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Abstract: 25 

In this study, a bivariate hydrologic risk framework is proposed through coupling 26 

Gaussian mixtures into copulas, leading to a coupled GMM-copula method. In the 27 

coupled GMM-Copula method, the marginal distributions of flood peak, volume and 28 

duration are quantified through Gaussian mixture models and the joint probability 29 

distributions of flood peak-volume, peak-duration and volume duration are 30 

established through copulas. The bivariate hydrologic risk is then derived based on 31 

the joint return period of flood variable pairs. The proposed method is applied to the 32 

risk analysis for the Yichang station on the main stream of the Yangtze River, China. 33 

The results indicate that (i) the bivariate risk for flood peak-volume would keep 34 

constant for the flood volume less than 1.0 × 105 m3/s day, but present a significant 35 

decreasing trend for the flood volume larger than 1.7 × 105 m3/s day; (ii) the bivariate 36 

risk for flood peak-duration would not change significantly for the flood duration less 37 

than 8 days, and then decrease significantly as duration value become larger. The 38 

probability density functions (pdfs) of the flood volume and duration conditional on 39 

flood peak can also be generated through the fitted copulas. The results indicate that 40 

the conditional pdfs of flood volume and duration follow bimodal distributions, with 41 

the occurrence frequency of the first vertex decreasing and the latter one increasing as 42 

the increase of flood peak. The obtained conclusions from the bivariate hydrologic 43 

analysis can provide decision support for flood control and mitigation. 44 

 45 

Keywords: Flood risk; Copula; Flood frequency analysis; Distribution; Conditional 46 

distribution; Gaussian mixture model.   47 
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 48 

1. Introduction 49 

Extreme hydrologic events, such as floods, droughts and storms, have been 50 

leading to extensive property losses in recent decades. Specifically, floods have 51 

become one of the most common natural disasters, posing significant risks to human 52 

beings and environment [22, 31, 41, 67, 71-72, 81]. Hydrological frequency analysis 53 

procedures are widely adopted to estimate the occurrence probabilities of floods, 54 

providing decision support for many water resources management practices, such as 55 

reservoir management, dam design and flood insurance studies [6, 16-20, 43, 45, 82-56 

85]. Moreover, a flood is associated with multidimensional characteristics. 57 

Consequently, flood frequency analysis under consideration of multiple flood 58 

variables would be desired to provide a full screen for a flood.  59 

Copula functions, in recent years, have been widely used for multivariate 60 

hydrologic modeling, such as multivariate flood frequency analysis [7, 18, 22, 26-27, 61 

65, 78-79], drought assessments [14, 35, 42, 59, 60, 64], storm or rainfall dependence 62 

analysis [2-4, 66], streamflow simulation [32, 39-40, 58]. De Michele and Salvador 63 

[13] initially introduced the concept of copulas into hydrological simulation, which 64 

described the dependence between storm duration and average rainfall intensity by 65 

means of a suitable 2-Copula. Salvadori and De Michele [51] characterized the 66 

dependence between storm duration and intensity via a suitable 2-Copula with the 67 

marginal distributions endowed with Generalized Pareto laws. Recently, Salvador and 68 

De Michele [52] conducted multivariate real-time assessment of droughts via copula-69 

based multi-site Hazard Trajectories and Fans. The main advantage of copula 70 

functions over classical bivariate frequency analyses is that the selection of marginal 71 

distributions and multivariate dependence modelling are two separate processes, 72 
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giving additional flexibility to the practitioner in choosing different marginal and joint 73 

probability functions [24, 36, 65, 78]. Consequently, the selection of marginal 74 

distributions would definitely impact the performance of the copula in modelling 75 

multivariate hydrologic simulation.  76 

In multivariate hydrologic frequency analysis through copula functions, the flood 77 

variables under consideration include: the annual maximum peak discharges, and the 78 

associated hydrograph volumes and durations. Consequently, the distributions for 79 

modelling these flood variables would be various. For example, for modelling the 80 

annual maximum flood series, the used distributions over the world include extreme 81 

value type 1 (EV1), general extreme value (GEV), extreme value type 2 (EV2), two 82 

component extreme value, normal, lognormal (LN), Pearson type 3 (P3), Log Pearson 83 

type 3 (LP3), Gamma, exponential, Weibull, generalised Pareto and Wakeby 84 

distributions [5, 12]. Previous studies have shown that, in modelling multivariate 85 

flood frequency through copula functions, the marginal distributions of peak, volume 86 

and duration were different at different sites. For example, Sraj et al. [65] took 87 

bivariate flood frequency analysis using copula function for the Litija station on the 88 

Sava River, in which log-Pearson 3 distribution was chosen for modelling discharge 89 

peaks and hydrograph durations, and the Pearson 3 distribution was selected for 90 

hydrograph volumes. Reddy and Ganguli [48] applied Archimedean copulas for 91 

bivariate flood frequency analysis, where the normal kernel density function was used 92 

for quantifying the distributions of peak flow and duration, and quadratic kernel 93 

density function was applied for volume.  94 

A Gaussian mixture model (GMM) is a mixture statistical model of a finite 95 

number of Gaussian distributions with unknown parameters. It is a semiparametric 96 

probability density function expressed as a weighted sum of Gaussian component 97 
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densities, and all samples are assumed to be generated from this mixture model. 98 

GMMs are commonly used to model the probability distributions of continuous 99 

measurements or features in a biometric system, such as vocal-tract related spectral 100 

features in a speaker recognition system [50]. The finite Gaussian mixture model can 101 

theoretically approximate any continuous distribution very closely if properly given a 102 

sufficient number of components [34]. Several research works have been reported to 103 

apply mixed distribution models to analyze hydrological and environmental data [15, 104 

21, 34, 61-62, 68]. For example, Yue et al. [76] proposed a Gumbel mixed model for 105 

flood frequency analysis. Singh et al. [62] proposed a mixed distribution method for 106 

nonidentically distributed hydrologic flood data. He [34] applied the GMM for 107 

analyzing the multiply censored environmental data. Although GMM and other mixed 108 

model methods have been widely proposed to model the water and environmental 109 

samples, these proposed methods have some limitations in practical multivariate flood 110 

risk analysis. For instance, the Gumbel mixed distribution proposed by Yue et al. [76] 111 

can only applied to positively correlated random variables with the correlation 112 

coefficient less or equal to 2/3 [77].  113 

As an extension of previous research, this paper aims to couple the GMM into 114 

copulas, leading to a coupled GMM-copula method for multivariate hydrologic risk 115 

analysis. The advantages of the proposed method are that i) the GMM can provide 116 

good estimations for the marginal distributions and ii) the copula method can relax the 117 

assumptions in previous mixed models such as same type distribution, correlation 118 

restriction [78]. Moreover, an integrated multivariate risk indicator is proposed to 119 

reveal significance of effects from persisting high risk levels due to impacts from 120 

multiple interactive flood variables. Such an analysis will be based on provision of the 121 

coupled GMM-copula method. Finally, the conditional probability density 122 
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distributions (pdfs) of flood volume and duration under peak flows with different 123 

return periods will be characterized, intending to explore potential control and 124 

management practices once a flood has occurred. The proposed method will be 125 

applied to the Yangtze River (Chang Jiang), China 126 

 127 

2. Methodology 128 

2.1 Gaussian Mixture Model 129 

The mixture model is a useful tool for density estimation, and can be viewed as a 130 

kind of kernel method [33]. Mixture models can use any component densities but the 131 

Gaussian mixture model (GMM) is the most popular [33]. The probability density 132 

function of a Gaussian mixture model is expressed by a weighted sum of M-133 

component Gaussian probability densities as given below: 134 

1
( ) ( ; , )

M

j j j j
j

p x N xα µ σ
=

=∑   (1) 135 

where x are one-dimensional measurement samples; αj (j = 1, 2, …, M) denote the 136 

mixture weights; ( ; , )j j jN x µ σ  (i = 1, 2, …, M) are the component Gaussian densities, 137 

which can be expressed as: 138 

2

2

( )1( ; , ) exp( )
22

j
j j j

jj

x
N x

µ
µ σ

σπσ
− −

=  (2) 139 

where μj and σj respectively denote the mean and standard deviation for the jth 140 

Gaussian distribution model. The weights αj are nonnegative and must satisfy 141 

1
1M

jj
α

=
=∑ . The GMM has two main advantages in practical applications in many 142 

engineering fields: (i) it can sufficiently approximate a broad class of distribution 143 

functions encountered in practice, if an appropriate size of components are given in 144 

the mixture; (ii) the form of the GMM simplifies the derivation of the subsequent 145 
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estimation method and avoids the identifiability problem [34].  146 

Let ( , , )j j j jθ α µ σ= , then ( )ip x  has M Gaussian models, and M sets of 147 

parameters are needed to be estimated. If 1 2( , , ..., )Mθ θ θΘ = , The likelihood function 148 

of the GMM model can be expressed as: 149 

1 1 11

( | ) log ( ; , ) log ( ; , )
N M N M

j j j j j j j j
j i ji

l x N x N xα µ σ α µ σ
= = ==

Θ = =∑ ∑ ∑∏  (3) 150 

The analytical solution to maximize Equation (3) is generally impractical due to the 151 

composite operation of component wise product. The Expectation-Maximization 152 

(EM) algorithm is usually applied to generate the unknown parameters (i.e. αj,μj, σj) in 153 

a Gaussian mixture model. The EM algorithm is an iterative procedure for estimating 154 

the parameter θi of a target distribution that maximize the probability under 155 

consideration of a given set of realizations, {x1, x2, …, xN} [63]. The EM algorithm is 156 

an iterative succession of expectation and maximization steps for obtaining the 157 

maximum likelihood (ML) estimate, which involves two steps: E-step and M-step. A 158 

brief description of the EM algorithm can expressed as follows: 159 

E-step: Calculate the posterior probability of mixture component j having generated 160 

realization xi based on the present estimates: 161 

1

( ; )
( | ; )

( ; )

j j i
ij j i M

j j i
j

N x
E x

N x

α
β α

α
=

Θ
= Θ =

Θ∑
, 1 ≤ i ≤ N, 1 ≤ j ≤ M.  (4)  162 

M-step: Update the model parameters in accordance with their weighted averages 163 

across all realizations: 164 
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 168 

2.2. Copula Method for Bivariate Flood Frequency Analysis 169 

2.2.1. Concept of Copula 170 

A copula function is a multivariate probability distribution with its marginal 171 

distribution being uniform. Sklar’s Theorem states that any n-dimensional distribution 172 

function F can be formulated through a copula and its marginal distributions, which is 173 

expressed as follows: 174 

1 21 2 1 2( , , ..., ) ( ( ), ( ), ..., ( ))
nn X X X nF x x x C F x F x F x=  (8) 175 

where
1 21 2( ), ( ), ..., ( )

nX X X nF x F x F x are marginal distributions of random vector (X1, 176 

X2, …, Xn). If these marginal distributions are continuous, then a single copula 177 

function C exists, which can be written as [46, 56]: 178 

1 2

1 1 1
1 2 1 2( , , ..., ) ( ( ), ( ), ..., ( ))

nn X X X nC u u u F F u F u F u− − −=  (9)   179 

More details on theoretical background and properties of various copula families can 180 

be found in [46] and [56]. 181 

A number of copula functions have been developed, mainly including the 182 

Archimedean, elliptical, extreme value copulas. Among them, the Archimedean 183 

copulas are quite attractive in hydrologic frequency analysis, because they can be 184 

easily generated, and are capable of capturing a wide range of dependence structure 185 

with several desirable properties, such as, symmetry and associativity [22]. The Ali-186 
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Mikhail-Haq, Cook-Johnson and Gumbel-Hougaard and Frank copulas are most 187 

widely used Archimedean copulas for probabilistic assessment of flood risk. Table 1 188 

presents some basic characteristics of the applied single-parameter bivariate 189 

Archimedean copulas. 190 

-------------------------------- 191 

Place Table 1 here 192 

-------------------------------- 193 

2.2.2. Conditional Distribution 194 

If an appropriate copula function is selected, the conditional joint distribution can 195 

then be obtained. Following [46] and [56], the conditional distribution function of U1 196 

given U2 = u2 can be expressed as: 197 

1 2 2| 1 1 1 2 2 1 2
2

( ) ( | ) ( , )U U uC u P U u U u C u u
u=

∂
= ≤ = =

∂
 (10) 198 

Similar conditional cumulative distribution for U2 given U1 = u1 can be obtained. 199 

Moreover, the conditional cumulative distribution function of U1 given U2 ≤ u2 can be 200 

expressed as: 201 

1 2 2

1 2
| 1 1 1 2 2

2

( , )( ) ( | )U U u
C u uC u P U u U u

u≤ = ≤ ≤ =  (11) 202 

Likewise, an equivalent formula for the conditional distribution function for U2 given 203 

U1 ≤ u1 can be obtained. 204 

The probability density function (pdf) of a copula function can be expressed as: 205 

2
1 2

1 2
1 2

( , )( , ) C u uc u u
u u

∂
=

∂ ∂
 (12) 206 

and the joint pdf of the two random variables can be obtained as: 207 

1 2

2 2
1 2 1 2 1 2

1 2 1 2 1 2
1 2 1 2 1 2

( , ) ( , )( , ) ( ) ( ) ( , )X X
C u u C u u u uf x x f x f x c u u

x x u u x x
∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂

 (13) 208 
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Consequently, the conditional pdf of X1, given the value of X2, can be formulated as: 209 

1

2

1 2
1 2 1 1 2

2

( , )( | ) ( ) ( , )
( ) X

X

f x xf x x f x c u u
f x

= =  (14) 210 

And the conditional pdf of X2, given the value of X1, can be expressed as: 211 

2

1 2
2 1 2 1 2

1 1

( , )( | ) ( ) ( , )
( ) X

X

f x xf x x f x c u u
f x

= =  (15) 212 

 213 

2.2.3. Primary and Secondary Return Period 214 

If appropriate copula functions are specified to reflect the joint probabilistic 215 

characteristics among peak, duration and volume of the flood, some conditional, 216 

primary and secondary return periods can be obtained. Specifically, Joint (primary) 217 

return periods called OR and AND can be formulated as [28, 56, 65]: 218 

1 2

1 2

,
1 21 ( , )

OR
u u

U U

T
C u u

µ
=

−
 (16) 219 

1 2

1 2

,
1 2 1 21 ( , )

AND
u u

U U

T
u u C u u

µ
=

− − +
 (17) 220 

where μ is the mean inter arrival time of the two consecutive flood events.  221 

The secondary return period, called Kendall’s return period, is firstly introduced 222 

by Salvadori and De Michele [53] to characterize probability of occurrence of an event 223 

in the area over the copula level curve of value t. This concept has been successively 224 

elaborated and extended by many research works [14, 54-55, 57]. The secondary return 225 

period can be expressed as follows: 226 

1 2,
1 ( )

u u

C

T
K t
µ

=
−

 (18) 227 

where KC is the Kendall’s distribution, associated with theoretical copula function Cθ. 228 

For Archimedean copulas, KC can be expressed as [46]: 229 
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( )( )
'( )C

tK t t
t

φ
φ += −  (19) 230 

where '( )tφ + is the right derivative of the copula generator function ( )tφ , as presented in 231 

Table 1.  232 

 233 

2.2.4. Bivariate Hydrologic Risk Analysis 234 

Risk is the probability of occurrence of an extreme, dangerous, hazardous, or 235 

(more generally) undesirable event [38]. In engineering design of hydrologic 236 

infrastructures, risk can be explained as the chance of downstream flood attributable 237 

to uncontrolled water release from upstream flood facilities (e.g. a reservoir), leading 238 

to life and property losses [23]. Yen [73] proposed a formulation for the risk of failure 239 

associated with the return period of a flood event, which can be expressed as: 240 

 241 

R = 1 – (1 - p)n = 1 - qn = 1 – (1 – 1/T)n (20) 242 

 243 

where R is the risk of failure; p and q is the exceedance and nonexceedance 244 

probability, respectively; T is the return period of a flood event; n is the design life of 245 

the hydraulic structure. 246 

In practical flood control practice, it is necessary to characterize the flood event 247 

through multiple aspects (e.g. peak and duration) rather than only one flood variable 248 

(e.g. peak). For example, a flood event with high peak flow and long duration may 249 

result in serious losses in properties, while a short-duration event with high peak may 250 

only cause a flash flood. Consequently, bivariate hydrologic risk would be much 251 

helpful in taking nonstructural safety measures, and developing flood mitigation 252 

strategies. In this study, the joint return period in “AND” case is applied to define the 253 
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bivariate risk analysis as follows: 254 

 255 

1 2

1 2

,
,

11 (1 )n
u u AND

u u

R
T

= − −  (21) 256 

 257 

2.3. Goodness-of-fit Statistical Tests 258 

After parameter estimation for both the marginal and joint distributions, the 259 

goodness-of-fit statistic tests would be performed to determine whether those 260 

estimated distributions are satisfied. The root mean square error (RMSE), Akaikes 261 

Information Criterion (AIC) and the Kolmogorov-Smirnov (K-S) goodness-of-fit tests 262 

would be employed to evaluate the performance of the marginal distributions obtained 263 

through the parametric distributions and the Gaussian mixture model (GMM). And the 264 

Rosenblatt transformation [49] would be applied to investigate the performance of 265 

joint distributions in describing the dependency between flood variable pairs. 266 

In the process of evaluating the performance of marginal distributions obtained 267 

through the parametric methods and GMM, the empirical nonexceedance probabilities 268 

would be obtained through the Gringorten plotting position formula [30], which is 269 

expressed as: 270 

( ) 0.44
0.12

kP K k
N
−

≤ =
+

  (22) 271 

where N stands for the sample size; k stands for the thk  smallest observation in the 272 

data set; and the data set is arranged in an increasing order.  273 

The RMSE, Akaikes Information Criterion  (AIC) and the K-S test are used to 274 

evaluate fitting effect of different probability distributions to the flood variables. 275 

The RMSE can be expressed as [69]: 276 
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( )2

1

N
est obs
k k

k
x x

RMSE
N

=

−
=
∑

  (23) 277 

where est
kx denote theoretical values from the fitted probability distribution; obs

kx  denote 278 

the empirical probabilities obtained through Equation (22); N is the sample size. 279 

Based on RMSE, the AIC value can be obtained as follows: 280 

2*ln(( ) ) 2AIC N RMSE k= +   (24) 281 

where k is the number of unknown parameters in the probability distribution.  282 

The K-S test is a nonparametric probability distribution free test [80]. The 283 

statistic of K-S test quantifies the largest vertical difference between the estimated and 284 

empirical distributions [44, 47]. Given n increasing ordered data points, ( )x ⋅ , the K-S 285 

test statistic is defined as [11]: 286 

( ) ( )supx nT F x F x∗= −   (25) 287 

where ( )F x∗  means the estimated distribution, ( )nF x  denotes the empirical 288 

distribution, and ‘sup’ stands for supermum. The P-value for K-S test was 289 

approximated using Miller’s approximation [80]. 290 

For evaluating the performance of copulas, the goodness-of-fit test based on 291 

Rosenblatt transformation would be employed based on the recommendation of 292 

Genest et al. [25]. They argued that test statistics based on the Cramér von Mises 293 

functional of a process tend to be more powerful than those based on the 294 

Kolmogorov–Smirnov distance taken on the same process [25]. Consequently, 295 

Cramér von Mises statistic will be adopted to test the performance of the copulas with 296 

the corresponding p-values being approximated through Monte Carlo simulation. The 297 

detailed procedures for performing goodness-of-fit test for copulas based on 298 

Rosenblatt transformation are provided by Genest et al. [25]. 299 
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 300 

3. Study Area and Data 301 

3.1. Overview of the Studied Watershed 302 

The proposed GMM-copula method would be applied to the Yangtze River to 303 

demonstrate the applicability of the proposed method in analyzing multivariate flood 304 

risk. Yangtze River is the longest river in Asia, and the third longest river in the world, 305 

with a length of 6,300 km for the main stream, flowing from Qinghai Province 306 

eastward to the East China Sea at Shanghai. Floods of the Yangtze River in central 307 

and eastern China have occurred periodically and often caused considerable 308 

destruction of property and loss of life [10]. For example, in 1998, the entire Yangtze 309 

River basin suffered from tremendous flood—the largest flood since 1954, which led 310 

to the economic loss of 166 billion Chinese Yuan [74]. Hence, multivariate flood risk 311 

analysis for Yangtze River is very important for flood prevention and disaster relief. 312 

For the Yangtze River, floods are caused by temporal-spatial variation in 313 

precipitation. A large part of the Yangtze River Basin has subtropical monsoon 314 

climate, with the precipitation being concentrated during summer reason. 315 

Consequently, summer is the main flood season due to the heavy monsoon rainfall 316 

[10]. The floods in the middle and lower reaches of the Yangtze River mainly stem 317 

from the upper region of the Yichang Station. The Yichang station plays a vital role 318 

for flood control in the middle and lower reaches of Yangtze River. It is also the 319 

control station for the Three Georges Reservoir. The flood from Yichang station 320 

contributes about 50% of the total flow volume of the middle and lower reaches of 321 

Yangtze River. Moreover, The Jingjiang reach (Figure 1), located in the middle reach 322 

of the Yangtze River from Zhicheng to Chenglingji with a length of 340 km, is the 323 
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most prone area to suffer floods in the Yangtze River basin. Approximate 90% flood 324 

in Jingjiang reach comes from the flood in Yichang station [9]. 325 

Due to the key role of the Yichang station in controlling the flood in the middle 326 

and lower reaches of Yangtze River, the daily streamflow data from Yichang station 327 

would be applied to analyze the bivariate flood risk in Yangtze River. Figure 1 shows 328 

the location of Yichang station, which is also the control site of the Three Gorges Gam 329 

(TGD). The Three Gorges Dam (TGM) is the largest hydraulic project in terms of 330 

design capacity over the world. It has produced dramatic benefits in flood control, 331 

power generation and navigation. Recently, the impacts of the TGM project on 332 

hydrology and environment have been attracting the world’s attention. The Yichang 333 

Station is the control site of TGD, which also divided the Yangtze River into the upper 334 

and middle reaches. This study mainly focused on the flood from the upper Yangtze 335 

River, which is 4,529 km long, up to 3/4 of the whole length of the Yangtze River, 336 

with a drainage area of 1,006,000 km2 [8]. 337 

 338 

3.2. Historical Flood Characteristics at Yichang station 339 

Based on the daily flow data, the annual maximum peak discharges and the 340 

corresponding hydrograph volumes and durations values can be obtained. Hence, 341 

although the peak discharges are definitely annual maximums, the hydrograph 342 

volumes and durations are not necessarily also annual maximums [65]. The single-343 

peaked flood hydrograph is shown in Figure 2. Flood duration (D) can be determined 344 

by identifying the time of rise (point “s” in Figure 2) and fall (point “e” in Figure 2) of 345 

the flood hydrograph. The start of the surface runoff is marked by the sharp rise of the 346 

hydrograph and end of the flood runoff is identified by the inflection point on the 347 

receding limb of the hydrograph. Between these two points, the total flood volume is 348 



16 
 

estimated. If time of rise of the flood hydrograph is denoted by SD (day) and fall by 349 

ED (day), the flood volume (V) of each flood event is determined using following 350 

expression (Yue 2001): 351 

1( ) ( )(1 )
2

i

i

ED
total baseflow

i i i ij is ie i
j SD

V V V Q Q Q D
=

= − = − + +∑  (29) 352 

For a flood with multiple peaks, the peak flow would be the maximum peak value in 353 

the flood. The corresponding duration is identified based on Figure 2 and the 354 

associated volume is calculated through Equation (29). Moreover, when multiple 355 

floods happen in one year, the flood with maximum peak is only considered since risk 356 

analysis pays attention to flood extremes. Once the flood characteristics are obtained 357 

from daily streamflow data, then flood frequency analysis can be analyzed. Figure 3 358 

shows the variations in flood peak discharge (i.e., Q (m3/s)), hydrograph volume, (i.e., 359 

V (m3/s day)) and hydrograph duration, (i.e., D (day)) from 1882-2007.  360 

 361 

-------------------------------- 362 

Place Figures 2 and 3here 363 

-------------------------------- 364 

 365 

4. Result Analysis 366 

4.1. Marginal Probability Distribution Functions of Flood Variables 367 

One of the main advantages for the copula method is that the marginal 368 

distributions and multivariate dependence modelling are two separate processes. 369 

Consequently, to analyze the multivariate flood frequency in the Yangtze River, the 370 

marginal distributions of flood variables can be quantified firstly. In this study, the 371 

Gaussian mixture model would be applied to quantify the marginal distributions of 372 
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flood peak, volume and duration. Besides, many parametric distributions have been 373 

used to estimate flood frequencies from observed annual flood series, such as the 374 

general extreme value distribution in the United Kingdom, Log-Pearson Type-III in 375 

the U.S. and Pearson Type III in China [1, 37, 70, 75]. To demonstrate the 376 

performance of GMM in modeling the marginal distributions of flood variables, the 377 

GMM would be compared with four parametric methods, including Gamma, GEV, 378 

Lognormal distributions and Pearson Type III. The expressions for probability 379 

functions (pdfs) for Gamma, GEV, Lognormal, Pearson Type III and the values of 380 

their associated unknown parameter are presented in Table 2. These parameters are 381 

obtained through maximum likelihood estimation method. Table 3 shows the marginal 382 

distributions of flood variables obtained through GMM, in which the unknown 383 

parameters are obtained through the EM algorithm. 384 

 385 

-------------------------------- 386 

Place Tables 2 and 3 here 387 

-------------------------------- 388 

 389 

Figure 4 illustrates the fitted marginal distributions for the three flood variables 390 

through Gamma, GEV, Lognormal, Pearson Type III (i.e. P3), and GMM-based 391 

distribution functions. The cdfs and pdfs for the marginal distributions of flood 392 

variables (in Figure 3) show good agreement between the theoretical and the 393 

empirical distributions. Generally, the flood peak and volume can be well quantified 394 

through the proposed four parametric distributions and GMM-based distributions. For 395 

the flood duration, there are some deviations between the theoretical and observed 396 

values, especially for the four parametric distributions. To further evaluate the GMM 397 
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and four parametric distributions in quantifying the probability distributions of flood 398 

variables, the Kolmogorov-Smirnov (K-S) test would be conducted. Table 4 presents 399 

the results of K-S tests. The results indicate that all the proposed five methods can be 400 

employed to model the distributions of flood peak, volume and duration, with the P-401 

values larger than 0.05. However, the performance of the four parametric distributions 402 

in modelling the flood duration is not as well as those in quantifying the flood peak 403 

and volume, since the P-values are less than 0.1. The root mean square error (RMSE) 404 

and AIC values, which are respectively expressed as Equations (23) and (24), would 405 

then adopted to compare the performance of those four distributions. As shown in 406 

Table 4, the GMM-based distributions perform best in quantifying the three flood 407 

variables, with lowest RMSE and AIC values. Especially for flood duration, the 408 

GMM-based distribution performs much better than the other four parametric 409 

distributions.  410 

 411 

-------------------------------- 412 

Place Figure 4 and Table 4 here 413 

-------------------------------- 414 

 415 

4.2. Joint Distributions Based on Copula Method 416 

The dependence of flood variables was evaluated through the Pearson’s linear 417 

correlation (r), and one non-parametric dependence measure, Kendall’s tau. Table 5 418 

presents the values of Pearson’s linear correlation coefficient and Kendall’s tau 419 

among flood peak, volume and duration. The values of Pearson’s r and Kendall’s tau 420 

between duration and volume are highest, followed by the flood pairs of peak-volume, 421 

and peak-duration. In detail, the Pearson, Kendall correlation coefficient values are 422 
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0.55 and 0.66 for peak-volume, 0.68 and 0.75 for volume-duration, and 0.27 and 0.35 423 

for peak-duration. These results indicate that the correlation between the flood 424 

duration and volume would be higher than the other two flood variable pairs. In our 425 

case, the correlation coefficient for peak and duration is much smaller than for the 426 

other two pairs (i.e. peak-volume and volume-duration), which is consistent with 427 

conclusions from previous studies [29, 36, 48, 65]. 428 

The Archimedean copulas are the most attractive copulas for multivariate 429 

hydrologic risk analysis due to their ease for construction and capability of capturing 430 

dependence structure with several desirable properties. The Cook-Johnson (Clayton), 431 

Gumbel-Hougaard, Frank and Ali-Mikhail-Haq copulas are the four widely used 432 

Archimedean copulas. However, the Ali-Mikhail-Haq copula is only applicable with 433 

the Kendall’s tau value varied within [-0.18, 0.33] [46]. In this study, the flood pair of 434 

peak-duration exhibits the lowest Kendall’s tau values with a value being 0.35. For 435 

the flood pairs of peak-volume and volume-duration, the corresponding Kendall’s tau 436 

values are 0.66 and 0.78, respectively. Consequently, the Ali-Mikhail-Haq copula is 437 

excluded and the Cook-Johnson (Clayton), Gumbel-Hougaard and Frank copulas 438 

would be selected to model the dependence among flood variables. The unknown 439 

parameters in these four copulas are estimated by method-of-moments-like (MOM) 440 

estimator based on inversion of Kendall’s tau.  441 

The joint distribution functions for flood peak and volume, obtained through the 442 

three above-mentioned copulas, are shown in Figure 5; the joint distributions for 443 

peak-duration, and volume-duration are shown in Figures 6 and 7, respectively. Also, 444 

comparison between empirical and theoretical copula functions for the flood pairs of 445 

peak-volume, peak-duration and volume-duration can be found in Figure 5, 6 and 7, 446 



20 
 

respectively. In Figures 5 to 7, the red dashed contour lines represent the empirical 447 

copula obtained through 
1

( , ) 1/ 1( / ( 1) , / ( 1) )n
n i ii

C u v n R n u S n v
=

= + ≤ + ≤∑ , where 448 

, [0,1]u v∈ , Ri and Si denote the ranks of the ordered sample, and the solid contour 449 

lines represent the theoretical copula. The results indicate that the empirical and the 450 

three theoretical copulas can match well for flood peak-volume. For flood peak-451 

duration, there are some deviations between theoretical copulas and empirical copula 452 

at low probability levels. This may due to the discrete characteristic of the duration 453 

sample and the relative low accuracy of the obtained marginal distribution. However, 454 

at high probability levels, the theoretical values can fit well with the empirical copula 455 

values. Also, similar characteristic can be found for the flood pair of volume-duration. 456 

Since there are three candidate copulas, investigating the differences among the 457 

three chosen copulas and identifying the most appropriate copulas for further analysis 458 

are necessary. In this study, the Rosenblatt transformation with Cramér von Mises 459 

statistic is employed to evaluate performance of the proposed three copulas in 460 

modelling joint distributions of flood variable pairs. Table 6 presents the results of 461 

statistic test results for the three flood pairs. It can be seen that the proposed Cook-462 

Johnson (Clayton), Gumbel-Hougaard and Frank copulas can be applicable for 463 

modelling the dependence of flood peak-volume, peak-duration and volume-duration, 464 

with the p-values larger than 0.05. To further identify the most appropriate one, the 465 

root mean square error (RMSE) (expressed by Equation (23)) is used to test the 466 

goodness of fit of sample data for the theoretical joint distribution obtained using 467 

copula functions. Table 6 shows the RMSE values for joint distributions obtained 468 

through different copula functions for flood peak-volume, peak-duration and volume-469 

duration. The differences among these three copulas in quantifying the joint 470 

probabilities of the three flood pairs are rarely small. Take the flood pair of peak-471 



21 
 

volume as an example, the RMSE value for the Gumbel-Hougaard and Cook-Johnson 472 

copula is 0.0168 and 0.0199 respectively, while the RMSE value of Frank copula is 473 

0.0149. Based on the values of RMSE, it can be concluded that the Frank copula 474 

would be best for quantifying the joint distribution of flood peak-volume. Similarly, 475 

the Frank copula would be the most appropriate copula for modelling the joint 476 

distribution of flood peak-duration and volume-duration. 477 

 478 

 479 

-------------------------------- 480 

Place Figures 5 - 7 here and Table 6 481 

-------------------------------- 482 

4.3. Bivariate and Conditional Risk Analysis 483 

4.3.1. Conditional Cumulative Distribution Functions and Return Periods of Flood 484 

Characteristics 485 

Based on the results presented in Table 6, the Frank copula would be chosen to 486 

model the dependence between the three flood pairs. Consequently, the conditional 487 

cumulative distribution functions (cdfs) of one flood variable, given the value of the 488 

other flood variable value, can be derived based on the fitted copula function. 489 

Figure 8 shows the conditional cdfs of flood variables, which are obtained through 490 

Equations (10) and (11). It can be seen that, among the flood pairs of peak-volume, 491 

peak-duration and volume-duration, the values of conditional cdf for one flood 492 

variable would decrease as the value of other flood variable increase. This indicates 493 

positive correlation structures between peak-volume, peak-duration, and volume-494 

duration. Besides, the decreasing trend of conditional cdfs for peak-duration is less 495 

than the other two pairs, indicating less correlation structures between peak and 496 
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duration. This is consistent with the results presented in Table 5.  497 

 498 

-------------------------------- 499 

Place Figure 8 Here 500 

-------------------------------- 501 

 502 

The concurrence probabilities of various combination of flood variable would be 503 

more helpful for actual flood control and management than the univariate flood 504 

frequency analysis. As expressed as Equations (16) – (19), the joint return period and 505 

second return period can be derived based on the selected copula functions. Table 7 506 

presents the joint return periods of “AND” and “OR” cases for different flood pairs.  507 

In general, the joint return period in “AND” case is much longer than the joint return 508 

period in “OR” case. For example, if both the flood peak and duration are in 100-year 509 

return period, the “OR” joint return period of flood peak-duration would be 50.9 510 

years, while, in contrast, the “AND” joint return period is 2809.4. Furthermore, the 511 

“AND” return period for flood peak-duration is longest among the three flood 512 

variable pairs due to the low correlation between flood peak and duration, followed by 513 

the “AND” return periods of peak-volume and volume-duration. Correspondingly, the 514 

“OR” joint return period of peak-duration is shorter than the “OR” return periods of 515 

the other two flood variable pairs. Figure 9 shows the contour plot of the joint return 516 

periods in “OR” and “AND” cases for different flood pairs. Also, the secondary return 517 

periods are presented in Table 7, which can be useful for analyzing risk of 518 

supercritical flood events. The secondary return period is defined as the average time 519 

between the concurrence of two supercritical flood events, which would appear more 520 

rarely than the given design return period. As the primary return period increases, the 521 
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probability of supercritical flood events decreases, leading to increase of the 522 

secondary return period. Furthermore, the secondary return period is higher than the 523 

joint return period in TOR case but less than the joint return period in TAND case. 524 

-------------------------------- 525 

Place Table 7 and Figure 9 here 526 

-------------------------------- 527 

 528 

4.3.2. Bivariate Hydrologic Risk Analysis  529 

The damages caused by a flood, such as the failure of hydraulic structures, 530 

mainly due to the high peak flow of the flood. The annual maximum peak discharge 531 

would be the central issue to be considered for hydrologic risk analysis. Moreover, the 532 

flood discharge volume and duration would be also under consideration in practical 533 

flood control and mitigation, in which the flood duration is the vital factor for 534 

decision maker in characterizing the flood control pressure, and the flood volume is 535 

related to flood diversion practices. Consequently, multivariate flood risk analysis, 536 

which involves more flood variables than just considering flood peak, would be more 537 

helpful for actual flood control. Therefore, in this study, a bivariate hydrologic risk 538 

analysis method would be proposed to identify the inherent flood characteristics in 539 

Yangtze River. In particular, three flow amounts, with a return period of 50, 70, and 540 

100-year, respectively are considered as designed standard for the river levee around 541 

the Yichang Station. Four service time scenarios are also assumed for the river levee, 542 

namely 30, 50, 70 and 100 years.  543 

 544 

(1) Bivariate flood risk under different flood peak-volume scenarios 545 

The bivariate hydrologic risk for flood peak flow and volume indicates the 546 
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concurrence probabilities of flood peak flow and volume values. Figure 10 shows the 547 

bivariate flood risk under different flood peak-volume scenarios. For the univariate 548 

hydrologic risk expressed as Equation (20), its value would decrease as the increase of 549 

designed peak flow or the service time of the river levee. As can be seen from Figure 550 

10, if the flood volume is less than 1 × 105 (m3/s day), the bivariate risk values for 551 

flood peak-volume would not decrease significantly for all designed flows and service 552 

time periods. This suggests that the occurrence of one flood peak flow would usually 553 

be accompanied with a flood volume up to 1 × 105 (m3/s day). However, for one 554 

designed flow and service time period, the values of the bivariate risk for flood peak-555 

volume would decrease when the associated flood volume is larger than 1 × 105 (m3/s 556 

day). This indicates that the probabilities of concurrence of large flood volumes and 557 

high peak flows would be generally less than the occurrence probabilities of high 558 

peak flows.   559 

 560 

-------------------------------- 561 

Place Figure 10 here 562 

-------------------------------- 563 

 564 

The implication for the bivariate risk of flood peak flow and volume is to provide 565 

decision support for hydrologic facility design and establishment of flood diversion 566 

areas. In actual flood control practices, the excess water of floods can be redirected 567 

temporary holding ponds or other bodies of water with a lower risk or impact to flood. 568 

For example, in China, the flood diversion areas are rural areas that are deliberately 569 

flooded in emergencies in order to protect cities. In flood diversion practice, the 570 

bivariate risk for flood peak flow and volume would be an important reference for the 571 
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design of flood diversion areas. For example, as shown in Figure 9, for the river levee 572 

with a designed flow of 50-year return period and 30-year service period, the flood 573 

risk value would be about 45, 43, 35, 22% with a flood volume being 0.5, 1, 1.5, and 574 

2 × 105 m3/s, respectively. Based on these bivariate risk values, the flood manager can 575 

design corresponding scales of the flood diversion areas. 576 

 577 

(2) Bivariate flood risk under different flood peak-duration scenarios 578 

Figure 11 shows the variations in the failure risk of river levee around Yichang 579 

Station under different flood peak-duration scenarios. The bivariate hydrologic risk 580 

can reflect the failure risk of river levee with respect to the variation of flood 581 

durations. In Figure 11, the initial risk values (points on the y-coordinate) are obtained 582 

through Equation (19) without considering impacts of the flood duration, while the 583 

points on the solid, dashed and asterisk lines are derived based on Equation (21). The 584 

results in Figure 10 indicate that the bivariate risk of flood peak-duration would not 585 

decrease at the flood duration less than 8 days, and then decrease as the increase of 586 

flood duration. Such results suggest that the once a flood occurs at Yichang Station, 587 

this flood would last up to 8 days without significant decrease in the occurrence 588 

probability. However, the concurrence of a flood with high peak flow and long 589 

duration would not appear frequently.  590 

 591 

-------------------------------- 592 

Place Figure 11  593 

-------------------------------- 594 

 595 

The bivariate risk of the flood peak flow and duration can provide useful 596 
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information for actual hydrologic facility design and potential flood control. In 597 

practical engineering hydrologic facility construction, the return period of peak flow 598 

would be the key factor to be considered. Moreover, the flood duration would be 599 

related to flood defense preparation, in which longer flood duration would generally 600 

require more flood defense materials such as sand, wood, bags. Consequently, the 601 

bivariate flood risk values under different flood peak-duration scenarios would be 602 

considered as references for decision makers to determine how much materials would 603 

be prepared for flood defense.  604 

 605 

4.3.3. Conditional Probability Density Functions of Flood Characteristics 606 

In addition to derive the conditional cdfs and joint return periods based on the 607 

best-fitted copula for the historical flood data, the conditional probability density 608 

functions (pdfs) of the flood variable can also be generated based on Equations (12) - 609 

(15). In flood risk analysis, the peak flow would be the critical factor to judge whether 610 

a flood appears. However, once the flood occurred, the severity of the flood would 611 

also influenced by flood duration and volumes. In detail, the flood duration would be 612 

related to the flood control pressure in which flood defense materials should be 613 

prepared for strengthening the river levee and inspection should be conducted for the 614 

safety of the river levee. The flood volume would generally influence the flood 615 

diversion practices, in which excess water would be diverted to temporary holding 616 

ponds with lower risk in order to protect cities. 617 

Figure 12 shows the distributions of flood volume conditional on the flood peak 618 

flows with different return periods. In this study, the flood peak flows with return 619 

periods of 10, 20, 50, and 100-year are under consideration. Each curve represents the 620 

probability distribution function (pdf) of flood volume associated with the flood peak 621 
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flow with a particular return period. It can be seen that, once a flood appears, the 622 

conditional pdf of flood volume would approximately follow a bimodal distribution, 623 

with the two vertexes appearing around 1.2 and 2.0 × 105 m3/s day, respectively. More 624 

specifically, the former vertex would appear more frequently for small floods while 625 

the latter one is more frequent for large floods. Moreover, as the peak flows increases, 626 

the two vertexes of the flood volume would also increase correspondingly, but the 627 

latter vertex seems to increase more than the former vertex, as shown in Figure 12. 628 

Finally, the conditional pdf of flood volume also shows that the occurrence 629 

probability of the first vertex would decrease while the occurrence probability of the 630 

latter vertex would increase when the return period of the flood peak increases. Such 631 

pdfs of flood volume conditional on different flood peak flows can provide support 632 

information for flood diversion practices and be involved in the flood optimization 633 

models to determine the capacities of flood diversion. For instance, once a flood 634 

occurs and excessive flood is required to be diverted to some flood discharge area, the 635 

associated flood volume should be estimated before conducting flood diversion. From 636 

Figure 12, it can be concluded that two flood volumes would be primarily under 637 

consideration, around 1.2 and 2.0 × 105 m3/s day, respectively. Particularly, the flood 638 

volume of 1.2 × 105 m3/s day would be paid more attention for small floods while the 639 

volume of 2.0 × 105 m3/s day would be paid more attention for large floods. These 640 

results can provide useful information for flood managers to prepare appropriate flood 641 

diversion schemes. Moreover, Table 8 shows the statistical characteristics for the 642 

PDFs of flood volume conditional on different floods. The results indicate that, as the 643 

increase of the flood peak return period, the mean value of the conditional pdf of 644 

flood volume would generally increase, while the standard deviation of the 645 

conditional pdfs would not change significantly.  646 
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 647 

-------------------------------- 648 

Place Figure 12 and Table 8 here 649 

-------------------------------- 650 

 651 

Figure 13 shows the distributions of flood duration conditional on the flood peak 652 

flows with different return periods. It is indicated that, the conditional pdfs of flood 653 

duration would also obey bimodal distributions, with two vertexes appearing around 654 

11 and 15 days. Specifically, as the increase of flood return period, the former vertex 655 

around 11 days would not change significantly, but the latter vertex (around 15 days) 656 

would show a remarkable increase. For instance, the latter vertex of the duration pdf 657 

conditional on a flood with 10 years would be about 14.8 days, while such a vertex 658 

would increase to around 15.7 days when the return period of the flood peak increase 659 

to 100 years. Moreover, the latter vertex show a more frequent occurrence probability 660 

than the former vertex except for a small flood with a 10-year return period. The 661 

engineering implications of the pdfs of flood duration conditional on flood peak is to 662 

provide an insightful screening for the duration time once a flood occurs, which will 663 

further be considered as a reference for flood defense materials preparation and river 664 

levee safety inspection. The statistical characteristics of the conditional pdfs are 665 

presented in Table 8. The results indicate that the mean values of the conditional pdfs 666 

would increase while the standard deviations are nearly constants. Furthermore, for a 667 

flood with a return period larger than 50 years, associated mean value of the flood 668 

duration would not change significantly, even though the latter vertex shows apparent 669 

increase with the increase in flood peak return period. 670 

 671 
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-------------------------------- 672 

Place Figure 13 here 673 

-------------------------------- 674 

 675 

5. Conclusions 676 

In this study, a bivariate hydrologic risk analysis method is proposed through coupling 677 

Gaussian mixtures into copulas. In the bivariate hydrologic risk analysis framework, 678 

the bivariate frequency analysis, which considered the flood variables pairs of flood 679 

peak, duration and volume, was firstly conducted through coupling Gaussian mixture 680 

models into copulas, leading to a coupled GMM-copula method. This method 681 

improved upon previous methods through providing better estimation for marginal 682 

distributions through Gaussian mixture models. The primary, conditional and 683 

secondary return periods were then derived based on the selected copula. The 684 

bivariate hydrologic risk was defined based on the joint return period of flood 685 

variables to reflect the hydrologic risks of flood peak-duration and flood peak-volume 686 

pairs. Besides, the conditional probability distribution functions (pdfs) of flood 687 

volume and duration under different flood peak scenarios were also derived to explore 688 

the variation in pdfs of flood volume and duration corresponding to different flood 689 

peak flows. 690 

The proposed method was applied for quantifying the bivariate hydrologic risk in 691 

the Yangtze River based on the daily discharge measurements at Yichang Station. The 692 

results indicated that, compared with the parametric distributions such as Gamma, 693 

GEV and Lognormal and Pearson Type III functions, the Gaussian mixture model 694 

could perform much better for quantifying the marginal distributions of flood peak, 695 

volume and duration. Such conclusions has been demonstrated through the K-S test, 696 
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the RMSE and AIC values. 697 

For the dependence among flood variables, the Frank copula would be best for 698 

quantifying the joint distributions of the three flood variable pairs. The bivariate risks 699 

of flood peak-volume and flood peak-duration were evaluated based on the joint 700 

return period in “AND”, revealing significance of effects from persisting high risk 701 

levels due to impacts from multiple interactive flood variables. The results show that 702 

the bivariate risk of flood peak-volume would keep constant for the corresponding 703 

volume less than 1.0 × 105 m3/s day, show apparent decrease for the flood volume 704 

varying between 1.0 and 1.7 × 105 m3/s day, and present most significant decreasing 705 

rates for the volume lager than about 1.7 × 105 m3/s day. For the bivariate risk of flood 706 

peak-duration, it would not change significantly for the flood duration less than about 707 

8 days and then show significant decreasing rate. Moreover, the pdfs of flood volume 708 

and duration conditional on flood peak appeared to be bimodal. The two vertexes for 709 

the conditional pdfs of flood volume were located at around 1.2 and 2.0 × 105 m3/s 710 

day; the occurrence probability for the former vertex would decrease and that for the 711 

latter one would increase with the return period of the flood peak increases. The two 712 

vertexes for the conditional pdfs of flood duration appeared at around 11 and 15 days, 713 

respectively, with the associated occurrence probabilities respectively decreasing and 714 

increasing with the increase of the flood peak return period.  715 

In engineering applications, the bivariate risk can be applied for actual flood 716 

management. Specifically, the bivariate risk of flood peak-volume can provide 717 

support for design of flood diversion area, and the bivariate risk of flood peak-718 

duration can be considered as a reference for preparation of flood defense materials. 719 

Moreover, the pdfs of flood volume and duration conditional on different flood flows 720 

can help flood mitigation and control once a flood has occurred, in which the 721 
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conditional pdfs of flood volume can provide useful information for flood diversion, 722 

and the conditional pdfs of flood duration can help decision maker arrange related 723 

people for river levee inspection. 724 
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Figure 1: the location of the studied watershed 975 
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Ganguli and Reddy, [22]) 980 
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Figure 3. Variations of flood variables during the studied period 984 
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 987 

 988 
Figure 4. Comparison of different probability density estimates with observed 989 

frequency. 990 
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Figure 5. The copula estimation between flood peak and volume 
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Figure 6. The copula estimation between flood peak and duration
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Figure 7. The copula estimation between flood volume and duration 
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Figure 8. The conditional cumulative distribution functions. 
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Figure 9. Comparison of the joint return periods. 
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Figure 10. Bivariate flood risk under different flood peak-volume scenarios 
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Figure 11. Bivariate flood risk under different flood peak-duration scenarios 
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Figure 12. Probability density functions of volume under different peak flow return 
periods. 
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Figure 13. Probability density functions of duration under different peak flow return 
periods. 
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Table 1. Basic properties of applied copulas 

Copula Name Function[ 1 2( , )C u uθ ] θ ∈  Generating function [ ( )tφ ] 
1

0

( )1 4
'( )
t dt
t

φτ
φ

= + ∫  

Cook- Johnson 1/
1 2[ 1]u uθ θ θ− − −+ −  [-1, ∞)\{0} 1t θ− −  

2
θ

θ +
 

Gumbel-Hougaard 1/
1 2exp{ [( ln ) ( ln ) ] }u uθ θ θ− − + −  [1, ∞) ( ln )t θ−  11 θ −−  

Frank 1 ( 1)( 1)ln{1 }
1

u ve e
e

θ θ

θθ

− −

−

− −
− +

−
 [-∞, ∞)\{0} 1ln[ ]

1

te
e

θ

θ

−

−

−
−

 1
41 [ ( ) 1]D θ
θ

− − − * 

Note: * D1 is the first order Debye function, and for any positive integer k, 
0

( )
1

kk

k k t
k tD x dt
x e

=
−∫  
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Table 2. Parameters of marginal distribution functions of flood variables 

Name Probability density function  Parameters 
 Peak  Volume Duration 

Gamma 11
( )

x
a b

a x e
b a

−−

Γ
, 1

0
( ) a ua u e du

∞ − −Γ = ∫  
a 32.76 2.9 7.90 

b 1557.5 31363.5 1.24 

GEV 
1 111 ( ) ( )( )exp( (1 ) )(1 )k kx xk kµ µ

σ σ σ
− − −− −

− + +  

k -0.336 0.18 0.04 

μ 8899.6 36511.23 2.74 

σ 48177 63161.81 8.07 

Lognormal 2

( )1 exp( )
22

y

yy

y
x

µ
σσ π
−

−  

y = log(x), x>0, -∞ < μy < ∞, σy > 0 

μy 10.82 11.24 2.22 

σy 0.18 0.62 0.36 

Pearson 
Type III 

 a 32.85 1.98 2.48 

11 ( )
( )

x
a b

a x e
b a

α

α
−

−−−
Γ

, 1

0
( ) a ua u e du

∞ − −Γ = ∫  b 1554.1 40002.4 2.22 

 α -21.91 12249.8 4.57 
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Table 3. Marginal distributions for flood variables through GMM 

Flood Variables Weights Mean Standard 
Deviation 

Volume 

0.4232 91987.0 27586.0 

0.1882 182387.1 37581.9 

0.3886 46691.3 16094.4 

Peak 
0.7436 47928 7551.2 

0.2564 60020 4480.5 

Duration 

0.2681 5.98 0.7 

0.4533 9.43 1.7 

0.2785 14.03 2.8 
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Table 4. Statistical test results for marginal distribution estimation 

Flood variables 
Marginal 

distribution 

K-S test 
RMSE AIC 

T  P-value 

Peak 

Gamma 0.0570 0.4253 0.0247 -401.0 
GEV 0.0362 0.7017 0.0176 -436.1 
Lognormal 0.0612 0.3740 0.0287 -384.6 
Pearson Type III 0.0610 0.7369 0.0246 -399.5 
GMM 0.0380 0.6776 0.0119 -473.0 

Volume 

Gamma 0.0611 0.3753 0.0266 -392.9 
GEV 0.0459 0.5705 0.0213 -415.2 
Lognormal 0.0390 0.6648 0.0174 -439.4 
Pearson Type III 0.0417 0.9808 0.0166 -442.5 
GMM 0.0434 0.6049 0.0148 -443.1 

Duration 

Gamma 0.1009 0.0716 0.0375 -355.3 
GEV 0.1023 0.0666 0.0403 -345.5 
Lognormal 0.0996 0.0769 0.0376 -355.1 
Pearson Type III 0.1113 0.0881 0.0378 -352.5 
GMM 0.0703 0.2754 0.0297 -366.9 
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Table 5. Dependence evaluations among flood variables 
No. Flood characteristics Kendall’s tau Pearson’s r 
1 Peak – Volume 0.5509 0.6598 
2 Volume – Duration 0.6756 0.7529 
3 Peak - Duration 0.3561 0.2902 

 
  



56 
 

Table 6. Statistical test results for the flood pairs of peak-volume, peak-duration and 
volume-duration 

Site 
Copulas 

Cramér von Mises statistic 
RMSE 

Sn P-value 

Peak - Volume 

G-H  70.8224 0.3365 0.0168 
C-J 69.3597 0.3085 0.0199 
Frank 70.3817 0.3495 0.0149 

Peak - Duration 

G-H  66.2142 0.1215 0.0349 
C-J 64.9940 0.1165 0.0342 
Frank 65.7948 0.1325 0.0334 

Volume-Duration 

G-H  77.2530 0.1156 0.0302 
C-J 75.8958 0.1096 0.0305 
Frank 76.8450 0.1216 0.0291 
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Table 7. Comparison of univariate, bivariate return periods for flood characteristics (year) 

T 
Peak 
(m3/s) 

Volume 
(m3/s day) 

Duration 
(day) 

AND
PVT  AND

PDT  AND
DVT  OR

PVT  OR
PDT  OR

DVT  
PVT

−

 PDT
−

 DVT
−

 

5 59120.7 132815.5 12.9 8.5 11.4 7.2 3.5 3.2 3.8 6.4 7.7 5.9 
10 62281.3 179597.7 15.2 24.5 36.6 19.2 6.3 5.8 6.8 16.2 22.0 13.8 
20 64567.8 205920.7 16.6 78.8 127.6 58.0 11.5 10.8 12.1 46.8 70.8 36.7 
50 66950.9 229240.1 18.1 419.6 726.4 290.3 26.6 25.9 27.4 227.3 380.1 163.1 
100 68475.7 243091.0 19.1 1579.9 2809.4 1063.1 51.6 50.9 52.5 824.1 1438.0 566.2 
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Table 8. Statistical characteristics of the conditional PDFs of flood duration and volume under 
different peak flow return periods. 

Flood  
variables 

Index initial 
Return periods of peak flow (year) 

10 20 50 100 

Volume 

Mean 91356.3 151750.3 161656.9 167571.8 169531.0 
Std 54840.2 51379.1 51441.9 51214.0 51095.1 
Kurtosis 0.4 -0.7 -0.8 -0.7 -0.7 
Skewness 1.0 0.1 -0.1 -0.2 -0.2 

Duration 

Mean 10.0 13.7 14.3 14.6 14.7 
Std 3.4 3.0 3.0 3.0 2.9 
Kurtosis 0.1 -0.4 -0.4 -0.3 -0.3 
Skewness 0.8 0.1 0.0 -0.1 -0.1 

 
 
 
 
 

 
 
 
 

 


	2.1 Gaussian Mixture Model
	The mixture model is a useful tool for density estimation, and can be viewed as a kind of kernel method [33]. Mixture models can use any component densities but the Gaussian mixture model (GMM) is the most popular [33]. The probability density functio...
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