 18.5811 18.5557 18.6772 18.6420 

NSE 0.7130 0.7105 0.7111 0.7131 0.7114 

Time (s) 5.7430 9.1590 16.3160 19.0140 22.1320 

 1311 

 1312 


