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Abstract  

Heat acclimation requires the interaction between hot environments and exercise to elicit thermoregulatory 

adaptations. Optimal synergism between these parameters is unknown. Common practise involves utilising a fixed 

workload model where exercise prescription is controlled and core temperature is uncontrolled, or an isothermic 

model where core temperature is controlled and work rate is manipulated to control core temperature.  

 

Following a baseline heat stress test; twenty four males performed a between groups experimental design 

performing short term heat acclimation (STHA; five 90 min sessions) and long term heat acclimation (LTHA; STHA 

plus further five 90 min sessions) utilising either fixed intensity (50% V̇O2peak), continuous isothermic (target rectal 

temperature 38.5°C for STHA and LTHA), or progressive isothermic heat acclimation (target rectal temperature 

38.5°C for STHA, and 39.0°C for LTHA). Identical heat stress tests followed STHA and LTHA to determine the 

magnitude of adaptation.  

 

All methods induced equal adaptation from baseline however isothermic methods induced adaptation and 

reduced exercise durations (STHA = -66% and LTHA = -72%) and mean session intensity (STHA = -13 %V̇O2peak 

and LTHA= -9 %V̇O2peak) in comparison to fixed (p < 0.05). STHA decreased exercising heart rate (-10 b.min-1), 

core (-0.2°C) and skin temperature (-0.51°C), with sweat losses increasing (+0.36 L.hr-1) (p < 0.05). No difference 

between heat acclimation methods, and no further benefit of LTHA was observed (p > 0.05). Only thermal 

sensation improved from baseline to STHA (-0.2), and then between STHA and LTHA (-0.5) (p < 0.05). Both the 

continuous and progressive isothermic methods elicited exercise duration, mean session intensity, and mean Trec 

analogous to more efficient administration for maximising adaptation.  

 

Short term isothermic methods are therefore optimal for individuals aiming to achieve heat adaptation most 

economically, i.e. when integrating heat acclimation into a pre-competition taper. Fixed methods may be optimal 

for military and occupational applications due to lower exercise intensity and simplified administration.  

Highlights 

 Isothermic and fixed intensity heat acclimation methods elicit equal adaptation. 

 Isothermic heat acclimation is more appropriate for athletes due to more efficient procurement. 

 Progressive increases in target core temperature do not increase the extent of adaptation.  
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1. Introduction 

Repeated exposure to stressful hot environments initiates the heat-adapted phenotype. The heat-adapted 

phenotype is acquired most effectively when hot and humid environmental conditions and physical work (intensity, 

duration and frequency) interact to stress thermoregulatory and cardiovascular systems (Sawka et al., 2011); this 

process is known as heat acclimation (Garrett et al., 2011). Primary adaptations induced by heat acclimation include 

decreased core temperature (Armstrong and Maresh, 1991; Buono et al., 1998; Garrett et al., 2011) and reduced 

heat storage (Aoyagi et al., 1997) facilitated by increased sudomotor function (Chinevere et al., 2008; Lorenzo and 

Minson, 2010; Machado-Moreira et al., 2006; Martinez et al., 2012), increased skin blood flow (Lorenzo and Minson, 

2010), and cardiovascular adjustments eliciting greater maintenance of stroke volume and reduced heart rate at a 

given workload (Frank et al., 2001). These adaptations contribute to a decreased thermal and perceptual strain 

(Castle et al., 2011), ultimately facilitating increased exercise performance in hot and cool environments (Lorenzo 

et al., 2010). Heat acclimation is often categorised into short term (STHA) and long term (LTHA) induction periods. 

LTHA, the traditional time scale, generally comprises ≥10 daily heat exposures (Garrett et al., 2011), potentiating 

the most complete phenotypic adaptation. STHA utilises ≤5 daily exposures, facilitating rapid, but, incomplete 

adaptation (~75% compared to LTHA, (Pandolf, 1979)). Notwithstanding, STHA still remains an effective tool used 

by practitioners for augmenting adaptation before exposure to hot environments, improving tolerance to exercise 

or work (Garrett et al., 2012, 2009).  

 

Increased core temperature is a fundamental requirement for inducing heat acclimation (Regan et al., 1996; Taylor 

and Cotter, 2006). Isothermic heat acclimation (also known as controlled hyperthermia) is imposed based upon 

endogenous (internal) criteria (Castle et al., 2012; Garrett et al., 2014, 2012, 2009; Hom et al., 2012; Machado-

Moreira et al., 2006; Magalhães et al., 2010a, 2010b; Patterson et al., 2014, 2004), and might provide sustained 

targeting and attainment of specific and individualised internal temperatures through a combination of active and 

passive heat acclimation (Fox et al., 1963). The balance between work and rest to target and maintain specific core 

temperatures ensures a consistency, or a progression of endogenous heat strain to induce adaptation, albeit 

requiring alterations in administration throughout each session. Implementation of fixed intensity heat acclimation 

methods is in comparison relatively simple, with participants maintaining a fixed workload throughout each active 

acclimation session (Amorim et al., 2011; Castle et al., 2011; Cheung and McLellan, 1998; Houmard et al., 1990; 

Kresfelder et al., 2006; Lorenzo and Minson, 2010; Lorenzo et al., 2010; Marshall et al., 2007; Nielsen et al., 1997, 



4 

 

1993; Sandström et al., 2008; Watkins et al., 2008; Yamada et al., 2007). Fixed methods derive exercise workloads 

from a pre acclimation baseline, and the exogenous (external) environment are consistent day-on-day. Though this 

method may provide sufficient heat strain during the initial sessions of heat acclimation regimens, fixed methods 

may not achieve the desired, nor optimally potentiating stimuli – increased core temperature, as the thermal strain 

relative to the start of acclimation diminishes with ensuing adaptation (Taylor and Cotter, 2006; Taylor, 2014). 

During both STHA and LTHA, relative workload and the thermal strain of heat acclimation are likely to reduce 

during fixed intensity as on-going adaptation is seen. Isothermic heat acclimation, where endogenous thermal 

stimulus is consistently targeted throughout, may positively sustain the rate of adaptation, or advance adaptation 

should a progressive increase in core temperature be implemented (Taylor and Cotter, 2006; Taylor, 2014). 

Progressive isothermic methods have only previously  been implemented using models where the environmental 

conditions or workload for acclimation are increased (Burk et al., 2012; Chen et al., 2013; Daanen et al., 2011), this 

presumably to offset the aforementioned ongoing adaptation. These progressive methods are not certain to increase 

core temperature in the manner that a progressive increase in the isothermic target temperature would. Varied 

administration of heat acclimation methods has likely produced different phenotypic adaptive responses.  The mode 

of exercise, relative exercise intensity and climatic conditions may modulate different degrees of adaptation (Taylor 

and Cotter, 2006). Should the anticipated core temperature changes be observed between methods it is likely that 

fixed heat acclimation methods are analogous to a reduction in the potentiating stimuli for adaptation and 

consequently the rate of adaptation would decrease from STHA to LTHA. The isothermic continuous method should 

theoretically sustain potentiating stimuli and consequently sustain the rate of adaptation from STHA to LTHA. 

Finally a progressive isothermic method could theoretically be used to increase potentiating stimuli and may 

increase the rate of adaptation from STHA to LTHA.   

 

The aim of the present study was to determine whether any differences in heat adaptation occurred between an 

established exogenous controlled, fixed intensity heat acclimation method, an endogenous controlled, isothermic 

heat acclimation method, and a stepwise progressive endogenous isothermic heat acclimation method, after STHA 

and LTHA periods. No direct comparison has been made of the observed adaptation and administration differences 

between isothermic and fixed heat acclimation methods across STHA and LTHA timescales; additionally evidence 

is limited in support of a stepwise progression in thermal strain to increase the rate of adaptation from STHA to 

LTHA. We hypothesised that the rate of phenotypic adaptation would be greater in isothermic heat acclimation 
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methods in comparison to fixed methods due to sustained strain. It was additionally hypothesised that a greater 

rate of adaptation would be induced by utilising a progressive model. It was also hypothesised that implementation 

of isothermic heat acclimation would require reduced exercise durations and lower average sessional exercise 

intensities, in spite of initially higher exercise intensities, which would favour athletes in the pre-competition taper.  

 

2. Methods 

2.1 Participants 

Twenty-four healthy males were assigned into fixed intensity (FIXED), or isothermic heat acclimation (ISO) groups, 

ISO was then subdivided into continuous isothermic heat acclimation (ISOCONT), or progressive isothermic heat 

acclimation (ISOPROG) groups; participants were matched for peak oxygen uptake (V̇O2peak) and anthropometric 

characteristics. Data are presented in Table 1. Confounding variables of smoking, caffeine, glutamine, alcohol, 

generic supplementation, prior thermal, hypoxic and hyperbaric exposures were all controlled in line with previous 

work in the field (Gibson et al., 2014; Taylor et al., 2011). Following institutional ethics approval and full description 

of experimental procedures, all participants completed medical questionnaires and provided written informed 

consent following the principles outlined by the Declaration of Helsinki of 1975, as revised in 2013. The 

experimental design for the study is presented in Figure 1 with full explanation of the heat acclimation methods 

contained within the “Heat Acclimation Methods” section 2.4 which follows. 

 

2.2 Preliminary Testing 

Participants consumed 500 mL of water 2 h before all preliminary and experimental exercise sessions (Sawka et al., 

2007). A urine osmometer (Alago Vitech Scientific, Pocket PAL-OSMO, UK) was used to ensure consistent hydration 

prior to each experimental session (Garrett et al., 2014). Participants were deemed euhydrated and subsequently 

able to commence further preliminary, and experimental procedures if urine osmolality was <700 mOsm·kg-1 H2O 

(Sawka et al., 2007). Prior to the initial V̇O2peak experimental trial, height (cm) using a fixed stadiometer (Detecto 

Physicians Scales; Cranlea & Co., Birmingham, UK), and body density, using calipers (Harpenden, Burgess Hill, UK) 

and a four site skin fold calculation (Durnin and Womersley, 1974) were determined, later body fat (%) was 

calculated from body density (Siri, 1956) and body surface area (Du Bois and Du Bois, 1916). Nude body mass 

(NBM) was recorded to 0.01 kg from digital scales (ADAM GFK 150, USA), relative metabolic heat production (MHP; 
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(W.kg-1)) was calculated to describe the initial requirements of each heat acclimation method in accordance with 

the guidelines of Cramer and Jay (2014). 

 

V̇O2peak (L.min-1) was determined from an incremental test on a cycle ergometer (Monark e724, Vansbro, Sweden) 

in temperate laboratory conditions (20°C, 40% relative humidity (RH). Starting intensity was set at 80W, with 

resistance applied to the flywheel eliciting a 24 W.min-1 increase at the constant cadence of 80 rpm. Expired 

metabolic gas was measured using online gas analysis (Metamax 3X, Cortex, Germany); V̇O2peak was considered as 

the highest V̇O2 obtained in any 10 s period. Heart rate (HR; b.min-1) was recorded continually during all exercise 

tests by telemetry (Polar Electro Oyo, Temple, Finland). Saddle position was adjusted by the participant to their 

preferred cycling position and remained unchanged for all experimental trials. Heat acclimation workloads were 

subsequently calculated using linear regression utilising power:V̇O2 data collected following the incremental test. 

 

2.3 Heat Stress Testing 

A running Heat Stress Test (HST) was performed as a preliminary test (HST1), then 48 h after STHA (HST2), and 48 

h after LTHA (HST3) inside a purpose built environmental chamber with temperature and humidity (40.0 ± 0.1°C 

and 28.4 ± 6.6% RH) controlled using automated computer feedback (WatFlow control system; TISS, Hampshire, 

UK) and no additional convective cooling provided e.g. motorised fan. All HST were performed between 08:00 and 

10:00 h (Drust et al., 2005). Following confirmation of adequate hydration, participants inserted a single-use 

disposable rectal thermistor (Henleys Medical, UK, Meter logger Model 401, Yellow Springs Instruments, Yellow 

Springs, Missouri, USA; accuracy ± 0.20°C) 10 cm past the anal sphincter to measure rectal temperature (Trec). Skin 

temperature (Tsk) was measured using a data logger (Squirrel Meter Logger, Grant Instruments, Cambridge, UK) 

and skin thermistors attached to the right-hand side of the body using zinc oxide tape (Cramer Products Inc., Kansas, 

USA) at the pectoralis major muscle belly, lateral head of triceps brachii , rectus femoris muscle belly and lateral 

head of the gastrocnemius (Ramanathan, 1964). Mean skin temperature was calculated according to the formula of 

Ramanathan (1964). Absolute sweat loss (L.h-1) was estimated using the change in towel-dried NBM from the pre-

to-post exercise periods and adjusted based upon the HST duration. Participants were not permitted to consume 

any fluid between pre and post-test measurement of NBM. No correction was made for insensible water loss and 

loss of mass associated with the respiratory exchange of O2 and CO2 (Dion et al., 2013); all were assumed to be 

similar between HSTs due to the equal length of each trial at each time point (table 2).  
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After a 20 min seated stabilisation period in temperate laboratory conditions, resting measures were taken after 

which participants entered the environmental chamber to perform 30 min running at 9 km.h-1 and 2% elevation. 

HR, Trec and Tsk were recorded every 5 min. Ratings of perceived exertion (Borg et al., 1985) and thermal sensation 

(Toner et al., 1986) were recorded every 10 min.  HSTs was terminated if Trec ≥ 39.7°C (zero incidences), or the 

participant withdrew due to volitional exhaustion, or inability to maintain the running speed despite strong verbal 

encouragement. 

 

2.4 Heat Acclimation Methods 

Each heat acclimation testing session was conducted at the same time of day (07:00 - 11:00 h) to control for effects 

of daily variation in performance (Shido et al., 1999). Following provision of a urine sample and NBM, each 

participant inserted the rectal thermistor described in the HST and affixed a HR monitor upon which time resting 

measures were taken after 5 min seated in temperate laboratory conditions. Participants subsequently mounted a 

cycle ergometer (Monark, e724, Vansbro, Sweden) located inside the environmental chamber where conditions 

were consistent for all groups (40.2 ± 0.4°C, 39.0 ± 7.8% RH). The FIXED participants performed ten sessions of 90 

min of continuous cycling exercise at a workload corresponding to 50% V̇O2peak. ISOCONT participants exercised 

initially at a workload corresponding to 65% of V̇O2peak until a target Trec of 38.5°C was achieved for all ten heat 

acclimation sessions. ISOPROG participants exercised initially at a workload corresponding to 65% of V̇O2peak  

targeting a Trec of 38.5°C for the first five sessions, then progressing to a Trec of 39.0°C for the final five sessions. 

Once target Trec had been reached, power was adjusted every 5 min, first by a 25%V̇O2peak reduction and then 

adjusted (± 5% V̇O2peak, or seated rest) to maintain the desired experimental Trec for a total session duration of 90 

min within the environmental chamber; workloads at the onset of exercise are presented in Table 1. During each 

testing session HR, Trec and power output, were recorded every 5 min. Mean Trec reflects the average Trec recorded 

throughout each acclimation method. Trecfinal60min quantifies the mean Trec between minutes 30 and 90 of the 

acclimation session to reflect the temperature following the initial rate of increase. Exercising duration was defined 

as the total time exercising (power output >1 W) during acclimation sessions reflecting the physical work demands 

throughout each 90 min session. Mean Session Intensity (%V̇O2peak and W.kg-1) was calculated from the relative 

exercise intensity during each 5 min period throughout all of the 90 min acclimation sessions. This contrasted the 

Mean Exercise Intensity (%V̇O2peak and W.kg-1), which reflected the mean relative exercise intensity only (power 
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output >1 W), thus excluding periods of rest within isothermic methods. Data for these variables are provided in 

Table 2. 

2.5 Statistical Analyses 

All outcome variables were first checked for normality using Kolmogorov-Smirnov and sphericity using the 

Greenhouse Geisser method prior to further analysis. Two way mixed design ANOVA were performed to determine 

differences in dependent variables between heat acclimation methods for STHA and LTHA timescales, and between 

heat acclimation methods and HST1, HST2 and HST3. Adjusted Bonferroni comparisons were used as post hoc 

analyses, determining where differences existed within ANOVA where a time or interaction was found. Data are 

reported as mean ± SD, with two-tailed significance was accepted at p < 0.05. 

 

3. Results  

3.1 Method Administration and Thermoregulatory and Physiological Responses to Short and Long Term 

Heat Acclimation 

Differences (p < 0.05) were observed with increased exercise duration, total work done and duration Trec≥38.5°C in 

all methods from STHA to LTHA, data are presented in Table 2. Mean session intensity, mean session power and the 

time to target Trec increased from STHA to LTHA in ISOCONT and ISOPROG, with mean Trec and mean Trecfinal60, reducing 

in FIXED. The duration Trec≥39.0°C increased from STHA to LTHA in ISOPROG only. No difference was observed for 

mean exercise intensity (f = 1.935, p =0.179), mean exercise power (f = 1.061, p = 0.315), change in Trec (f = 0.866, p 

= 0.363), rate of Trec increase (f = 2.158, p = 0.157), or mean HR (f = 3.026, p = 0.097) between STHA and LTHA.  

 

A between heat acclimation methods interaction effect was observed for exercise duration (f = 13.090, p < 0.001), 

and the time to target Trec (f = 6.500, p = 0.006), mean session intensity (f = 6.727,  p = 0.006), mean Trec (f = 7.063, 

p = 0.005), mean Trecfinal60 (f = 11.073, p = 0.001), duration Trec≥38.5°C (f = 14.608, p < 0.001), duration Trec≥39.0°C 

(f = 28.262, p< 0.001), mean exercise power (f = 3.765, p = 0.040), change in Trec (f = 5.277, p = 0.014) and mean HR 

(f = 11.073, p = 0.001). Post hoc analysis is presented in Table 2 for clarity. No between group interaction was 

observed for total work done (f = 0.011, p = 0.989), mean exercise intensity (f = 3.186, p =0.062), rate of Trec increase 

(f = 0.884, p = 0.428), or for the post hoc analysis of mean session power (f = 4.822, p = 0.019). 

 

3.2 Daily responses to heat acclimation 
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Resting Trec (f = 3.048, p = 0.002), resting HR (f = 3.085, p = 0.002), and sessional sweat loss (%NBM) (f = 3.798, p < 

0.000) all demonstrated improvements overall as the number of heat acclimation sessions increased. Post hoc 

analysis revealed resting Trec was reduced (p < 0.05) from session one before session eight, nine and ten, resting HR 

was reduced (p < 0.05) from session one before session nine and ten and sweat loss was increased (p < 0.05) from 

session one following session eight, nine and ten. No between group effect was observed for resting Trec (f = 1.146, 

p = 0.311), resting HR (f = 1.553, p = 0.076) and sessional sweat loss (f = 1.007, p = 0.453). Data are presented in 

Figure 3. 

 

3.3 Heat Stress Testing - Resting Adaptations 

Resting HR (f = 7.730, p = 0.001) and resting Trec (f = 7.372, p = 0.004) reduced with heat acclimation; post hoc 

analysis revealed a reduction (p < 0.05) in both measures from HST1 to HST2 and HST1 to HST3, but no difference 

between HST2 and HST3 (p > 0.05), data are presented in Table 3. No between heat acclimation method interaction 

was observed for either resting HR (f = 0.819, p = 0.521) or resting Trec (f = 0.750, p = 0.537). 

 

3.4 Heat Stress Testing - Exercising Adaptations 

Mean exercising HR (f = 23.887, p < 0.001), mean Trec (f = 11.067, p < 0.001), sweat loss (f = 10.516, p < 0.001), mean 

Tsk (f = 10.516, p < 0.001) and peak Tsk (f = 13.185, p < 0.001) reduced with heat acclimation; post hoc analysis 

revealed a reduction (p < 0.05) in mean exercising HR, mean Trec, mean Tsk, and peak Tsk, and increase in sweat loss 

from HST1 to HST2 and HST1 to HST3, but no difference between HST2 and HST3 (p > 0.05), (Table 3). No between 

heat acclimation method interaction was observed for mean exercising HR (f = 0.431, p = 0.786), mean Trec (f = 0.213, 

p = 0.930), sweat loss (f = 2.183, p = 0.870) or peak Tsk (f = 2.008, p = 0.111). No changes were observed between 

HSTs, or between heat acclimation methods for exercise duration (f = 2.333, p = 0.125) and (f = 0.333, p = 0.854), 

change in exercising HR (f = 0.529, p = 0.593) and (f = 2.318, p = 0.073), the change Trec (f = 0.126, p = 0.295) and (f 

= 0.975, p = 0.432), or the rate of  Trec increase (f = 1.257, p = 0.295) and  (f = 0.975, p = 0.432) respectively. 

 

3.5 Heat Stress Testing - Perceptual Changes 

Peak thermal sensation (f = 8.316, p = 0.001) and mean thermal sensation (f = 5.573, p = 0.007) reduced with heat 

acclimation, post hoc analysis revealed a reduction (p < 0.05) in peak thermal sensation from HST1 to HST2, HST1 

to HST3, and HST2 to HST3 and mean thermal sensation from HST2 to HST3 (Table 3). No between heat acclimation 
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method interaction was observed for either peak thermal sensation (f = 1.137, p = 0.352) or mean thermal sensation 

(f = 1.150, p = 0.346). No changes were observed between HSTs, or between heat acclimation methods for peak 

rating of perceived exertion (f = 2.891, p = 0.067) and (f = 2.194, p = 0.086) respectively, or mean rating of perceived 

exertion (f = 1.787, p = 0.180) and (f = 0.705, p = 0.593), respectively. 

 

4. Discussion 

The aim of this experiment was to determine whether there was a difference in measures of heat adaptation to 

STHA and LTHA between a fixed intensity heat acclimation method, a controlled isothermic heat acclimation 

method and a progressive isothermic heat acclimation method. It was observed that equal heat adaptation was 

induced between all methods over STHA with no significant additional benefit from our LTHA timescale. Relative 

to Fixed intensity methods, Isothermic methods are the favourable form of administration with equal adaptation 

induced following reduced exercise durations and mean session intensity.   

 

4.1 Differences in Heat Acclimation methods. 

No difference in the magnitude of adaptation existed between fixed intensity, continuous isothermic, and 

progressive isothermic heat acclimation methods, however during STHA and LTHA, the FIXED mode of heat 

acclimation was inferior to isothermic heat acclimation methods (ISOCONT and ISOPROG) when considering applied 

practical perspectives in accordance with established recommendations for interacting physical training and heat 

acclimation to maintain performance (Aoyagi et al., 1997). Isothermic methods achieved adaptation with reduced 

exercise durations (STHA and LTHA) and mean session intensity (STHA and LTHA), which is desirable for athletic 

applications as an effective means for reducing the volume of physiological strain of exercise in the heat. This 

application perhaps contrasts military and occupational applications for which the FIXED method may be optimal 

due to lower intensity of work and simplified administration facilitating implementation for large cohorts, or a 

research perspective when matching of training stimulus is required. Exercising durations were lower in isothermic 

methods (66-79% of session duration) compared to fixed intensity heat acclimation (>99% of session duration). It 

is noteworthy that the time taken to achieve the target Trec in ISOCONT and ISOPROG increased from STHA to LTHA by 

6.6% and 10.0% respectively, thus demonstrating the effects of ongoing adaptation, and using the ISOPROG method 

the greater work required to attain a higher Trec. Higher initial work intensity balanced by increased rest periods 

are congruous with typical training regimes, therefore isothermic methods may be more appropriate when 
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integrating heat acclimation into a training taper (Mujika et al., 2004) prior to competition due to sport specificity 

(Houmard et al., 1990), particularly when acknowledging that the duration of a typical fixed heat acclimation 

session is at the upper end of that desirable for typical pre-competition training session, with the repeated sessions 

exceeding the typical volume of a typical endurance training taper (Spilsbury et al., 2014).  

 

4.2 Adaptations made during short and long term heat acclimation  

Isothermic heat acclimation methods were more favourable than FIXED at targeting and sustaining specific Trec (i.e. 

≥38.5°C) thus delivering greater elevations in thermal strain, notably the important potentiating stimuli of 

increased core temperature over both STHA and LTHA (Regan et al., 1996; Taylor and Cotter, 2006). This statement 

can be evidenced by ISOCONT and ISOPROG evoking greater mean Trec, mean Trecfinal60 and ISOPROG eliciting favourable 

duration Trec≥38.5°C, duration Trec≥39.0°C, change in Trec and mean heart rate (HR) when compared to FIXED (Table 

2). Isothermic heat acclimation increased the duration spent above the minimum proposed  Trec of 38.5°C (Fox et 

al., 1963) in comparison to FIXED during STHA (Duration Trec ≥38.5°C; ISOCONT = ~32 min.session, ISOPROG = ~49 

min.session; FIXED ~24 min.session) and LTHA (Duration Trec ≥38.5°C; ISOCONT = ~32 min.session, ISOPROG = ~46 

min.session FIXED ~18 min.session), with potential for more complete phenotypic adaptation as a result of 

consistently longer durations at higher core temperatures (Patterson et al., 2004; Regan et al., 1996; Taylor and 

Cotter, 2006).  Contrary to our hypothesis however, the rate or magnitude of adaptation was not different utilising 

our between methods, low statistical power was observed for the interaction effect in our data (change HR η2 = 

0.18, sweat loss η2 = 0.17, Tsk η2 = 0.16, all other variables η2 ≤ 0.10), this may suggest the present study is under 

powered, or more likely that no difference will be observed when using sample sizes representative of other 

research in the field, and based upon apriori calculations. The between method statistical analysis implemented 

may additionally have yielded different observations than that of a repeated measures within method design, with 

the latter potentially influencing the ability to determine differences in adaptation between STHA and LTHA.  FIXED 

heat acclimation remains a simple method for eliciting adaptation though consistent workloads, however core 

temperature increases could only be sustained throughout acclimation should a higher exercise intensity, longer 

exercise duration or elevated exogenous environmental temperature be progressively implemented to counteract 

the reduced endogenous strain (Galloway and Maughan, 1997; Gibson et al., 2014; Nielsen et al., 1993; Périard et 

al., 2012). This observation is further evidenced by decreased mean Trec and mean Trecfinal60 as adaptation occurred 

from STHA to LTHA sessions in FIXED.  
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Within the isothermic methods, failure for ISOPROG to confer greater adaptation than ISOCONT, suggests a minimum 

thermoregulatory strain sufficient to elicit physiological adaptations are surpassed by both isothermic, and also 

fixed methods. Comparison of method administration data (Table 2) suggests individual variability still occurs 

within methods, particularly isothermic methods as during STHA, when both ISOCONT and ISOPROG are performing 

the same intended protocol, differences are observed in the exercising duration and duration Trec = 38.5°C. This is 

likely to be due to subtle differences evoked by prescribing workloads based upon a %V̇O2peak. Irrespective of the 

variation between ISOCONT and ISOPROG, both elicit greater potentiating stimuli for adaptation than FIXED. Isothermic 

methods attain the optimal internal temperature for adaptation (38.5°C) for greater durations throughout STHA 

and LTHA,  in line with seminal work in the field (Fox et al., 1963). Isothermic data are similar to that observed 

during short duration, high exercise intensity heat acclimation (75% V̇O2peak for 30 – 35 min.day-1), which was found 

to elicit identical adaptation to a longer duration, low exercise intensity heat acclimation method (50% V̇O2peak for 

60 min.day-1) similar to FIXED (Houmard et al., 1990). Short duration, moderate intensity exercise-heat stress 

followed by passive rest (isothermic methods) more closely representing competition or training, is equally as 

effective as longer, lower intensity exposures at inducing adaptations. The benefit of isothermic methods being 

higher initial workloads reduce exercising durations in comparison to lower intensity continuous fixed methods. 

The differences in core temperature, and subsequent duration and intensity of work performed between continuous 

and progressive isothermic methods occur as a result of recent observations that absolute V̇O2 is most closely 

related to metabolic heat production (Smoljanic et al., 2014) (Table 1), and that to ensure equal comparison 

between groups, workload could be more closely controlled using a workload prescription method other than  

%V̇O2peak (Cramer and Jay, 2014), the authors propose that prescribing heat acclimation utilising workloads known 

to elicit desired rates of metabolic heat production may reduce variations in heat gain particularly in an 

unacclimated individual with relatively lower sweat and evaporative losses. Additionally intermittent exercise, 

which the latter stages of isothermic protocols can mimic, is known to elicit greater thermal and cardiovascular 

strain than continuous exercise of the same average intensity (Taylor and Cotter, 2006). 

  

4.3 Physiological mechanisms of heat acclimation 

Resting Trec and HR reductions were observed towards the latter end of the sessional heat acclimation data (Figure 

2) and during HSTs following STHA and LTHA (Figure 3). The same magnitude and rate of adaptation indicated that 
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these primary physiological adaptations to heat acclimation regimes occurred using all methods (Garrett et al., 

2011; Sawka et al., 2011; Taylor, 2014). Resting and mean exercising Trec reduced after STHA, but were not further 

enhanced after LTHA for all methods in accordance with previous work (Buono et al., 1998; Kampmann et al., 2008). 

Though comparable with some previous data to determine temperature responses to heat stress (Druyan et al., 

2013; Moran et al., 2006), the mean/change Trec observed during the HSTs were not as high as observed using 

alternative protocols to determine physiological responses to heat stress (Magalhães et al., 2010a; Périard et al., 

2012). This may have affected the ability of the test to determine core temperature differences augmented by the 

different heat acclimation methods, or between STHA and LTHA. Additionally, a cycling rather than running heat 

stress test may have yielded different Trec responses specific to the exercise modality of the heat acclimation 

methods. This may also be true of a test implementing workloads specific to one particular exercise domain or 

prescribing an intensity more closely reflecting athletic competition or occupational activity. Modified temperature 

thresholds and plasticity of the hypothalamic neurons within the thermoregulatory centre (Boulant, 2006) and 

afferent peripheral-central drive (Horowitz, 2014) are proposed mechanisms for this phenomenon, although the 

molecular role of prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and orexin cannot be excluded (Shin et al., 

2013). Change in Trec did not attenuate from HST1 following STHA or LTHA, therefore adaptations did not offset 

rate of heat gain (Schlader et al., 2011a). Reduced HR following STHA, combined with lower Trec, indicated lower 

overall physiological strain during HST2, but a further five days of any heat acclimation method did not elicit further 

adaptations at HST3 (Kampmann et al., 2008).  

 

Sweat losses increased (Figure 3), likely contributing, alongside reduced skin blood flow (Kenefick et al., 2007) to 

the reduced mean and peak Tsk following STHA, but was not enhanced by a LTHA period of 10 days. Though 

commonly reported as an adaptation following LTHA (Buono et al., 2009; Chinevere et al., 2008), improved sweat 

loss after STHA is not unique to our data (Machado-Moreira et al., 2006). Our data show enhanced sudomotor 

function from STHA in all methods of heat acclimation; as such different work duration or intensity does not induce 

different sweat rate adaptation. It is conceivable that other thermoregulatory adaptations inhibited the requirement 

for elevated sweat loss during HST3 rather than a plateau in adaptation being apparent. This is somewhat supported 

by our daily heat acclimation session data (Figure 2), whereby increased sweat losses were observed beyond the 

STHA timescale.  It is likely that a lowered internal temperature threshold for sweating was induced by each heat 

acclimation method (Armstrong and Kenney, 1993; Cotter et al., 1997; Gonzalez et al., 1974; Hessemer et al., 1986; 
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Nadel et al., 1974; Patterson et al., 2004; Roberts et al., 1977; Shido et al., 1999). In conjunction with reduced Trec, 

this adaptation afforded participants an improved centrally-mediated tolerance to exercise-heat stress with the 

increased sweat loss a consequence of a greater duration spent sweating within the session. This adaptation is 

facilitated by an earlier onset of sweating (Shido et al., 1999). Heat acclimation is also known to induce peripheral 

changes at the sweat gland to sweat response during exercise-heat stress (Buono et al., 2009; Fox et al., 1964; 

Lorenzo and Minson, 2010). Increased cholinergic sensitivity of the eccrine sweat gland or increased glandular 

hypertrophy is induced by heat acclimation (Sato and Sato, 1983). Sweat adaptations through central (threshold for 

sweat onset) and peripheral (sweat gland function) mechanisms combine with reductions in the core temperature 

threshold for cutaneous vasodilation (Buono et al., 1998; Fujii et al., 2012; Hessemer et al., 1986; Nielsen et al., 1997; 

Yamazaki and Hamasaki, 2003) to confer adaptation decreasing mean and peak Tsk by sweat evaporation (Figure 

3). These adaptations combined to reduce Tsk, permitting greater direction of cardiac output to active muscles, as 

opposed to cutaneous anatomy (González-Alonso et al., 1999) reducing cardiovascular strain in the heat as 

evidenced by our heart rate data. 

 

The observation that thermal sensation further reduced from STHA to LTHA is potentially beneficial for 

performance in the heat (Figure. 3), it is believed that thermal discomfort drives true behavioural thermoregulation 

(Flouris, 2011). Initiation of each of these response pathways during exercise elicit behavioural responses are 

known to lower work rate (Tucker et al., 2006, 2004). This is an undesirable with regards to optimal performance 

in the heat however the role of thermal comfort/sensation and pacing are yet to be fully elucidated with contrasting 

data at present likely due to difference experimental design (Barwood et al., 2014, 2012; Schlader et al., 2011b). 

 

4.4 Applications for practitioners 

Environmental conditions in this study were at the upper range of that typically prescribed for heat acclimation. 

Current practice dictates practitioners aiming to induce heat acclimation would typically administer exercise-heat 

stress environments at lower ambient temperature and humidity. We propose that in environments of lower heat 

stress, that isothermal heat acclimation would provide optimal conditions for adaptation compared to fixed 

intensity methods, where adaptations would not be augmented to the same extent on a sessional basis due to 

reductions in strain during the acclimation process. This is most relevant during LTHA. With reference to isothermic 

modes of heat acclimation, as exogenous heat stress reduces, the exercise or training load would increase, 
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potentially reducing the efficacy of this method. Hotter or more humid conditions would offset this, eliciting more 

rapid increases in Trec than cooler conditions (Gibson et al., 2014). Integration of heat acclimation into an athletic 

taper (Garrett et al., 2011; Mujika et al., 2004) is potentially problematic, requiring acknowledgement of increased 

work demands of exercise in increasing thermal environments (Galloway and Maughan, 1997), which subsequently 

decreases with attainment of heat acclimation (Sawka et al., 1983). We suggest practitioners wishing to induce heat 

acclimation at a time of athletic taper should prescribe isothermic heat acclimation under conditions of greater 

exogenous heat stress than forthcoming competition, to facilitate maximal thermal adaptation for reduced exercise 

training requirement. The reduction in training volume being an essential component of the taper (Spilsbury et al., 

2014), establishing cardiorespiratory, vascular, haematological and neuromuscular changes which ultimately 

contribute towards optimal performance (Mujika et al., 2004). Additionally due to the greater absolute V̇O2, and 

consequently metabolic heat production, for the same relative workload athletes typically exhibit, the rate of rectal 

temperature increase is likely to be greater in a trained vs untrained population, reducing the duration taken to 

reach the 38.5°C core temperature target facilitating greater rest periods.  

 

4.5 Future research directions 

Future work could involve the implementation of an isothermic method where workload is implemented using a 

fixed relative metabolic heat production or relative power, as opposed to a relative workload such as %V̇O2max, 

which may further optimise adaptation by reducing our observed individual variability associated with metabolic 

heat production and retention (Cramer and Jay, 2014). Additionally due to the linear relationship between HR and 

V̇O2, this physiological measurement may be viable for prescribing work rate during heat acclimation. A comparison 

of the inducibility of changes in sweat composition, skin blood flow and plasma volume expansion in response to 

the different heat acclimation modes are yet to be elucidated. It also remains uncertain whether isothermic heat 

acclimation is a more efficient method than fixed intensity heat acclimation for preparing highly trained individuals 

for exercise heat stress (Garrett et al., 2012). Highly trained individuals are likely to be able to sustain the greater 

absolute workloads required of the isothermic methods, with higher metabolic heat production elevating the rate 

of core temperature more rapidly (Cramer et al., 2012; Garrett et al., 2012, 2011) and thus, giving greater 

competition specificity to their acclimation, further enhancing the efficacy of isothermic methods for this 

population.  
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5. Conclusions 

All heat acclimation methods tested in this study were able to induce the heat-adapted phenotype following five 

days of heat acclimation and therefore have merit towards attenuating increased physiological strain when 

exercising in the heat. Based upon our data, the implementation of ten days of heat acclimation did not elicit greater 

adaptation than five days with the exception of thermal sensation. We have identified that no difference in the extent 

of adaptation exists between fixed intensity, continuous isothermic, and progressive isothermic heat acclimation 

methods. Isothermic methods may be more favourable for athletes aiming to integrate heat acclimation into a pre 

competition taper due to reduced exercise durations and mean session intensities.  
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Table 1. Mean ± SD Participant characteristics and descriptive data for the initial workload in fixed 

intensity heat acclimation (FIXED), continuous isothermic heat acclimation (ISOCONT), and progressive 

isothermic heat acclimation (ISOPROG) experimental groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

*denotes significantly difference from FIXED (p < 0.05) 

  

 

 
FIXED 
(n = 8) 

 

ISOCONT  
(n = 8) 

ISOPROG 

(n = 8) 

Age 
(years) 

19.9 ± 1.0 22.6 ± 5.5 26.1 ± 4.9* 

Height 
(cm) 

179.3 ± 5.8 177.9 ± 5.8 179.5 ± 6.6 

Body Mass 
(kg) 

79.2 ± 18.3 74.2 ± 6.9 75.1 ± 8.8 

Body Mass Index 
(kg.m2) 

24.6 ± 5.7 23.4 ± 1.7 23.4 ± 3.2 

Body Surface Area 
(m2) 

1.97 ± 0.21 1.92 ± 0.11 1.94 ± 0.11 

Body fat 
(%) 

14.9 ± 7.7 14.8 ± 2.2 14.1 ± 3.5 

V̇O2peak  
(L.min-1) 

3.61 ± 0.90 3.63 ± 0.69 3.80 ± 0.55 

Initial Workload 
(W.kg-1) 

1.6 ± 0.5 2.2 ± 0.3* 2.4 ± 0.4* 

Initial metabolic heat production 
(W.kg-1) 

9.5 ± 3.3 11.1 ± 1.4 11.9 ± 2.0 
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Table 2. Mean ± SD Protocol, thermoregulatory and physiological response data for STHA, then LTHA of fixed intensity heat acclimation (FIXED), 

continuous isothermic heat acclimation (ISOCONT), and progressive isothermic heat acclimation (ISOPROG) experimental groups. 

  STHA   LTHA  

 FIXED ISOCONT ISOPROG FIXED ISOCONT ISOPROG 

Exercising Duration  
(min) 

450 ± 0 337 ± 47 # 263 ± 47 † 900 ± 0 * 707 ± 102 * # 598 ± 87 * † 

Time to target Trec  
(min) 

89 ± 2 49 ± 12 # 43 ± 10 # 89 ± 2 54 ± 14 * # 52 ± 10 * # 

Mean Session Intensity  
(%V̇O2peak) 

50.0 ± 0.0  40.6 ± 6.2 # 33.5 ± 7.2 # 50.0 ± 0.0 43.9 ± 6.0 * 38.1 ± 7.1 * # 

Mean Exercise Intensity  
(%V̇O2peak) 

50.0 ± 0.0 55.2 ± 6.4 57.7 ± 5.3 50.0 ± 0.0 56.7 ± 5.8 57.5 ± 4.4 

Mean Session Power  
(W.kg-1) 

1.6 ± 0.4 1.4 ± 0.1 1.3 ± 0.3 1.6 ± 0.4 1.5 ± 0.2 * 1.4 ± 0.3 * 

Mean Exercise Power  
(W.kg-1) 

1.6 ± 0.4 1.9 ± 0.3 2.2 ± 0.5 # 1.6 ± 0.4 2.0 ± 0.2 2.2 ± 0.5 # 

Total Work Done  
(kJ) 

3352 ± 815 2789 ± 358 2590 ± 560 6701 ± 1603 * 6113 ± 834 * 5880 ± 1484 * 

Mean Trec  
(°C) 

38.03 ± 0.16 38.18 ± 0.12 38.26 ± 0.18 # 37.92 ± 0.15 * 38.16 ± 0.12 # 38.26 ± 0.20 # 

Mean Trecfinal60min 
(°C) 

38.28 ± 0.18 38.44 ± 0.13 38.60 ± 0.18 # 38.16 ± 0.18 * 38.43 ± 0.14 # 38.63 ± 0.21 # 

∆ Trec 
 (°C) 

1.72 ± 0.58 1.74 ± 0.19 2.15 ± 0.38 1.63 ± 0.60 1.78 ± 0.22 2.27 ± 0.29 # 

Rate Trec increase  
(°C.hr-1) 

1.43 ± 0.43 1.98 ± 0.31 2.42 ± 0.54  1.34 ± 0.46 1.99 ± 0.36  2.36 ± 0.50  

Duration Trec ≥38.5°C  
(min) 

118 ± 53 161 ± 62 244 ± 62 † 176 ± 86 * 318 ± 118 *# 462 ± 120 * † 
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Duration Trec ≥39.0°C  
(min) 

17 ± 21 5 ± 14 + 38 ± 32 21 ± 24 13 ± 24 146 ± 70 * † 

Mean HR 
(b.min-1) 

155 ± 13 150 ± 9  142 ± 11 150 ± 13 150 ± 9 143 ± 11 

 

* denotes significantly different (p < 0.05) from STHA (within group), # denotes significantly different (p <0.05) from FIXED (within timescale), † 

denotes significantly different (p < 0.05) from FIXED and ISOCONT (within timescale), + denotes significantly different (p < 0.05) from ISOPROG within 
timescale. 



26 

 

Table 3. Mean ± SD Heat Stress Test data at baseline (HST1), post five HA sessions (HST2) and post ten HA sessions (HST3) of the fixed 

intensity heat acclimation (FIXED), continuous isothermic heat acclimation (ISOCONT), and progressive isothermic heat acclimation (ISOPROG) 

experimental groups. 

  HST1 
 
 

 HST2   HST3  

 
 

FIXED ISOCONT ISOPROG FIXED ISOCONT ISOPROG FIXED ISOCONT ISOPROG 

Duration  
(min) 

25.0 ± 8.0 29.4 ± 1.8 29.4 ± 1.8 25.0 ± 8.0 30.0 ± 0.0 30.0 ± 0.0 25.6 ± 8.2 30.0 ± 0.0 30.0 ± 0.0 

Rest HR  
(b.min-1) 

74 ± 8 71 ± 9 63 ± 10 65 ± 11* 66 ± 8* 59 ± 9* 69 ± 9* 63 ± 4* 56 ± 12* 

Change HR  
(b.min-1) 

107 ± 9 113 ± 13 118 ± 11 115 ± 16  105 ± 12 111 ± 9 111 ± 11 110 ± 10 115 ± 10  

Mean exercising HR  
(b.min-1) 

161 ± 10 159 ± 9 154 ± 17  152 ± 12* 147 ± 10* 145 ± 13* 153 ± 9* 148 ± 8* 144 ± 18* 

Rest Trec  
(°C) 

37.23 ± 0.35 37.05 ± 0.21 36.94 ± 0.40 36.94 ± 0.36* 36.95 ± 0.21* 36.73 ± 0.41* 36.90 ± 0.40* 36.96 ± 0.19* 36.75 ± 0.25* 

Change Trec  
(°C) 

1.18 ± 0.44 1.61 ± 0.31 1.48 ± 0.19 1.25 ± 0.57 1.39 ± 0.35 1.44 ± 0.25 1.20 ± 0.47 1.28 ± 0.38 1.41 ± 0.39 

Rate Trec  
(°C.hr-1) 

2.35 ± 0.87 3.21 ± 0.62 2.97 ± 0.39 2.49 ± 1.13 2.77 ± 0.71 2.87 ± 0.49 2.39 ± 0.94 2.56 ± 0.75 2.82 ± 0.78 

Mean Trec  
(°C) 

37.77 ± 0.30 37.76 ± 0.17 37.56 ± 0.39 37.58 ± 0.34* 37.57 ± 0.19* 37.41 ± 0.41* 37.45 ± 0.30* 37.52 ± 0.27* 37.35 ± 0.43* 

Sweat Loss  
(L.hr-1) 

1.45 ± 0.50 1.61 ± 0.43 1.28 ±0.42 1.88 ± 0.75* 1.95 ± 0.36* 1.96 ± 0.80* 2.16 ± 0.61* 2.17 ± 0.61* 1.73 ± 0.58* 

Peak Tsk  
(°C) 

37.72 ± 0.98 37.40 ± 0.78 37.52 ± 0.48 36.95 ± 1.11* 36.74 ± 0.32* 36.81 ± 0.84* 37.16 ± 0.83* 36.73 ± 0.62* 36.73 ± 0.81* 

Mean Tsk  
(°C) 

35.70 ± 1.07 36.07 ± 0.67 36.05 ± 0.52 35.47 ± 1.12* 35.65 ± 0.38* 35.38 ± 0.86* 35.74 ± 0.99* 34.93 ± 0.71* 35.13 ± 0.77* 

Peak RPE 13 ± 3 16 ± 3 15 ± 2 14 ± 4 15 ± 3 14 ± 3 14 ± 3 14 ± 3 14 ± 4 
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Mean RPE 13 ± 3 14 ± 3 13 ± 1 13 ±3 14 ± 3 13 ± 2 13 ± 3 13 ± 3 13 ± 2 

Peak TSS 7.1 ± 1.0 6.9 ± 0.8 6.7 ± 0.5 6.8  ± 0.8 6.7 ± 1.0 6.7 ± 0.4 6.5 ± 1.0*# 6.3 ± 1.0*# 6.3 ± 0.5*# 

Mean TSS 6.8 ± 1.0 6.3 ± 0.6 6.3 ± 0.4 6.5 ± 0.9 6.3 ± 0.8 6.3 ± 0.5 6.0 ± 0.8# 6.1 ± 0.5# 6.2 ± 1.0# 

 
* denotes HST significantly different (p <0.05) from HST1 overall. # denotes HST significantly different (p <0.05) from HST2 overall.  
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Figure 1. Experimental Schematic. See text for details.  
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Figure 2. Mean ± SD Sessional resting Trec, resting HR and sweat loss adaptations to FIXED, ISOCONT, and ISOPROG HA 

methods. * denotes difference from session one (p < 0.05). 
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Figure 3. Mean ± SD Physiological Heat Stress Test data at baseline (HST1), post STHA sessions (HST2) and post 

LTHA (HST3) of FIXED, ISOCONT and ISOPROG. * denotes HST significantly different (p <0.05) from HST1 overall. 
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Figure 4. Mean ± SD Perceptual Heat Stress Test data at baseline (HST1), post STHA sessions (HST2) and post LTHA (HST3) of 

FIXED, ISOCONT and ISOPROG. * denotes HST significantly different (p <0.05) from HST1 overall. # denotes HST significantly 

different (p <0.05) from HST2 overall. 
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