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Abstract 8 

Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to machine fault 9 

diagnosis. This is a promising way to release the contribution from human labor and automatically recognize 10 

the health states of machines, thus it has attracted much attention in the last two or three decades. Although 11 

IFD has achieved a considerable number of successes, a review still leaves a blank space to systematically 12 

cover the development of IFD from the cradle to the bloom, and rarely provides potential guidelines for the 13 

future development. To bridge the gap, this paper presents a review and roadmap to systematically cover the 14 

development of IFD following the progress of machine learning theories and offer a future perspective. In the 15 

past, traditional machine learning theories began to weak the contribution of human labor and brought the era 16 

of artificial intelligence to machine fault diagnosis. Over the recent years, the advent of deep learning theories 17 

has reformed IFD in further releasing the artificial assistance since the 2010s, which encourages to construct 18 

an end-to-end diagnosis process. It means to directly bridge the relationship between the increasingly-grown 19 

monitoring data and the health states of machines. In the future, transfer learning theories attempt to use the 20 

diagnosis knowledge from one or multiple diagnosis tasks to other related ones, which prospectively 21 

overcomes the obstacles in applications of IFD to engineering scenarios. Finally, the roadmap of IFD is 22 
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pictured to show potential research trends when combined with the challenges in this field. 1 

Keywords: Machines, intelligent fault diagnosis, machine learning, deep learning, transfer learning, review 2 

and roadmap. 3 

 4 

Contents 5 

1. Introduction ..................................................................................................................................................... 3 6 

2. Past: IFD using traditional machine learning theories ..................................................................................... 9 7 

2.1. Overview .............................................................................................................................................. 9 8 

2.2. Step 1: Data collection ........................................................................................................................ 10 9 

2.3. Step 2: Artificial feature extraction .................................................................................................... 11 10 

2.3.1. Feature extraction .................................................................................................................... 11 11 

2.3.2. Feature selection ...................................................................................................................... 12 12 

2.4. Step 3: Health state recognition .......................................................................................................... 13 13 

2.4.1. Expert system-based approaches ............................................................................................. 14 14 

2.4.2. ANN-based approaches ........................................................................................................... 17 15 

2.4.3. SVM-based approaches ........................................................................................................... 21 16 

2.4.4. Other approaches ..................................................................................................................... 26 17 

2.5. Epilog ................................................................................................................................................. 30 18 

3. Present: IFD using deep learning theories ..................................................................................................... 30 19 

3.1. Overview ............................................................................................................................................ 31 20 

3.2. Step 1: Big data collection .................................................................................................................. 31 21 

3.3. Step 2: Deep learning-based diagnosis ............................................................................................... 33 22 

3.3.1. Stacked AE-based approaches ................................................................................................. 34 23 



Page 3 
 

3.3.2. DBN-based approaches ........................................................................................................... 37 1 

3.3.3. CNN-based approaches ........................................................................................................... 40 2 

3.3.4. ResNet-based approaches ........................................................................................................ 44 3 

3.4. Epilog ................................................................................................................................................. 46 4 

4. Future: IFD using transfer learning theories .................................................................................................. 47 5 

4.1. Motivation of applying transfer learning to IFD in engineering scenarios ......................................... 47 6 

4.2. Definitions of transfer learning in IFD ............................................................................................... 48 7 

4.2.1. Transfer problems in IFD ........................................................................................................ 48 8 

4.2.2. Transfer scenarios in IFD ........................................................................................................ 49 9 

4.3. Categories of transfer learning-based approaches in IFD ................................................................... 50 10 

4.3.1. Feature-based approaches ........................................................................................................ 51 11 

4.3.2. GAN-based approaches ........................................................................................................... 57 12 

4.3.3. Instance-based approaches ...................................................................................................... 58 13 

4.3.4. Parameter-based approaches .................................................................................................... 60 14 

4.4. Epilog ................................................................................................................................................. 61 15 

5. Discussions: Future challenges and a roadmap in IFD .................................................................................. 62 16 

6. Conclusions ................................................................................................................................................... 67 17 

Acknowledgements ........................................................................................................................................... 68 18 

References ......................................................................................................................................................... 68 19 

 20 

1. Introduction 21 

Fault diagnosis serves an important role in pursuing the relationship between the monitoring 22 

data and the health states of machines [1, 2], which has been a widely concerned issue in 23 
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machine health management. Traditionally, the relationship is caught by abundant experience 1 

and huge expert knowledge of engineers. For example, an experienced engineer is able to 2 

diagnose the faults of engines depending on the abnormal sound or locate the bearing faults by 3 

using advanced signal processing methods to analyze the vibration signals. In engineering 4 

scenarios, however, the machine users would like an automatic method to shorten the 5 

maintenance cycle and improve the diagnosis accuracy. In particular, with the help of artificial 6 

intelligence, the procedure of fault diagnosis is expected to be intelligent enough to 7 

automatically detect and recognize the health states of machines [2-5]. 8 

Intelligent fault diagnosis (IFD) refers to applications of machine learning theories, such as 9 

artificial neural networks (ANN), support vector machine (SVM), and deep neural networks 10 

(DNN), to machine fault diagnosis [6, 7], which is promising to achieve the above purpose. This 11 

kind of methods uses machine learning theories to adaptively learn the diagnosis knowledge of 12 

machines from the collected data instead of utilizing the experience and knowledge of 13 

engineers. Specifically, IFD aims to construct diagnosis models that are able to automatically 14 

bridge the relationship between the collected data and the health states of machines. 15 

In recent years, IFD has attracted much attention from academic researchers and industrial 16 

engineers, which deeply relates to the development of machine learning [6-9]. We count the 17 

number of publications about IFD based on the search results from the Web of Science, which is 18 

shown in Fig. 1. According to the results on the topic of machine fault diagnosis by using 19 

machine learning, the number of publications has rapidly increased since the 2010s. Therefore, 20 

we roughly divide the research of IFD into three periods as follows. 21 
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 1 

Fig. 1. Development and milestones of IFD using machine learning. 2 

1) In the past, traditional machine learning theories were popularly conducted in IFD from the 3 

debut to the 2010s. The early research of machine learning derived back to the 1950s, and 4 

boosted to be an important interest of artificial intelligence in the 1980s [10]. A number of 5 

traditional theories were invented during this period such as ANN [11], SVM [12], k-Nearest 6 

Neighbor (kNN) [13], and probabilistic graphical model (PGM) [14]. These theories promoted 7 
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the emergence of IFD including expert system-based approaches [15], ANN-based approaches 1 

[16], SVM-based approaches [17], and other intelligent approaches [7]. In these approaches, the 2 

features were artificially extracted from the collected data. After that, the sensitive features were 3 

selected to train diagnosis models that could automatically recognize the health states of 4 

machines. With the help of traditional machine learning, the diagnosis models began to establish 5 

the relationship between the selected features and the health states of machines, which 6 

weakened the contribution of human labor in machine fault diagnosis and pushed it into the era 7 

of artificial intelligence. 8 

2) In the present, deep learning theories have come to reform IFD since the 2010s [18]. 9 

Although IFD in the past is able to recognize the health sates of machines instead of the fault 10 

inspection by humans, the artificial feature extraction still mostly depends on the human labor. 11 

Furthermore, traditional machine learning theories are not applicable to the increasingly-grown 12 

data because of the low generalization performance, which reduces the diagnosis accuracy. Deep 13 

learning is a new topic in the field of machine learning, which could date back to the research of 14 

neural networks in the 1980s [19, 20], such as autoencoders (AE) [21] and the restricted 15 

Boltzmann machine (RBM) [22]. This topic has been widely concerned since 2006 when Hinton 16 

[23] used the greedy layer-wise pre-training strategy to train the deep belief network (DBN). In 17 

addition, convolutional neural network (CNN) also made a series of breakthroughs, such as 18 

AlexNet [24] and ResNet [25]. These theories further inspired the development of IFD and 19 

induced a number of achievements [4, 6-9] including stacked AE-based approaches, DBN-based 20 

approaches, CNN-based approaches, and ResNet-based approaches. In the approaches, deep 21 

learning helps automatically learn fault features from the collected data instead of the artificial 22 

feature extraction in the past period of IFD. They attempt to provide end-to-end diagnosis 23 
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models when handling the increasingly-grown data. The models are expected to directly connect 1 

the raw monitoring data to their corresponding health states of machines, which further releases 2 

the contribution of human labor in IFD. 3 

3) In the future, transfer learning theories will promote the research of IFD in engineering 4 

scenarios. Although deep learning has achieved significant successes in machine fault diagnosis 5 

currently, the successes are subject to a common assumption that there are sufficient labeled data 6 

to train diagnosis models. However, such assumption is unpractical in engineering scenarios due 7 

to two main reasons [26]. First, machines usually work with the healthy condition, and faults 8 

seldom happen. As a result, a considerable number of healthy data are collected, while faulty 9 

data are insufficient. Second, it takes huge cost to acquire the machine health states 10 

corresponding to the collected data, i.e., labeling the data. Consequently, majority of collected 11 

data are unlabeled in engineering scenarios. For the above reasons, the collected data are 12 

insufficient to train reliable diagnosis models. Fortunately, transfer learning is concerned to 13 

overcome such weaknesses by applying the knowledge learned from one or multiple tasks to 14 

other related but novel ones [27]. This theory derives back to 1995 in a different name of the 15 

learning to learn [28], and has got some achievements since the 2010s, such as transfer 16 

component analysis (TCA) [29], joint distribution adaptation (JDA) [30], and TrAdaboost [31]. 17 

After that, it has been developed with the help of deep learning theories since 2015 and yielded 18 

some achievements in the field of computer vision [32], such as transfer denoising autoencoder 19 

(TDA) [33] and joint adaptation network (JAN) [34]. In the field of IFD, some researchers have 20 

begun to develop a few studies generally including feature-based approaches [26], generative 21 

adversarial network (GAN) based approaches [35], instance-based approaches [36], and 22 

parameter-based approaches [37]. These approaches are expected to provide diagnosis models 23 
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that could transfer the diagnosis knowledge learned from one or multiple diagnosis tasks to 1 

realize other related but different diagnosis ones. Therefore, transfer-learning theories are 2 

expected to overcome the problems of lacking labeled samples and finally enlarge the 3 

applications of IFD in engineering scenarios. 4 

To summarize the research of IFD, Liu et al. [7] briefly reviewed the applications of artificial 5 

intelligence for fault diagnosis of rotating machines, and mainly focused on applications of 6 

traditional machine learning. Khan et al [8] presented categories of the artificial intelligence-7 

based methods in system health management, and further reviewed the applications of deep 8 

learning. Duan et al. [6] and Zhao et al. [9] reviewed the commonly-used deep learning theories 9 

and the applications to machine fault diagnosis. Hoang et al. [4] provided a review about 10 

applications of deep learning to bearing fault diagnosis. However, these reviews have three 11 

shortcomings. 1) The previous reviews just concerned IFD in a certain period like using 12 

traditional machine learning or using deep learning. For example, Ref. [7] mainly focused on the 13 

applications of traditional machine learning, and Ref. [4, 6, 8, 9] just reviewed applications of 14 

deep learning to machine fault diagnosis. As a result, a review to systematically cover the 15 

development of IFD from the past to the future is still left blank. 2) These reviews have not 16 

reported a roadmap on IFD to predict future trends yet. But for review papers, the readers prefer 17 

to be interested in potential trends of IFD in the next five or ten years. 3) They just cover the 18 

publications of IFD before 2017. In recent years, however, the number of publications has 19 

rapidly increased every year. As shown in Fig. 1, the number of publications from 2017 to 2019 20 

almost approaches to the total of that before 2017. Therefore, it needs a new review to summary 21 

the current research progress of IFD. 22 

In order to overcome aforementioned shortcomings, this paper systematically reviews the 23 



Page 9 
 

development of IFD and pictures a roadmap for this field. The contributions of this review are 1 

refined as follows. 1) The development of IFD is summarized into three periods. In the past, 2 

traditional machine learning was expected to lead machine fault diagnosis into the era of 3 

artificial intelligence. In the present, deep learning focuses on further enhanced benefits in IFD. 4 

In the future, transfer learning is viewed as a future prospect to promote the applications of IFD 5 

to engineering scenarios, and we try to cautiously detail them following the issues of “why to 6 

transfer”, “what is transfer”, and “how to transfer”. 2) A roadmap of IFD is pictured in this 7 

review. The roadmap includes potential research trends and provides valuable guideline for 8 

researchers over the future works. 9 

The rest of this review is organized as follows. In Section 2, we focus on the development of 10 

IFD in the past including applications of traditional machine learning theories. Section 3 reviews 11 

the applications of deep learning theories, which are considered as the present period in the 12 

development of IFD. Section 4 argues applications of transfer learning to IFD including the 13 

motivation, the definitions, and some exploratory works. In Section 5, we further display a 14 

roadmap when combined with the challenges of IFD. Conclusions are enclosed in Section 6. 15 

2. Past: IFD using traditional machine learning theories 16 

This section includes the motivation about applications of traditional machine learning 17 

theories, and further reviews IFD in the past according to a commonly-implemented diagnosis 18 

process including data collection, artificial feature extraction, and health state recognition. 19 

2.1. Overview 20 

Traditionally, the process of fault diagnosis is mostly developed by manually inspecting the 21 

health states of machines, which increases the labor intensity and reduces the diagnosis 22 

accuracy. Advanced signal processing methods [38-40] enable to help ensure which types of 23 
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faults or where the faults happened in machines. However, these methods greatly rely on the 1 

specialized knowledge that maintainers mostly lack in engineering scenarios. Furthermore, the 2 

diagnosis results by signal processing methods are too specialized to be understood by the 3 

machine users. Therefore, modern industrial applications prefer the fault diagnosis methods that 4 

could automatically recognize the health states of machines. 5 

With the help of machine learning theories, IFD is expected to achieve the above purpose [1, 6 

5]. In the past period of IFD, some traditional machine learning theories, such as ANN and 7 

SVM, are applied to machine fault diagnosis. The diagnosis process includes three steps [1], i.e., 8 

data collection, artificial feature extraction, and health state recognition, as shown in Fig. 2. 9 

Each step will be detailed in the following subsections. 10 

 11 

Fig. 2. Diagnosis process of IFD using traditional machine learning theories. 12 

2.2. Step 1: Data collection 13 

In the step of data collection, the sensors are mounted on machines to constantly collect 14 

data. Different sensors are usually employed, such as vibration, acoustic emission, temperature, 15 

and current transformer. Among them, vibration data are widely used in fault diagnosis of 16 
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bearings [4, 41] and gearboxes [42, 43]. Acoustic emission data are potential to detect the 1 

incipient faults and the deformation of bearings [44, 45] and gears [46-48], especially under the 2 

low-speed operation conditions and low-frequency-noise environment. Instantaneous speed data 3 

are commonly used in fault diagnosis of engines [49-51], which are strongly anti-interference. 4 

Current data play an important role in fault diagnosis of electric-driven machines [52-54]. This 5 

kind of data is easily collected just by using the current transformer, and does not include into 6 

the running of machines. In addition, researchers discovered that the data from multi-source 7 

sensors have complementary information, which could be fused to achieve higher diagnosis 8 

accuracy than just using data from the individual sensor [55]. 9 

2.3. Step 2: Artificial feature extraction 10 

Artificial feature extraction includes two steps. First, some commonly-used features, such as 11 

time-domain features, frequency-domain features, and time-frequency-domain features, are 12 

extracted from the collected data. These features contain the health information reflecting the 13 

health states of machines. Second, feature selection methods, such as filters, wrappers, and 14 

embedded methods, are used to select sensitive features to health states of machines from the 15 

extracted features. It is beneficial to getting rid of the redundant information and further 16 

improving the diagnosis results. These two steps are detailed as follows. 17 

2.3.1. Feature extraction 18 

The commonly-used features can be extracted from the time domain, the frequency domain 19 

analysis, or the time-frequency domain. 1) The time-domain features can be divided into the 20 

dimensional ones and the dimensionless ones. The former includes mean, standard deviation, 21 

root amplitude, root mean square, peak value, etc., which are affected by the speed and the load 22 

of machines. The later mostly includes shape indicator, skewness, kurtosis, crest indicator, 23 
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clearance indicator, impulse indicator, etc., which are robust to the operation conditions of 1 

machines [56, 57]. 2) The frequency-domain features are extracted from the frequency 2 

spectrum, such as mean frequency, frequency center, root mean square frequency, standard 3 

deviation frequency, etc., which are introduced in Ref. [56, 57]. They contain the information 4 

that cannot found in the time-domain features. 3) The time-frequency-domain features, such as 5 

energy entropy [56, 57], are usually extracted by wavelet transform (WT), wavelet package 6 

transform (WPT) or empirical model decompose (EMD). These features are able to reflect 7 

health states of machines under non-stationary operation conditions. 8 

2.3.2. Feature selection 9 

The extracted features from the time domain, the frequency domain, and the time-frequency 10 

domain contain the redundant information. They may aggravate the computation cost, and even 11 

result in the curse of dimensionality. To weaken this problem, some publications [58-65] select 12 

sensitive features to the health states of machines from the collected features. They can be 13 

divided into three categories, i.e., filters, wrappers, and embedded methods. 14 

(1) Filter-based methods 15 

Filters directly preprocess the collected features, which are independent to the training of 16 

the classifier [58]. Some filters are briefly introduced as follows. 1) Relief [66] and Relief-F [67] 17 

construct a relevant indicator to determine the sensitivity of features to the health states of 18 

machines. 2) Information gain and gain ratio [68], from the information theory, are also two 19 

commonly-used methods for feature selection. The features with the greater information gain 20 

and the higher gain ratio would be selected to train diagnosis models and improve their 21 

diagnosis results. 3) Minimum Redundancy Maximum Relevance (mRMR) [69] attempts to 22 

select features subject to the maximal dissimilarity with each other. 4) Fisher score [70] is 23 
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regarded as a distance metric to feature selection, which aims to select a feature that is able to 1 

maximize the among-class distance, but minimize the in-class distance. 5) Distance evaluation 2 

(DE) [71, 72] is used to select a feature set by the distance metric, in which the sensitive features 3 

are subject to the small in-class distance and the large among-class distance. 4 

(2) Wrapper-based methods 5 

Different from filter-based methods, wrappers focus on the interaction of feature selection 6 

with training classifiers [58]. In other words, the performance of classifiers is used to assess the 7 

selected feature set. If the selected feature subset cannot produce the optimal classification 8 

accuracy, another subset is reselected in the next iteration until the selected features enforce the 9 

classifiers at the most favorable performance. Las Vegas wrapper (LVW) [73] is widely used to 10 

select the features, in which the Las Vegas algorithm is employed to search for the feature 11 

subset, and the error of the classifiers is considered as the metric to feature assessment. 12 

(3) Embedded methods 13 

Embedded methods integrate the feature selection into training the classifiers. Generally, 14 

they impose the regularization terms on the optimization objects of the classifiers, and 15 

automatically select the features once the training of classifiers is done [58]. Two regularization 16 

terms are commonly considered. One is the L1 regularization [74], and the other one is the L2 17 

regularization [75]. Both them can alleviate the over fitting that occurs in training with a small 18 

amount of training samples. In contrast, the L1 term prefers to obtain the sparse parameters, 19 

which is able to abandon redundant features in classification and further enforce the classifier to 20 

achieve the high classification performance. 21 

2.4. Step 3: Health state recognition 22 

Health state recognition uses machine learning-based diagnosis models to establish the 23 



Page 14 
 

relationship between the selected features and the health states of machines. To achieve the 1 

purpose, the diagnosis models are first trained with labeled samples. After that, the models are 2 

able to recognize the health states of machines when the input samples are unlabeled. According 3 

to the research popularity, we will briefly introduce four IFD approaches using traditional 4 

machine learning in the following subsections. 5 

2.4.1. Expert system-based approaches 6 

(1) A brief introduction to expert system 7 

The expert system is viewed as a method that can provide the expert-level diagnosis 8 

knowledge to solve the diagnosis tasks of machines instead of huge human labor. The expert 9 

system-based diagnosis models, as shown in Fig. 3, consist of five parts, i.e., the knowledge 10 

base, the database, the inference engine, the user interface, and the explanation system [76]. 11 

Each part is briefly described as follows. 12 

 13 

Fig. 3. Architecture of expert system-based diagnosis models. 14 

 A dynamic dataset collects the data that are generated in each parts of solving the 15 

diagnosis tasks, and serves as the memory for the operation of inference engines. 16 

 A knowledge base contains the expert knowledge about the diagnosis task. Moreover, it 17 
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further includes the fault features to provide the health information for inference engines. 1 

 An inference engine uses the input health information and the reasoning knowledge (the 2 

designed rules and strategies) from the knowledge base to interact with the dynamic 3 

dataset and the explanation system, and further infers the diagnosis results. 4 

 A user interface is a function-integrated interface, in which the users can interact with the 5 

system about the data transmission, the parameter configuration, the result acquisition, 6 

and the problem definition and consultation. 7 

 An explanation system makes response to the consultation of the user inference about the 8 

inference process, and further explains the reason why the expert system makes a given 9 

diagnosis decision. 10 

(2) Applications of expert system to machine fault diagnosis 11 

According to different inference engines, expert system-based diagnosis models can be 12 

divided into four categories, i.e. rule-based reasoning, fuzzy logic-based reasoning, neural 13 

network-based reasoning, and case-based reasoning. Each part is reviewed as follows. 1) The 14 

rule-based reasoning is used to manipulate diagnosis knowledge and then make decision by 15 

designed rules [15, 77]. In the field of IFD, Krishnamurthi et al. [78] designed a rule-based 16 

reasoning expert system for a Cincinnati Milacron 786 robot, which was one of the earliest 17 

research in this field. The designed diagnosis shell really reduced the development time and 18 

effort of diagnosis models in knowledge acquisition, application system generation, learning, 19 

explanation. Gelgele et al. [79] employed IF-THEN rule to construct an expert system-based 20 

diagnosis model for automotive engines. Furthermore, the rule-based reasoning was used for 21 

fault diagnosis of hydraulic systems [80], rolling element bearings [81], and centrifugal pumps 22 

[82]. Although the rule-based reasoning can establish the nonlinear mapping from the elected 23 
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features to the health states, the reasoning efficiency drops with the increasing number of 1 

designed rules for sophisticated machines. 2) The fuzzy logic-based reasoning introduces fuzzy 2 

set theory into inference engine to describe the imprecise and non-numerical information [15, 3 

77]. In IFD, Lee et al. [83] designed a fuzzy reasoning system for power systems, which was 4 

one of the earliest work about the applications of fuzzy logic-based reasoning. The proposed 5 

system included four parts, i.e., Meta inference system, expert system for hybrid diagnosis, 6 

expert system for the diagnosis of substations, and expert system for the diagnosis of 7 

transmission network, which improved efficiency and reliability of the fault diagnosis process. 8 

Liu et al. [84] used fuzzy multi-attribute group decision making method to construct expert 9 

system-based diagnosis models. Wu et al. [85] employed the fuzzy-logic inference to recognize 10 

the health states of scooter engines. Berredjem et al. [86] applied fuzzy expert system to fault 11 

diagnosis of bearings and achieved high diagnosis accuracy. The performance of fuzzy logic-12 

based reasoning is related to the fuzzy dataset, but it is difficult to be captured. Therefore, such 13 

reasoning commonly has low learning ability, which may reduce the diagnosis accuracy. 3) The 14 

neural network-based reasoning inherits the capabilities of learning, association, and memory of 15 

neural networks [15, 77]. Wu et al. [87, 88] respectively used the probability neural network and 16 

the generalized regression neural network to construct expert system-based diagnosis models for 17 

internal combustion engines. Hajnayeb et al. [89] employed multi-layer perceptron neural 18 

network to construct the inference engine and infer the relationship between the collected data 19 

and the health states of bearings. Jayaswal et al. [90] combined ANN and fuzzy rules to 20 

construct expert system-base diagnosis models for bearings. The neural network-based 21 

reasoning needs to acquire diagnosis knowledge from sufficient training data, which is difficult 22 

to be met in engineering scenarios. In addition, such reasoning cannot clearly explain the 23 
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reasoning process and the physical meaning of the saved knowledge due to the black box of the 1 

neural network. 4) The case-based reasoning attempts to solve specialized problems according 2 

to the solutions of similar existing problems [15]. Vingerhoeds et al. [91] used the case-based 3 

reasoning to incorporate the knowledge and experience from both train manufacturers and 4 

railway companies for on-line fault diagnosis. Varma et al. [92] presented a case-based 5 

reasoning system for fault diagnosis of locomotive by using on-board fault messages. Wu et al. 6 

[93] developed an expert system for fault diagnosis of modern commercial aircraft, which was 7 

designed by the case-based reasoning and the fuzzy logic. Vong et al. [94] constructed a 8 

computer-aided diagnosis system based on the case-based reasoning and the kernel k-means for 9 

the automotive engine ignition system. 10 

The expert system-based diagnosis models represent the diagnosis knowledge from experts 11 

as the inference algorithm to automatically recognize the health states of machines. However, 12 

the performance of the diagnosis models greatly relies on the expert knowledge, which is 13 

difficult to be acquired and expressed. The incorrect and incomplete knowledge may reduce the 14 

diagnosis accuracy. Furthermore, the expert system lacks the self-learning capability so that the 15 

diagnosis knowledge base is difficult to be expanded and corrected. 16 

2.4.2. ANN-based approaches 17 

ANN imitates the activities of human brains in information processing, which is an effective 18 

way to establish the diagnosis models. This section reviews the applications of ANN to fault 19 

diagnosis of machines. 20 

(1) A brief introduction to ANN 21 

Back propagation neural network (BPNN) is a multilayer perceptron by supervised learning, 22 

which consists of the forward propagation and the back propagation. In the forward propagation, 23 
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as shown in Fig. 4, the input samples are processed by multi-hidden layers, and they are finally 1 

mapped into the target class in the output layer. Given the training dataset {𝒙𝒙𝑖𝑖,𝒚𝒚𝑖𝑖}𝑖𝑖=1𝑚𝑚  with 𝑚𝑚 2 

samples, where 𝒙𝒙𝑖𝑖 ∈ ℜ𝑑𝑑 includes 𝑑𝑑 features and 𝒚𝒚𝑖𝑖 ∈ ℜ𝑙𝑙 includes 𝑙𝑙 health states, the output 3 

of the ℎth hidden layer is expressed as 4 

�𝒙𝒙𝑖𝑖ℎ�𝑗𝑗 = σℎ �� 𝝎𝝎𝑗𝑗
ℎ ⋅ 𝒙𝒙𝑖𝑖ℎ−1 + 𝑏𝑏𝑗𝑗ℎ

𝑛𝑛ℎ−1

𝑖𝑖=1

� , 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛ℎ, ℎ = 1,2,⋯ ,𝐻𝐻, (1) 

where �𝒙𝒙𝑖𝑖ℎ�𝑗𝑗 is the output of the 𝑗𝑗th neuron in the ℎth hidden layer, and 𝒙𝒙𝑖𝑖0 = 𝒙𝒙𝑖𝑖, 𝑛𝑛ℎ is the 5 

number of neurons in the ℎth hidden layer, σℎ represents the activation function of the ℎth 6 

hidden layer, 𝑛𝑛ℎ−1 is the number of neurons in the (ℎ − 1)th hidden layer, 𝝎𝝎𝑗𝑗
ℎ is the weights 7 

between the neurons in the previous layer and the 𝑗𝑗th neuron in the ℎth hidden layer, and 𝑏𝑏𝑗𝑗ℎ 8 

is the bias of the ℎth hidden layer. The predicted output of BPNN is 9 

(𝒚𝒚�𝑖𝑖)𝑘𝑘 = σout ��𝝎𝝎𝑗𝑗
out ⋅ 𝒙𝒙𝑖𝑖𝐻𝐻 + 𝑏𝑏𝑗𝑗out

𝑛𝑛𝐻𝐻

𝑖𝑖=1

� , 𝑘𝑘 = 1,2,⋯ , 𝑙𝑙, (2) 

where (𝒚𝒚�𝑖𝑖)𝑘𝑘 is the predicted output of the 𝑘𝑘th neuron in the output layer, σout is the 10 

activation function of the output layer, 𝝎𝝎𝑗𝑗
out and 𝑏𝑏𝑗𝑗out are respectively the weights and bias of 11 

the output layer. When given a certain training sample {𝒙𝒙𝑖𝑖,𝒚𝒚𝑖𝑖}, the optimization objective of 12 

BPNN aims to minimize the error between the predicted output and the target one by 13 

min
𝝎𝝎,𝒃𝒃

    𝐸𝐸𝑖𝑖 =
1
2
�[(𝒚𝒚𝑖𝑖)𝑘𝑘 − (𝒚𝒚�)𝑘𝑘]2
𝑙𝑙

𝑘𝑘=1

 (3) 

In order to solve this problem, the training parameters 𝝎𝝎 and 𝒃𝒃 are updated by the 14 

gradient descent as follows. 15 

𝝎𝝎 ← 𝝎𝝎− 𝜂𝜂 ⋅
𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝝎𝝎

,        𝒃𝒃 ← 𝒃𝒃 − 𝜂𝜂 ⋅
𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝒃𝒃

 (4) 

where 𝜂𝜂 is the learning rate. The error gradient propagates backward from the output layer to 16 

the input layer, and updates the training parameters layer by layer. Ref. [21] provides more detail 17 

about the back propagation algorithm. 18 
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 1 

Fig. 4. Architecture of BPNN with two hidden layers. 2 

(2) Applications of ANN to machine fault diagnosis 3 

The publications about applications of ANN to fault diagnosis are listed in Table 1, which 4 

are divided into five categories in terms of diagnosis objects like rolling element bearings, gears, 5 

motors, engines. In terms of methodologies, BPNN, the radial basis function network (RBFN), 6 

and the wavelet neural network (WNN) are widely used to complete the diagnosis tasks. Some 7 

researchers further investigated the varieties of ANN for fault diagnosis of machines. Merainani 8 

et al [95] used the self-organizing feature map neural network to identify the health states of 9 

automatic gearboxes under different operation modes. Wong et al [96] proposed the modified 10 

self-organizing map for fault diagnosis of bearings. Yang et al [71] constructed a diagnosis 11 

model using the Kohonen neural network with adaptive resonance theory for the rotor system, 12 

which obtained higher diagnosis accuracy than the conventional RBFN. Chen et al. [97] 13 

employed the probabilistic neural network for efficiently fault diagnosis of hydraulic generator 14 

units. Zhong et al. [98] proposed a hierarchical ANN for fault diagnosis of the rotor system, 15 

which divided the label space into several subspaces and recognized multiple faults. Barakat et 16 
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al. [99, 100] introduced the growing neural network to construct a diagnosis model for motor 1 

bearings, which obtained the higher diagnosis accuracy for a large number of data when 2 

compared with the conventional RBFN and the probabilistic neural network. 3 

Thanks to the high self-learning capability, ANN-based diagnosis models could 4 

automatically learn diagnosis knowledge from the input data by minimizing the empirical risk. 5 

Furthermore, they can easily recognize multiple states of machines. However, there are two 6 

disadvantages. First, the complexity of the diagnosis models would greatly enhance with the 7 

increase of input monitoring data. The increasing model parameters lower the training efficiency 8 

and further result in the over fitting, which reduces the diagnosis accuracy of the diagnosis 9 

models. Second, the ANN-based diagnosis models are black-boxed due to the lack of rigorous 10 

theoretical supports. As a result, they are subject to the low interpretability. 11 

Table 1 Summary of applications of ANN to machine fault diagnosis. 12 

Objects References Methodologies 

Bearings Yang et al. [101], Samanta et al. [102], Yu et al. [103], Castejon et al. [104], 

Muruganatham et al. [105], Unal et al. [106], Zarei et al. [107], Almeida et al. 

[108], and Ahmed et al. [109] 

BPNN 

 Wang et al. [110], Lei et al. [111], Vijay et al. [112], Jiang et al. [113], and Tang et 

al. [114] 

RBFN 

 Lei et al. [115], Wu et al. [116] WNN 

Gears Abu-Mahfouz et al. [117], Rafiee et al. [118], Hajnayeb et al. [119], Cerrada et al. 

[120], Kane et al. [121], Waqar et al. [122], and Tyagi et al. [123]  

BPNN 

 Lai et al. [124], Li et al. [125], and Liu et al. [126] RBFN 

 Chen et al. [127] WNN 
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Motors Ayhan et al. [128], Sadeghian et al. [129], Arabaci et al. [130], Cabal-Yepez et al. 

[131], Hernandez-Vargas et al. [132], and Moosavi et al. [133] 

BPNN 

 Ghate et al. [134], and Palacios et al. [135] RBFN 

 Boukra et al. [136] WNN 

Engines Sharkey et al. [137], Lu et al. [138], Chen et al. [139, 140], Khazaee et al. [141, 

142], and Zabihi-Hersari et al. [143] 

BPNN 

 Wu et al. [144, 145] RBFN 

 Shen et al. [146], Zhang et al. [147] WNN 

Others Kuo et al. [148], Ilott et al. [149], Wu et al. [150], Mohammed et al. [151], Walker 

et al. [152], Malik et al. [153], and McCormick et al. [154, 155] 

BPNN 

 Wu et al. [156], and Villanueva et al. [157] RBFN 

 Liu et al. [158], Chen et al. [159], Guo et al. [160], Xiao et al. [161], and Jin et al. 

[162] 

WNN 

2.4.3. SVM-based approaches 1 

SVM is a supervised learning method, which is widely concerned in classification tasks. We 2 

briefly review the theory of SVM and summarize its applications to machine fault diagnosis in 3 

this section. 4 

(1) A brief introduction to SVM 5 

Given the dataset {𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑚𝑚  with 𝑚𝑚 samples and 𝑦𝑦𝑖𝑖 ∈ {−1, 1}, a hyperplane 𝑓𝑓(𝑥𝑥) = 0 6 

is expected to be found to separate the given datasets into two classes, which is shown as 7 

𝑓𝑓(𝒙𝒙) = 𝝎𝝎T𝒙𝒙 + 𝑏𝑏 = �𝝎𝝎T𝒙𝒙𝑖𝑖 + 𝑏𝑏
𝑚𝑚

𝑖𝑖=1

= 0 (5) 

where 𝝎𝝎 and 𝑏𝑏 are parameters to determine the hyperplane. In order to separate the samples 8 

into the positive class and the negative class, the created hyperplane is subject to 9 
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𝑦𝑦𝑖𝑖𝑓𝑓(𝒙𝒙𝑖𝑖) = 𝑦𝑦𝑖𝑖(𝝎𝝎T𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1,    𝑖𝑖 = 1,2,⋯ ,𝑚𝑚. (6) 

As shown in Fig. 5, the support vectors H1 and H2 can satisfy the constraints in Eq. (6). 1 

The linear SVM is expected to place a hyperplane H∗ between the positive and negative 2 

datasets, which is orientated by maximizing the margin 𝛾𝛾 = 2/‖𝝎𝝎‖. Therefore, the 3 

optimization objective of the linear SVM is shown as follows [12]. 4 

min
𝝎𝝎,𝑏𝑏

    
1
2
‖𝝎𝝎‖2 

s. t.    𝑦𝑦𝑖𝑖(𝝎𝝎𝐓𝐓𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1,    𝑖𝑖 = 1,2,⋯ ,𝑚𝑚. 
(7) 

 5 

Fig. 5. Classification by the linear SVM. 6 

(2) Applications of SVM to machine fault diagnosis 7 

The applications of SVM to IFD are carefully summarized in Table 2. According to the 8 

results, SVM serves as a widely-used machine learning method in health state recognition, 9 

especially for fault diagnosis of rolling element bearings, gears, motors, engines, rotor systems 10 

[163-168], and hydraulic equipment [169-171]. For these diagnosis objects, SVM-based 11 

diagnosis models are expected to recognize multiple states but not just the binary states of health 12 

and faults. Thus, the one-against-all strategy (OAA) and one-against-one strategy (OAO) are 13 

mainly concerned [17]. Platt et al. [172] and Hsu et al. [173] compared the performance of OAA 14 

with OAO, and provided valuable suggestion in selecting prior strategy to obtain better 15 

diagnosis accuracy. After that, some publications further introduced some advanced multi-class 16 
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strategies in applications of SVM, such as the direct acyclic graph [174-176] and the binary tree 1 

[164-166, 177-185], which effectively overcame the weaknesses of OAA and OAO. In order to 2 

improve the diagnosis accuracy of SVM-based models, researchers mainly focused on two 3 

branches, i.e., the modified SVM and the algorithm optimization. For the former, they applied 4 

the modified SVM to machine fault diagnosis, such as the least square SVM [63, 165, 186-191], 5 

the proximal SVM [192-194], the one-class SVM [195], the hyper-sphere-structured SVM 6 

[196], the wavelet SVM [182, 189, 197-200], the ensemble SVM [201, 202], the fuzzy SVM 7 

[203, 204], the multi-kernel SVM [205, 206], and the relevance vector machine [207], which 8 

achieved better diagnosis performance than the conventionally SVM-based approaches. In 9 

addition, the algorithm optimization is concerned to improve the complex solution and simplify 10 

the parameter selection of SVM. To achieve this purpose, some researchers introduced the 11 

optimization algorithms, such as the kernel Adatron algorithm [208, 209], the sequential 12 

minimal optimization [210-214], the genetic algorithm [209, 215-218], the particle swarm 13 

optimization [167, 205, 206, 219-222], and the ant colony optimization [168, 223]. 14 

Different from the ANN, SVM-based diagnosis models are trained by minimizing the 15 

structural risk, which is beneficial to improving the interpretability of the models due to the 16 

rigorous theories. The optimization objective solution of SVM refers to the convex quadratic 17 

optimization so that the diagnosis models could easily obtain the global optimal solution and 18 

further get the high diagnosis accuracy. Three disadvantages of SVM-based diagnosis models 19 

need to be considered. First, such diagnosis models are effective to handle the small number of 20 

monitoring data. However, they are difficult to fit the massive data, which may results in the 21 

curse of computation. Second, the performance of SVM-based diagnosis models is sensitive to 22 

the kernel parameters. The inappropriate kernel parameter even cannot induce the reliable 23 
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diagnosis result. Third, the SVM algorithm is originally used to solve binary classification tasks. 1 

In terms of multi-class classification tasks in IFD, it always needs to use complicated 2 

architectures, such as OAA and OAO, to integrate results from multiple SVM-based models. 3 

Table 2 Summary of applications of SVM to machine fault diagnosis. 4 

Objects References Methodologies 

Bearings Abbasion et al. [224], Yang et al. [225], Xian et al. [226], Hao et al. [227], 

Gryllias et al. [228], Islam et al. [229], Sugumaran et al. [192], Zheng et al. 

[202], Jack et al. [208], Rojas et al. [210], HungLinh et al. [230], Kang et al. 

[216], and Li et al. [222] 

OAA-based SVM 

 Yang et al. [231], Yang et al. [232], Wu et al. [233, 234], Saidi et al. [235], Zhu 

et al. [236], Ziani et al. [237], Islam et al. [238], Widodo et al. [211], Zhang et 

al. [239], and Zhu et al. [219] 

OAO-based SVM 

 Sugumaran et al. [192, 195], Wang et al. [196], Dong et al. [197], Zhang et al. 

[201], Li et al. [177-179], Xu et al. [186], Zheng et al. [202], and Chen et al. 

[206] 

Varieties of SVM 

 Jack et al. [208, 209], Samanta et al. [215], Rojas et al. [210], Widodo et al. 

[211], Li et al. [223], Zhang et al. [239], Chen et al. [206], Zhu et al. [219], 

Dong et al. [221], HungLinh et al. [230], Kang et al. [216], Su et al. [220], Zhu 

et al. [217], and Li et al. [222] 

SVM with 

optimization 

algorithm 

Gears Liu et al. [240], and Li et al. [241] OAA-based SVM 

 Lu et al. [242], Cheng et al. [243], Xing et al. [244], Liu et al. [245], Shen et 

al. [246], Jiang et al. [188], Heidari et al. [198], and Bordoloi et al. [247] 

OAO-based SVM 

 Saravanan et al. [193], Shen et al. [246], Tang et al. [182], Jiang et al. [188], Varieties of SVM 
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Yang et al. [180], Heidari et al. [189, 198], Jiang et al. [190], Li et al. [63, 181, 

187], and Chen et al. [200] 

 Samanta et al. [218], Li et al. [212], Chen et al. [200], Bordoloi et al. [247], 

and Zhang et al. [248] 

SVM with 

optimization 

algorithm 

Motors Widodo et al. [213, 249], Ebrahimi et al. [250], Shahriar et al. [251], Kang et 

al. [252], Singh et al. [64], and Ebrahimi et al. [203] 

OAA-based SVM 

 Kurek et al. [253], Gangsar et al. [254-256], Sun et al. [257], Martinez-

Morales et al. [258], Keskes et al. [199], and Widodo et al. [214] 

OAO-based SVM 

 Tsoumas et al. [259], Bacha et al. [174], Salem et al. [184], Kang et al. [183], 

Keskes et al. [176, 199], Ebrahimi et al. [203], and Zgarni et al. [175] 

Varieties of SVM 

 Widodo et al. [213, 214] Optimization 

Engines Li et al. [260], and Zhang et al. [51] OAA-based SVM 

 Lee et al. [261], Wang et al. [262], Liu et al. [207], and Jafarian et al. [263] OAO-based SVM 

 Vong et al. [191], Jena et al. [264], Liu et al. [207], Cai et al. [185], and Li et 

al. [205] 

Varieties of SVM 

 Li et al. [205] SVM with 

Optimization 

algorithm 

Others Namdari et al. [265], and Jegadeeshwaran et al. [169] OAA-based SVM 

 Rapur et al. [170, 171], Pang et al. [163], Hang et al. [204], Tang et al. [167], 

and Zhang et al. [168] 

OAO-based SVM 

 Chiang et al. [194], Yuan et al. [166], and Jin et al. [165], Tang et al. [182], Varieties of SVM 
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Wang et al. [164], Hang et al. [204] 

 Tang et al. [167], and Zhang et al. [168] SVM with 

optimization 

algorithm 

2.4.4. Other approaches 1 

In addition to the approaches in the aforementioned sections, other methods are also widely 2 

concerned in IFD, such as, kNN, PGM, and the decision tree. We will review them in this 3 

section. 4 

(1) kNN 5 

The kNN is a commonly-used supervised learning model to complete the classification tasks 6 

[13]. In this method, a distance metric is used to search for 𝑘𝑘 samples near a given unlabeled 7 

sample. As shown in Fig. 6, the majority label of the 𝑘𝑘 samples will be assign to the unlabeled 8 

sample as its predicted result. The kNN has been concerned in the research of IFD, especially 9 

for fault diagnosis of rolling element bearings [266-273], gears [274-277], and motors [278]. 10 

However, the performance of kNN is subject to some problems, such as the indistinguishable 11 

neighborhood boundary and the difficulty in selecting the optimal neighborhood parameter. 12 

Some researchers investigated the modified kNN and used them for machine fault diagnosis. Lei 13 

et al. [279] integrated a set of weighted kNN for fault diagnosis of bearings, in which the 14 

extracted features were weighted in training the kNN-based diagnosis models according to the 15 

sensitivity of features to the health states of machines. Similarly, Zhao et al. [280] proposed the 16 

Euclidean weighted kNN classifiers for fault diagnosis of bearings, and the Euclidean distance 17 

was used to weight the extracted features to highlight the sensitivity of them to classification. Li 18 

et al. [281] introduced the optimized evidence-theoretic kNN classifier for fault diagnosis of 19 
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bearings, which improved the diagnosis accuracy and robustness of the original version. Dong et 1 

al. [282, 283] optimized the kNN by the particle swarm optimization algorithm, and obtained 2 

higher diagnosis accuracy for bearings than other methods without optimization. Pandya et al. 3 

[45] proposed a modified kNN algorithm based on asymmetric proximity function to improve 4 

the diagnosis accuracy of bearings. 5 

The kNN-based diagnosis models are easily-implemented. However, it takes much 6 

computation cost to handle the large-volume dataset. In particular, the imbalanced distribution 7 

of the collected data would reduce the diagnosis accuracy of this kind of diagnosis models. 8 

Furthermore, the parameter 𝑘𝑘 is difficult to be determined, which greatly affects the 9 

performance of the diagnosis models. 10 

 11 

Fig. 6. Illustration of the kNN algorithm. 12 

(2) PGM 13 

PGM serves as a probabilistic model to express the relationship between the variables by 14 

graphic architectures. In the models, the notes represent a set of random variables, and the links 15 

between the notes mean the probabilistic relationship among the variables, as shown in Fig. 7. 16 

PGM can be divided into two classes, i.e. Bayesian classifiers and Markov models. In terms of 17 

the former, Yuan et al. [284] and Yu et al. [285] used the naive Bayesian classifier to 18 

respectively recognize the health states of rolling element bearings and gears. In order to obtain 19 

higher diagnosis accuracy compared with the conventional naive Bayesian classifier, Yu et al. 20 
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[286, 287] further employed the normal naive Bayesian classifier and the flexible naive 1 

Bayesian classifier for fault diagnosis of gears. It is noted that the applications of naive Bayesian 2 

classifier are subject to an assumption of independence among features. The non-naive Bayesian 3 

classifier [288] is further developed to release the assumption, and it has also been used for fault 4 

diagnosis of bearings [289] and gears [290]. Furthermore, the hidden Markov models are 5 

considered as classifiers in the health state recognition of bearings [291-295], the synchronous 6 

motors [296], and the hydraulic pumps [297]. Some publications further improved the hidden 7 

Markov models. Xiao et al. [298] presented a diagnosis model based on the coupled hidden 8 

Markov models for bearing fault diagnosis, which was beneficial to fusing multichannel 9 

information by using the multiple state sequences and observation sequences. Huang et al. [299] 10 

used predictive neural network and intuitionistic fuzzy sets to determine the observation matrix 11 

of hidden Markov models, which improved the diagnosis accuracy of the motor drive system. 12 

It is easy for PGM-based diagnosis models to achieve fault diagnosis with multiple health 13 

states of machines. They can be used to analyze the among-class discrepancy in convenience. 14 

However, this kind of diagnosis models is difficult to represent the complicated function 15 

relationship due to the low ability of data fitting. Furthermore, if the probabilistic relationship 16 

among the variables is not clear, it would be difficult to construct the diagnosis models. 17 

 18 

Fig. 7. Illustration of PGM: (a) Bayesian classifier, and (b) hidden Markov model. 19 
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(3) Decision tree 1 

Decision tree is also a commonly-used supervised method in classification, which 2 

establishes the relationship between the class and the attributes by the tree-shaped architectures, 3 

as shown in Fig. 8. Among the proposed methods, the algorithm of C4.5 is widely used to 4 

induce a decision tree for classification and obtain satisfactory accuracy and easily-understood 5 

classification rules [300]. The C4.5-induced decision tree has been introduced into the fault 6 

diagnosis of rolling element bearings [82, 301, 302], gearboxes [303], rotor systems [304], and 7 

centrifugal pumps [305]. In order to improve the generalization performance of decision tree, 8 

the random forest [306] is further investigated by integrating decisions from multiply tree-based 9 

classifiers. In IFD, the decision tree and the extended random forest have been applied for 10 

decades, and gain some achievements. Yang et al. [307] discussed the applications of random 11 

forest classifier to fault diagnosis of induction motors. Li et al. [46] employed random forest to 12 

fuse the diagnosis results of multiple classifiers on the gearboxes, which obtained higher 13 

diagnosis accuracy than other fusion tools. Wang et al. [308] proposed a diagnosis model based 14 

on the random forest classifier for fault diagnosis of rolling element bearings. Tang et al. [309] 15 

used particle warm optimization algorithm to select the optimal parameters of random forest, 16 

and improved the diagnosis performance for bearings. 17 

The decision tree-based diagnosis models are naturally interpreted, which may not relay on 18 

the explanation of experts and can be easily converted into diagnosis rules. Furthermore, they 19 

could achieve the diagnosis tasks with missing data. However, this kind of diagnosis models is 20 

easily caught by the over fitting and the low generalization performance, which would reduce 21 

the diagnosis performance of the models on the diagnosis tasks. In addition, the tree-type 22 

models are mostly constructed according to the expert knowledge. 23 
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 1 

Fig. 8. Illustration of the decision tree. 2 

2.5. Epilog 3 

This section reviews the traditional IFD, and divides the diagnosis architecture into three 4 

steps, i.e., data collection, artificial feature extraction, and health state recognition. There are 5 

two weaknesses for such diagnosis architecture [310]. First, the step of artificial feature 6 

extraction depends on the human labor, in which the engineers need to design powerful 7 

algorithms to extract sensitive features to health states of machines. However, it is still 8 

unrealistic for engineers to extract specialized features from the large-volume monitoring data 9 

by expert experience because of the huge labor cost. Second, the generalization performance and 10 

the self-learning capability of traditional diagnosis models are short to bridge the relationship 11 

between massive collected data and their corresponding health states, which reduces the 12 

diagnosis accuracy. Therefore, it is urgent to investigate diagnosis models that are able to 13 

simultaneously extract features from raw collected data and automatically recognize health 14 

states of machines. 15 

3. Present: IFD using deep learning theories 16 

This section summarizes the applications of deep learning to fault diagnosis of machines. 17 

First, we introduce the diagnosis process of IFD using deep learning theories. Second, the 18 

achievements are reviewed about the deep learning-based approaches. 19 
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3.1. Overview 1 

With the rapid development of internet technologies and internet of things (IoT), the volume 2 

of collected data is dramatically gathered than ever before. The increasingly-grown data bring 3 

more sufficient information to machine fault diagnosis so that it is more possible to provide 4 

accurate diagnosis results. Unfortunately, the fault diagnosis based on traditional machine 5 

learning theories in the past is not appropriate for such big data scenarios. It is necessary to 6 

develop some advanced IFD methods. 7 

Deep learning, derived from the research of neural networks [18, 23], employs deep 8 

hierarchical architectures to represent the abstract features automatically, and further establish 9 

the relationship between the learned features and the target output directly. The deep learning-10 

based diagnosis process, as shown in Fig. 9, consists of two steps, i.e., big data collection and 11 

deep learning-based diagnosis [311]. Each step is detailed in the following subsections. 12 

 13 

Fig. 9. Diagnosis process of IFD using deep learning theories. 14 

3.2. Step 1: Big data collection 15 

Big data has been a popular term in the modern industry and other application scenarios. 16 
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Generally, big data includes four characteristics, i.e., volume, velocity, variety, and veracity 1 

[312]. In contrast, monitoring big data of machines holds these characteristics, and further 2 

extends to the much-specialized ones. The characteristics are summarized as follows. 3 

 Large volume. The volume of the collected data sustainably grows during the long-term 4 

operation of machines, especially for the large-group machines, such as wind turbines 5 

in wind sites. 6 

 Low value density. There is incomplete health information in the collected big data. 7 

Furthermore, a proportion of poor-quality data is mingled in the massive data [313]. 8 

 Multi-source and heterogeneous data structure. Multi-source data will be collected by 9 

different kinds of sensors. Furthermore, the data are heterogeneous because of the 10 

different storage structures. 11 

 Monitoring data stream. The high-speed transmission channels are able to collect the 12 

data from machines immediately. 13 

Such characteristics are contributed by the following conditions [314-316]. 1) In the modern 14 

industry, most production activities are achieved by a group of machines. Thus, fault diagnosis 15 

tends to focus on machine groups. For example, the monitoring system of a wind site needs to 16 

monitor hundreds of wind turbines. During the long-term operation of these machines, the 17 

monitoring system constantly acquires data. In particular, it is necessary to collect data with the 18 

high sampling frequency, such as the vibration data from gearboxes, because the health 19 

information is mostly hidden in the high-frequency band. As a result, the volume of the collected 20 

data tends to increase. 2) Although the monitoring system could acquire massive data, only 21 

minority of them is valuable. First, the healthy condition accounts for the majority of the long-22 

term operation for machines, while faults seldom happen. Consequently, it is more easily to 23 
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collect healthy data than faulty data. Second, the quality of the collected data is not always 1 

satisfactory because some of them may suffer from the emergencies, such as the transmission 2 

interruption and the anomaly of measurement devices. 3) In order to collect sufficient health 3 

information of machines, there are many monitoring points on machines. Furthermore, multi-4 

source sensors are used to collect different kinds of data. The collected data are stored with 5 

various data structures. For example, the monitoring data of a wind turbine include not only the 6 

vibration and speed data from the condition monitoring system (CMS) but also the control 7 

parameters from the supervisory control and data acquisition system (SCADA). 4) The 8 

prosperous development of sensor technologies and data transmission, especially with the 9 

advent of IoT and high-speed internet, promotes to collect a large number of data that contain 10 

the real-time information. Furthermore, the advent of state-of-art technologies, such as the edge 11 

computing and the applications of GPU, helps cope with monitoring data stream effectively. 12 

3.3. Step 2: Deep learning-based diagnosis 13 

Deep learning-based diagnosis models automatically learn features from the input 14 

monitoring data and simultaneously recognize the health states of machines according to the 15 

learned features. They mostly include the feature extraction layers and the classification layer. 16 

The models first employ the hierarchical networks, such as stacked AE, DBN, CNN, and 17 

ResNet, to learn abstracted features layer by layer. Furthermore, the output layer is placed after 18 

the last extraction layer for health state recognition, generally with an ANN-based classifier 19 

because of the high capability in multi-class classification. During the training process, the error 20 

between the actual output and the target is minimized by using BP algorithm to update the 21 

training parameters of the diagnosis models. This section reviews four typical deep learning 22 

methods and their applications in machine fault diagnosis. 23 
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3.3.1. Stacked AE-based approaches 1 

(1) A brief introduction to AE and Stacked AE 2 

As depicted in Fig. 10, AE consists of the encoder network and the decoder network [21]. 3 

Given the dataset {𝒙𝒙𝑖𝑖,𝒚𝒚𝑖𝑖}𝑖𝑖=1𝑚𝑚  with 𝑚𝑚 samples, the represented features 𝒉𝒉𝑖𝑖 are defined as 4 

𝒉𝒉𝑖𝑖 = 𝑓𝑓𝜽𝜽(𝑥𝑥𝑖𝑖) = σ𝑓𝑓(𝝎𝝎T ⋅ 𝒙𝒙𝑖𝑖 + 𝒃𝒃), (8) 

where σ𝑓𝑓 is the activation function of the encoder network, and 𝜽𝜽 = {𝝎𝝎,𝒃𝒃} is the training 5 

parameters of the encoder network. The reconstructed sample 𝒙𝒙�𝑖𝑖 can be obtained by the 6 

decoder network, which is expressed as follows. 7 

𝒙𝒙�𝑖𝑖 = 𝑔𝑔𝜽𝜽′(𝒉𝒉𝑖𝑖) = σ𝒈𝒈(𝝎𝝎′T ⋅ 𝒉𝒉𝑖𝑖 + 𝒃𝒃′), (9) 

where σ𝑔𝑔 is the activation function of the decoder network, and 𝜽𝜽′ = {𝝎𝝎′,𝒃𝒃′} represents the 8 

training parameters of the decoder network. In order to reconstruct the original input as well as 9 

possible, the optimization objective of AE focuses on minimizing the error between the input 10 

samples and the reconstructed ones by 11 

min
𝜽𝜽,𝜽𝜽′

    𝐿𝐿(𝒙𝒙𝑖𝑖,𝒙𝒙�𝑖𝑖) =
1

2𝑚𝑚
�‖𝒙𝒙𝑖𝑖 − 𝒙𝒙�𝑖𝑖‖2
𝑚𝑚

𝑖𝑖=1

. (10) 

 12 

Fig. 10. Architecture of AE. 13 

Multiple AE can be stacked to represent the information contained in the input data deeply, 14 

and further obtain the features in deep layers, as shown in Fig. 11. The represented features of 15 

the 𝑙𝑙th AE can be calculated as 16 
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𝒉𝒉𝑖𝑖𝑙𝑙 = 𝑓𝑓𝜽𝜽𝑙𝑙�𝒉𝒉𝑖𝑖
𝑙𝑙−1�,    𝑙𝑙 = 2,3,⋯ , 𝐿𝐿, (11) 

where 𝜽𝜽𝑙𝑙 is the training parameters of the 𝑙𝑙th AE, and 𝒉𝒉𝑖𝑖𝑙𝑙 is the represented features by the 1 

first AE from the given sample 𝒙𝒙𝑖𝑖. After the 𝐿𝐿th AE is pre-trained, we can obtain the deep 2 

features 𝒉𝒉𝑖𝑖𝐿𝐿. The features can be mapped into the target classes according to an individual 3 

classification layer, and the output is 𝒚𝒚�𝑖𝑖 = 𝑓𝑓𝜽𝜽𝐿𝐿+1(𝒉𝒉𝑖𝑖𝐿𝐿). 4 

 5 

Fig. 11. Greedy layer-wise pre-training for stacked AE. 6 

(2) Applications of AE to machine fault diagnosis 7 

Some publications [310, 317-330] have introduced AE and its common varieties into 8 

machine fault diagnosis. Among them, Jia et al. [310] used the stacked AE to automatically learn 9 

features from the frequency-domain data and subsequently complete the diagnosis tasks of 10 

rolling element bearings and gears, which was one of the earliest studies in applications of 11 

stacked AE. The constructed diagnosis model included three stacked AE, which helped 12 

automatically separate the useless health information and compress the helpful information 13 

rather than manually extract statistic features as the traditional IFD did. From the results, the 14 

proposed method was expected to handle massive monitoring data and obtain high diagnosis 15 

accuracy. In addition, Liu et al [317] and Lu et al [319] respectively employed the stacked 16 
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sparse AE and the stacked denoising AE for fault diagnosis of bearings, and the research results 1 

presented higher diagnosis accuracy than other methods such as SVM and ANN. 2 

In order to improve the performance of AE-based diagnosis models, researchers further 3 

investigated the optimization algorithms of AE. They mainly concerned special varieties of AE 4 

on the basic of the common ones. For example, Jia et al [331] proposed a normalized sparse AE 5 

to automatically learn meaningful and dissimilar features from the input vibration data, which 6 

was one of the earliest work to construct end-to-end diagnosis models. Aiming at the shift-7 

variant properties of raw vibration data, they further proposed the locally connected networks by 8 

normalized sparse AE to construct end-to-end networks that encouraged to directly bridge the 9 

relationship from the raw monitoring data to the health states of machines. Ref. [332] presented 10 

an AE-based diagnosis model for machine fault diagnosis, in which the optimization object of 11 

AE was redesigned by the maximum correntropy, and the artificial fish warm algorithm was 12 

used to optimize the parameters of AE. Liu et al. [333] used AE to construct a recurrent neural 13 

network for fault diagnosis of motor bearings. Ma et al. [334] published a deep coupling AE that 14 

could fuse the learned features of multi-source data in high level. Shao et al. [335] discussed the 15 

effects of activation functions on the diagnosis performance of AE-based models, and used 16 

Gaussian wavelet function as the activation function to design the wavelet AE. They further 17 

integrated diagnosis results from a set of stacked AE that were constructed with different 18 

activation functions [336]. In Ref. [337, 338], the contractive AE and the convolutional AE were 19 

respectively introduced to construct diagnosis models for fault diagnosis of rotating machines. 20 

Ref. [339] presented a joint multiple reconstructions AE to jointly learn discriminative and 21 

robust features from the multi-scale signals. In addition, researchers aimed to develop the hybrid 22 

diagnosis models combined with AE and other methods. For example, the extreme learning 23 
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machine is used to construct AE-based diagnosis models, in which the parameters are randomly 1 

determined rather than adopting the BP algorithm. The training strategy improves the 2 

generalization performance and the rate of convergence of conventional AE-based models, and 3 

the hybrid diagnosis models have been successfully used for fault diagnosis of motor bearings 4 

[340, 341] and wind turbines [342]. DBN is the other method to construct hybrid diagnosis 5 

models with stacked AE [343, 344]. In the diagnosis models, stacked AE is considered to learn 6 

features from the input monitoring data, while DBN is regard to recognize the health states of 7 

machine according to the learned features. In Ref. [345], the authors introduced the batch 8 

normalization layer into the stacked AE, which solved the problem of internal covariate shift in 9 

training a multi-layer network and accelerated the convergence. Saufi et al. [346] optimized the 10 

performance of AE-based diagnosis models by the algorithms of the RProp and the differential 11 

evolution. 12 

Stacked AE-based diagnosis models are able to automatically represent the health 13 

information from the input monitoring data, which does not rely on much expert knowledge in 14 

feature extraction. As an unsupervised learning method, the stacked AE cannot be directly used 15 

to recognize the health states of machines. Therefore, a classification layer is usually added at 16 

the top of the architecture of the model, and the constructed diagnosis models need to be trained 17 

with sufficient labeled samples. 18 

3.3.2. DBN-based approaches 19 

(1) A brief introduction to RBM and DBN 20 

As shown in Fig. 12, RBM is a special type of generative stochastic neural network 21 

including visible units 𝒗𝒗 = {𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑚𝑚} and hidden units 𝒉𝒉 = {ℎ1,ℎ2,⋯ ,ℎ𝑛𝑛} [22]. It is 22 

noted that all the units are binary, i.e., 𝒗𝒗,𝒉𝒉 ∈ {0,1}. As an energy-based model, the variables 𝒗𝒗 23 
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and 𝒉𝒉 are subject to the joint configuration as follows. 1 

𝐸𝐸(𝒗𝒗,𝒉𝒉,𝜽𝜽) = −��𝜔𝜔𝑖𝑖,𝑗𝑗𝑣𝑣𝑖𝑖ℎ𝑗𝑗 −�𝑏𝑏𝑖𝑖𝑣𝑣𝑖𝑖 −�𝑎𝑎𝑗𝑗ℎ𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

, (12) 

where 𝜽𝜽 = {𝝎𝝎,𝒂𝒂,𝒃𝒃} represents the parameters of RBM. After that, the marginal distribution of 2 

the visual units can be calculated as 3 

𝑃𝑃(𝒗𝒗|𝜽𝜽) =
1

𝑍𝑍(𝜽𝜽)� exp [−𝐸𝐸(𝒗𝒗,𝒉𝒉,𝜽𝜽)]
𝒉𝒉

, (13) 

where 𝑍𝑍(𝜽𝜽) = ∑ exp[−𝐸𝐸(𝒗𝒗,𝒉𝒉,𝜽𝜽)]𝒗𝒗,𝒉𝒉  is the partition function. The activation conditions for 4 

visible units and hidden units are defined as follows. 5 

𝑃𝑃(𝑣𝑣𝑖𝑖 = 1|𝒉𝒉) = σs �𝑏𝑏𝑖𝑖 + �𝜔𝜔𝑖𝑖,𝑗𝑗 ⋅ ℎ𝑗𝑗

𝑚𝑚

𝑗𝑗=1

�     and    𝑃𝑃(ℎ𝑖𝑖 = 1|𝒗𝒗)

= σs �𝑎𝑎𝑖𝑖 + �𝜔𝜔𝑖𝑖,𝑗𝑗 ⋅ 𝑣𝑣𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�, 

(14) 

where σs is the activation function of Sigmoid. The maximum likelihood estimation is 6 

employed to obtain the parameters of RBM, which is calculated by 7 

𝜽𝜽� = arg max
𝜽𝜽

    ln[𝑃𝑃(𝜽𝜽|𝒙𝒙1,𝒙𝒙2,⋯ , 𝒙𝒙𝑘𝑘)] =
1
𝑘𝑘
�𝑙𝑙𝑛𝑛[𝑃𝑃(𝒙𝒙𝑖𝑖|𝜽𝜽)]
𝑘𝑘

𝑖𝑖=1

, (15) 

where {𝒙𝒙𝑖𝑖}𝑖𝑖=1𝑘𝑘  represents the input dataset with 𝑘𝑘 samples. In order to simplify the solution 8 

shown in Eq. (15), the contrastive divergence algorithm [22] is employed to accelerate the 9 

computation and further obtain the estimated parameters. 10 

 11 

Fig. 12. Architecture of RBM. 12 

Similar to the pre-training in stacked AE, DBN is constructed by stacking a set of RBMs, in 13 



Page 39 
 

which the hidden units of the previous layer in DBN are also viewed as the visible units of the 1 

next layer [23]. After the 𝐿𝐿th RBM is trained, the represented features in the deep layer can be 2 

mapped into the target class by mostly adding the Softmax classification layer as 3 

𝒚𝒚�𝑖𝑖 = [𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝒉𝒉𝑖𝑖𝐿𝐿 ,𝜽𝜽𝐶𝐶),⋯ ,𝑃𝑃(𝑦𝑦𝑖𝑖 = 𝑞𝑞|𝒉𝒉𝑖𝑖𝐿𝐿 ,𝜽𝜽𝐶𝐶),⋯ ,𝑃𝑃(𝑦𝑦𝑖𝑖 = 𝑘𝑘|𝒉𝒉𝑖𝑖𝐿𝐿 ,𝜽𝜽𝐶𝐶)] , (16) 

where 𝑃𝑃(𝑦𝑦𝑖𝑖 = 𝑞𝑞|𝒉𝒉𝑖𝑖𝐿𝐿 ,𝜽𝜽𝐶𝐶) = exp�𝝎𝝎𝑞𝑞
𝐶𝐶 ⋅ 𝒉𝒉𝑖𝑖𝐿𝐿 + 𝒃𝒃𝑞𝑞𝐶𝐶� /∑ exp (𝝎𝝎𝑞𝑞

𝐶𝐶 ⋅ 𝒉𝒉𝑖𝑖𝐿𝐿 + 𝒃𝒃𝑞𝑞𝐶𝐶)𝑘𝑘
𝑞𝑞=1 , 𝒉𝒉𝑖𝑖𝐿𝐿 is the 4 

represented features in the 𝐿𝐿th layer from the 𝑖𝑖th sample, 𝒚𝒚�𝑖𝑖 represents the predicted one-hot 5 

class, and 𝜽𝜽𝐶𝐶 = {𝝎𝝎𝐶𝐶 ,𝒃𝒃𝐶𝐶} is the training parameters of the classification layer. 6 

(2) Applications of DBN to machine fault diagnosis 7 

DBN has been an effective way in the research of IFD. For fault diagnosis of rolling 8 

element bearings, Ref. [347] presented a diagnosis model based on the single Gaussian RBM. 9 

Jiang et al [348] and Han et al. [349] stacked multiple RBMs to construct the DBN-based 10 

diagnosis models, which presented higher diagnosis accuracy than the traditional ones. In order 11 

to improve the diagnosis performance, researchers further investigated the optimization 12 

algorithm for the DBN-based models. In Ref. [350, 351], the Nesterov momentum was used to 13 

adaptively optimize the training of DBN-based diagnosis models, and the diagnosis accuracy 14 

was higher than the standard DBN. Shao et al. [352] constructed an adaptive DBN that was 15 

trained with the algorithm of adaptive learning rate and momentum. They also tried to 16 

adaptively determine the structure of DBN-based diagnosis models by using the particle warm 17 

[353]. In Ref. [354, 355], Shao et al. further presented a convolutional DBN for fault diagnosis 18 

of bearings, and the exponential moving average technique was used to improve the 19 

performance of the diagnosis models. Furthermore, DBN has been used for fault diagnosis of 20 

other objects. For example, Tamilselvan et al [356] used DBN for fault diagnosis of aircraft 21 

engines, which was one of the earliest research in this field. Sun et al. [357] proposed a fault 22 
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diagnosis model named Tilear for the electromotor, and the model was constructed with DBN. 1 

Tran et al. [358] presented a DBN-based diagnosis model for reciprocating compressor valves, 2 

in which the Gaussian-Bernoulli RBM was considered to stack the hierarchical structure. In Ref. 3 

[359], Qiu et al. constructed a diagnosis model based on DBN and the hidden Markov model for 4 

the early-warning of compressor unit. Similarly, Gao et al. [360] added a quantum inspired 5 

neural network to the top layer of DBN, which was applied for fault diagnosis of aircraft fuel 6 

system. In Ref. [361], DBN was employed for automated diagnosis of vehicle on-board 7 

equipment of high speed trains, which presented better diagnosis performance than kNN and 8 

ANN. He et al [362] used DBN for fault diagnosis of a gear transmission chain, and the genetic 9 

algorithm was further used to optimize the structure of DBN. For fault diagnosis of rotor 10 

systems [363] and hydraulic equipment [364], DBN was considered to construct diagnosis 11 

models with higher diagnosis accuracy than the traditional methods. For air-conditioning 12 

system, Guo et al. [365] constructed a diagnosis model with the help of DBN to recognize the 13 

faults of the four-way reversing valve, the outdoor unit, and the refrigerant charge. In addition, 14 

Yu et al [366] proposed a data-driven fault diagnosis model for wind turbines, which was also 15 

implemented by DBN. 16 

Different from the stacked AE, DBN-based diagnosis models could automatically learn 17 

features from the input data by pre-training a set of stacked RBMs, which solves the problem of 18 

vanishing gradient in using BP algorithm to fine-tune the deep-layer networks. In order to 19 

recognize the health states of machines, DBN maps the learned features into the label space by 20 

adding the classification layer. It is necessary to use sufficient labeled data to train the 21 

constructed diagnosis models so as to obtain the convinced diagnosis results. 22 

3.3.3. CNN-based approaches 23 
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(1) A brief introduction to CNN 1 

CNN, as a supervised deep learning method, has completed several superior achievements 2 

in speech recognition, image identification, and target tracking [367]. Generally, CNN consists 3 

of convolutional layers, pooling layers, and full-connected layers [24]. The basic principles of 4 

convolution and pooling are detailed in Fig. 13. In convolutional layers, the filter kernels 𝑘𝑘𝑐𝑐 ∈5 

ℜ𝐻𝐻×𝐿𝐿×𝐷𝐷 are used to convolve the input vectors 𝒙𝒙𝑐𝑐−1 ∈ ℜ𝑀𝑀×𝑁𝑁 from the previous (𝑐𝑐 − 1)th 6 

layer, where 𝐻𝐻 is the height of the kernels, 𝐿𝐿 and 𝐷𝐷 are respectively the length and the depth 7 

of the kernels. The output feature map of the 𝑐𝑐th layer is obtained as follows. 8 

𝒙𝒙𝑖𝑖𝑐𝑐 = σr(𝒙𝒙𝑖𝑖𝑐𝑐−1 ∗ 𝒌𝒌𝑐𝑐 + 𝒃𝒃𝑐𝑐) ∈ ℜ(𝑀𝑀−𝐻𝐻+1)×(𝑁𝑁−𝐿𝐿+1)×𝐷𝐷 ,    𝑐𝑐 = 2,3,⋯, 

(𝒙𝒙𝑖𝑖𝑐𝑐−1 ∗ 𝒌𝒌𝑐𝑐)𝑗𝑗,𝑘𝑘,𝑑𝑑 = � ��𝑥𝑥(𝑖𝑖),𝑗𝑗+ℎ−1,𝑘𝑘+𝑙𝑙−1,𝑚𝑚
𝑐𝑐−1 ⋅ 𝑘𝑘ℎ,𝑙𝑙,𝑑𝑑

𝑐𝑐
𝐿𝐿

𝑙𝑙=1

𝐻𝐻

ℎ=1

𝑀𝑀

𝑚𝑚=1

 
(17) 

where σr represents the rectified linear unit (ReLU) [368]. In pooling layers, the down-9 

sampling processing is used to reduce the number of the training parameters and overcome the 10 

over fitting effectively, as shown in Fig. 13(b). The commonly-used down-sampling forms 11 

include max pooling and mean pooling. The pooled feature map is further expressed as follows. 12 

�𝒗𝒗𝑖𝑖
p�

𝑚𝑚,𝑛𝑛,𝑑𝑑
= down �𝑥𝑥(𝑖𝑖),𝑗𝑗,𝑘𝑘,𝑑𝑑

𝑝𝑝−1 � ∀𝑥𝑥(𝑖𝑖),𝑗𝑗,𝑘𝑘,𝑑𝑑
𝑝𝑝−1 ∈ 𝒙𝒙𝑖𝑖

𝑝𝑝−1, 𝑗𝑗,𝑘𝑘 ∈ 𝑁𝑁+, 𝒔𝒔r×t�, 

s. t.    𝑠𝑠r ≤ 𝑗𝑗 ≤ 𝑠𝑠r𝑚𝑚,    𝑠𝑠t(𝑛𝑛 − 1) ≤ 𝑗𝑗 ≤ 𝑠𝑠t𝑛𝑛 
(18) 

where down(⋅) is the down-sampling functions respectively including max (⋅) and mean(⋅), 13 

and 𝒔𝒔r×t is the filters in the pooling layers. According to stacking the convolutional layers and 14 

pooling layers, CNN is able to learn the deep-layer features from the input data. These features 15 

are then flattened into a 1D vector as the input of the full-connected layers. Through the multi-16 

layer neural networks, they are further mapped into the class target. The outputs of full-17 

connected layers are represents as 18 
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𝒙𝒙𝑖𝑖
𝑓𝑓 = σr�𝝎𝝎𝑓𝑓 ⋅ 𝒙𝒙𝑖𝑖

𝑓𝑓−1 + 𝒃𝒃𝑓𝑓�,    𝑓𝑓 = 2,3,⋯, (19) 

where 𝒙𝒙𝑖𝑖1 = flatten(𝒗𝒗𝑖𝑖
𝑝𝑝) is the input of full-connected layers, and 𝜽𝜽𝑓𝑓 = {𝝎𝝎𝑓𝑓 ,𝒃𝒃𝑓𝑓} represents 1 

the training parameters of the full-connected layers. 2 

 3 

Fig. 13. Convolution and pooling process: (a) Convolution process by using the kernel 𝒌𝒌𝑐𝑐 ∈ ℜ2×1×1, and (b) 4 

pooling process by using the filter 𝒔𝒔2×2. 5 

(2) Applications of CNN to machine fault diagnosis 6 

The applications of CNN to machine fault diagnosis are categorized in Table 3. According 7 

to the architectures of CNN, they can be divided into the 2-dimensional (2D) CNN-based 8 

diagnosis models and the 1D CNN-based diagnosis models. Originally, the 2D CNN serves as 9 

the standard version for image identification, in which the input images are 2D data. For fault 10 

diagnosis of machines, however, the 2D CNN is unable to handle the 1D signals, such as 11 

vibration data. In order to construct a CNN-based diagnosis model and obtain high performance, 12 

researchers adopted some effective approaches, which are summarized into three types. First, 13 

the signal processing methods, such as the wavelet packet [369-371], the continue wavelet 14 
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transform [372, 373], the dual-tree complex wavelet transform [374, 375], and the 1 

synchrosqueezing transform [376], are employed to preprocess the input 1D data, which are 2 

expected to convert the signals from the time domain to the time-frequency domain. After that, 3 

CNN is able to handle the monitoring data with the 2D time-frequency spectrum. Second, some 4 

publications [377-382] manually reshaped the dimensions of the input data to make them 5 

suitable for the CNN-based diagnosis models. In these achievements, the data preprocessing 6 

mostly derives from some simple and ingenious operation rather than the advanced signal 7 

processing, which almost gets rid of the help of the expert knowledge. Third, the image data, 8 

such as grey scale image [383, 384] and infrared thermal image [385, 386], are further 9 

developed for fault diagnosis of machines. Consequently, the CNN-based diagnosis models are 10 

able to directly work well, just like the classification tasks of image identification. In addition, 11 

the 1D CNN begin to cope with the vibration data that are subject to the shift-variant 12 

characteristics, and successfully helped construct the end-to-end diagnosis models for rolling 13 

element bearings [387-391], gears [392-398], motors [399], and hydraulic pumps [400], in 14 

which the input of the diagnosis models is the raw data without preprocessing. 15 

Compared with the stacked AE and DBN, CNN-based diagnosis models are able to directly 16 

learn features from the raw monitoring data without preprocessing such as the frequency-17 

domain transformation because CNN is able to capture the shift-variant properties of input data. 18 

Furthermore, the number of training parameters in diagnosis models is reduced by sharing 19 

weights, which could accelerate the convergence and restrain the over fitting. Similar to other 20 

deep learning-based models, the diagnosis performance of CNN-based diagnosis models is 21 

subject to training with sufficient labeled samples. 22 

Table 3 Summary of the applications of CNN to machine fault diagnosis 23 
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Architectures Input data References 

2D CNN Time-frequency 

spectrum 

Ding et al. [370], Sun et al. [374], Verstraete et al. [401], Guo et al. [402], 

Han et al. [371], Xin et al. [403], Guo et al. [372, 373], Cao et al. [375], Chen 

et al. [404], Han et al. [405], Islam et al. [369], Zhao et al. [376], and Zhu et 

al. [406] 

 Reshaped 

matrix 

Jiang et al. [407], Li et al. [377], Liu et al. [378], Lu et al. [379], Wang et al. 

[381], Xia et al. [382], and Wang et al. [380] 

 Images Janssens et al. [386], Wen et al. [383], Yuan et al. [385], Zhou et al. [384], 

and Suh et al. [408] 

1D CNN Raw data or 

frequency 

spectrum 

Ince et al. [399], Yan et al. [400], Eren et al. [387, 389], Jing et al. [392, 394], 

Appana et al. [391], Chen et al. [388], Jia et al. [390], Jiao et al. [393], Yao et 

al. [396], Han et al. [395], Huang et al. [409], Jiang et al. [398], and Li et al. 

[397] 

3.3.4. ResNet-based approaches 1 

(1) A brief introduction to ResNet 2 

ResNet plays an ingenious and successful role in the research of neural networks, which 3 

constructs deep-learning model by stacking several residual blocks [25]. The residual blocks 4 

consist of the forward channel and the shortcut connection, as shown in Fig. 14. The forward 5 

channels of the residual blocks are originally constructed by stacking some convolutional layers. 6 

For example, two convolutional layers are used to handle the input features by 7 

𝑔𝑔�𝒙𝒙𝑖𝑖𝑙𝑙−1�𝜽𝜽𝑙𝑙� = σr�𝒙𝒙𝑖𝑖𝑙𝑙−1 ∗ 𝒌𝒌𝑙𝑙1 + 𝒃𝒃𝑙𝑙1� ∗ 𝒌𝒌𝑙𝑙2 + 𝒃𝒃𝑙𝑙2 , (20) 

where 𝜽𝜽𝑙𝑙 = {𝒌𝒌𝑙𝑙1 ,𝒃𝒃𝑙𝑙1 ,𝒌𝒌𝑙𝑙2 ,𝒃𝒃𝑙𝑙2} is the training parameters in the 𝑙𝑙th residual block. It is noted 8 

that the convolutional processing is conducted with zero padding to hold the dimensions of 9 
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features as they go through the convolutional layers. The shortcut connection is then introduced 1 

to calculate the sum of the output of forward channels and the input features, and the output of 2 

the residual block is represented as follows. 3 

𝒙𝒙𝑖𝑖𝑙𝑙 = σr�𝑔𝑔�𝒙𝒙𝑖𝑖𝑙𝑙−1�𝜽𝜽𝑙𝑙� + 𝒙𝒙𝑖𝑖𝑙𝑙−1�,    𝑙𝑙 = 2,3,⋯ , 𝐿𝐿, (21) 

 4 

Fig. 14. Architecture of the residual block. 5 

The deep-layer features are obtained by stacking multiple residual blocks, in which the 6 

output of the previous block is the input of the next one. The learned features are finally mapped 7 

into the target class by full-connected layers. 8 

(2) Applications of ResNet to machine fault diagnosis 9 

Researchers developed studies about applications of ResNet. Zhang et al. [410] constructed 10 

a diagnosis model combined with ResNet for rolling element bearings, in which the raw 11 

vibration data was directly used to train the diagnosis model. The comparison results presented 12 

the higher diagnosis accuracy than CNN-based diagnosis models. Zhao et al. [411] developed 13 

the dynamically weighted wavelet coefficients to improve the performance of ResNet-based 14 

diagnosis models, and obtained higher accuracy for fault diagnosis of planetary gearboxes under 15 

serious noise environment than other deep learning-based methods. They further proposed two 16 

multiple wavelet coefficient fusion methods [412] for ResNet-based diagnosis models, which 17 

helped learn more easily-distinguished features from the input data than the standard ResNet-18 

based models. A data-driven diagnosis model combined with time-frequency analysis and 19 

ResNet was proposed by Ma et al. [413] for fault diagnosis of planetary gearboxes. For the key 20 
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components of high-speed trains, Peng et al. [414] used ResNet to recognize the health states of 1 

wheelset bearings, and Su et al. [415] constructed a ResNet-based diagnosis model for fault 2 

diagnosis of the bogies. Both the experimental results of publications showed the superiority of 3 

the ResNet-based diagnosis model than other deep-learning approaches. 4 

ResNet is developed to obtain higher generalization performance on the basis of the 5 

architecture of CNN. Therefore, the ResNet-based diagnosis models inherit the advantages of 6 

the CNN-based diagnosis models, and possibly obtain high diagnosis accuracy, especially for 7 

the complicated operation conditions such as varying-speed or varying-load conditions. 8 

3.4. Epilog 9 

This section reviews the applications of deep learning to machine fault diagnosis in the 10 

present, and divides the diagnosis process into data collection and the deep learning-based 11 

diagnosis. Such diagnosis architecture is expected to construct end-to-end diagnosis models that 12 

could directly bridge the relationship between the raw monitoring data and the health states of 13 

machines. Although some successes have been achieved, they are mostly subject to the common 14 

assumption: the labeled data are sufficient and contain completed information about the health 15 

states of machines [35]. In engineering scenarios, however, such assumption is unpractical 16 

because of two characteristics for the data collected from real-case machines [26]. 1) It is 17 

difficult for these data to contain sufficient information to reflect completed kinds of health 18 

states. The fact is that machines mostly work under the healthy state, while the faults seldom 19 

happen. Thus, it is easier to collect healthy data than faulty data. As a result, the collected data 20 

are seriously imbalanced. 2) The majority of the collected data are unlabeled. It is unrealistic to 21 

frequently stop the machines and inspect the health states due to the huge loss of wealth. 22 

According to the aforementioned two characteristics, it is necessary to train reliable diagnosis 23 
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models for engineering scenarios in future. 1 

4. Future: IFD using transfer learning theories 2 

This section forecasts one of the most potential research prospects, i.e., applications of 3 

transfer learning to machine fault diagnosis. There are three subsections: 1) why to transfer, 2) 4 

what is transfer, and 3) how to transfer. The first subsection focuses on the motivation why 5 

transfer learning comes to be a promising topic in the future research of IFD. In the second 6 

subsection, we define transfer learning in IFD. In the third subsection, a few exploratory studies 7 

are reviewed according to the different categories of transfer learning. 8 

4.1. Motivation of applying transfer learning to IFD in engineering scenarios 9 

The successes of IFD mostly rely on sufficient labeled data to train diagnosis models based 10 

on machine learning. However, it takes much cost to recollect sufficient data and further label 11 

them, which is unpractical for machines in engineering scenarios. Such problem may be solved 12 

by the idea that the diagnosis knowledge could be reused across multiply related machines. For 13 

example, the diagnosis knowledge from the laboratory-used bearings may help recognize the 14 

health states of bearings in engineering scenarios. In such scenario, it is possible to simulate 15 

diverse faults and collect sufficient labeled data from laboratory-used bearings. The diagnosis 16 

models trained with them could also work for fault diagnosis of bearings in engineering 17 

scenarios if the diagnosis knowledge could be reused. Transfer learning is able to get the above 18 

purpose, in which the knowledge from one or more diagnosis tasks can be reused to other 19 

related but different ones [27]. With the help of transfer learning theories, it is dispensable to 20 

collect sufficient labeled data, which releases the common assumption in training diagnosis 21 

models based on machine learning. As a result, IFD is expected to be expanded from the 22 

academic research to engineering scenarios. 23 
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4.2. Definitions of transfer learning in IFD 1 

In this subsection, we attempt to define the transfer problems and transfer scenarios in IFD 2 

combining with the basic definitions of transfer learning. 3 

4.2.1. Transfer problems in IFD 4 

For transfer learning in IFD, the diagnosis knowledge is expected to be reused from one or 5 

multiple diagnosis tasks (the source domain) to other related but different ones (the target 6 

domain), which refers to the concepts of the domain and the task. The domain is denoted as a 7 

pair of 𝒟𝒟 = {𝑋𝑋,𝑃𝑃(𝑋𝑋)} including the dataset 𝑋𝑋 = {𝒙𝒙𝑖𝑖}𝑖𝑖=1𝑛𝑛  and its marginal probability 8 

distribution 𝑃𝑃(𝑋𝑋). The diagnosis task 𝒯𝒯 = {𝛶𝛶,𝑓𝑓(⋅)} consists of the label space 𝛶𝛶 = {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛  9 

and the diagnosis model 𝑓𝑓(⋅). The task contains the health information of machines by 10 

observing the health states in the label space. The diagnosis model 𝑓𝑓(⋅) can be trained with the 11 

labeled data {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛 . After that, the model is further endowed with diagnosis knowledge, i.e., 12 

the relationship between the input data and their corresponding health states of machines. 13 

Given the source domain 𝒟𝒟s, the target domain 𝒟𝒟t, and the diagnosis tasks 𝒯𝒯s and 𝒯𝒯t, 14 

transfer problems in IFD aim to apply the diagnosis knowledge from tasks 𝒯𝒯s to improve the 15 

performance of diagnosis model 𝑓𝑓T(⋅) on the related task 𝒯𝒯t. It is noted that 𝒟𝒟s ≠ 𝒟𝒟𝑡𝑡 and 16 

𝒯𝒯s ≠ 𝒯𝒯𝑡𝑡. To be specific, the source and target domains are detailed as follows [26, 27]. 17 

 The source domain is considered as the pair of 𝒟𝒟s = {𝑋𝑋s,𝑃𝑃s(𝑋𝑋)} to provide the 18 

diagnosis knowledge from one or multiple source diagnosis tasks 𝒯𝒯s = {𝛶𝛶s,𝑓𝑓s(⋅)}. The 19 

dataset 𝑋𝑋s contains 𝑛𝑛s labeled samples {𝒙𝒙𝑖𝑖s,𝑦𝑦𝑖𝑖s}𝑖𝑖=1
𝑛𝑛s  following the distribution 𝑃𝑃s(𝑋𝑋). 20 

Given the label space 𝛶𝛶 = {1,2,⋯ ,𝑘𝑘} with 𝑘𝑘 kinds of health states of machines, the 21 

label space in the source domain is subject to the condition 𝛶𝛶s ⊆ 𝛶𝛶. 22 

 The target domain serves as the one where the diagnosis knowledge from the source 23 
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domain is reused, which is regarded as the pair of 𝒟𝒟t = {𝑋𝑋t,𝑃𝑃t(𝑋𝑋)}. Different from the 1 

samples in the source domain, the target-domain datasets 𝑋𝑋t consist of 𝑛𝑛t samples 2 

{𝒙𝒙𝑖𝑖t}𝑖𝑖=1
𝑛𝑛t  but only a few of them are labeled. To make the matters more serious, there is 3 

none labeled samples in the target domain. These samples are drawn from the 4 

distribution 𝑃𝑃t(𝑋𝑋), and 𝑃𝑃t(𝑋𝑋) ≠ 𝑃𝑃s(𝑋𝑋). 5 

 In order to ensure the success of transferring the diagnosis knowledge across domains, 6 

the label space of the source domain should overlap that of the target domain, i.e., 7 

𝛶𝛶t ⊆ 𝛶𝛶s ⊆ 𝛶𝛶. Such constraint can be explained by the example that it is unrealistic to 8 

use the diagnosis knowledge from motors for fault diagnosis of generators. 9 

4.2.2. Transfer scenarios in IFD 10 

Transfer scenarios in IFD can be divided into two categories, i.e., transfer in the identical 11 

machine (TIM) and transfer across different machines (TDM), as shown in Table 4. These two 12 

categories are both subject to the common assumption, in which the source-domain data are 13 

labeled, while there are minority of labeled data or even none of labeled data in the target 14 

domain. 1) In TIM scenarios, the source and target domain data are collected from the identical 15 

machine, but with varying operation conditions like varying speed and varying load, or various 16 

working environments [416]. These factors change the distribution of the collected data so that 17 

the diagnosis models trained by using the source domain data are unable to directly work on the 18 

target domain. 2) In TDM scenarios, the source and target domain data are collected from 19 

different but related machines like motors and generators. These data involve more complicated 20 

factors than TIM, such as different machine specifications, diverse structures, etc. [26, 35, 417]. 21 

Such factors also result in serious distribution discrepancy of the data between the source 22 

domain and the target domain. Therefore, transfer learning is expected to construct diagnosis 23 
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models for transfer scenarios in IFD, which are robust to the aforementioned factors. 1 

Table 4 Categories of transfer scenarios in machine fault diagnosis. 2 

Transfer scenarios Assumptions Factors leading to transfer scenarios 

Source domain Target domain 

Data collected from 

the identical machine 

(TIM) 

Available labels  Minority of labels 

 Unavailable labels 

 Varying speed 

 Varying load 

 Various working environments 

Data collected from 

different machines 

(TDM) 

Available labels  Minority of labels 

 Unavailable labels 

 Different machine specifications 

 Diverse structures 

 Different measurement environments 

 Different working environments 

4.3. Categories of transfer learning-based approaches in IFD 3 

A few researchers have developed exploratory studies in IFD by using transfer learning 4 

theories, which are summarized in Table 5. We further divide them into four categories, i.e., 5 

feature-based approaches, GAN-based approaches, instance-based approaches, and parameter-6 

based approaches. Among them, the studies about feature-based approaches account for the 7 

largest proportion. Furthermore, majority of studies focus on TIM scenarios, and only four 8 

publications aim at TDM scenarios. 9 

Table 5 Summary of applications of transfer learning to machine fault diagnosis. 10 

Approaches References Transfer scenarios Methodologies 

TIM TDM 

Feature-based Chen et al. [418], Xie et al. [419], and 

Tong et al. [420, 421] 

√  TCA and JDA 
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 Zhang et al. [416, 422], Qian et al. [423], 

and Peng et al. [414] 

√  Deep learning and 

AdaBN 

 Lu et al. [424], Wen et al. [425], Li et al. 

[426], Zhang et al. [427], Wang et al. 

[428], Qian et al. [429], Wang et al. [430] 

Yang et al. [26, 417, 443], and Xu et al. 

[431] 

√ √ Deep transfer learning 

 Wang et al. [432], Zhang et al. [433], and 

Zheng et al. [434] 

√ √ Transfer factor analysis, 

and subspace alignment 

GAN-based Xie et al. [435], Li et al. [436], Han et al. 

[437], and Guo et al. [35] 

√ √ GAN and MMD 

Instance-based Shen et al. [36] √  TrAdaBoost 

Parameter-based Zhang et al. [438], Hasan et al. [37], Cao 

et al. [439], and Shao et al. [440] 

√  Deep learning and fine 

tuning 

4.3.1. Feature-based approaches 1 

Feature-based approaches are widely investigated in transfer learning because of the 2 

capability of correcting serious across-domain discrepancy [33], such as TDM scenarios. As 3 

shown in Fig. 15, such approaches can be commonly divided into four steps [26]. First, a feature 4 

mapping is used to map the cross-domain data into a common feature space. After that, the 5 

distribution discrepancy of the features is measured by distance metrics. Furthermore, the results 6 

are propagated backward to update the parameters of the feature mapping by the minimization 7 

optimization strategy, which helps reduce the distribution discrepancy of the features. Finally, 8 

the domain-shared classifier trained with the source-domain samples is employed to work on the 9 
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target domain according to the features with similar distribution. 1 

 2 

Fig. 15. Steps of feature-based transfer learning approaches [26]. 3 

(1) TCA and JDA 4 

TCA is a typically feature-based approach [29]. This approach attempts to find a low-5 

dimensional feature space, in which the cross-domain data are subject to small distribution 6 

discrepancy. After that, the learned features are used to train domain-shared classifiers that are 7 

mostly constructed by traditional machine learning theories. The optimization objective of TCA 8 

is shown as 9 

min 
𝑾𝑾

    trace(𝑾𝑾T𝑲𝑲𝑲𝑲𝑲𝑲𝑾𝑾) + 𝜇𝜇 ⋅ trace(𝑾𝑾T𝑾𝑾) 

s. t.    𝑾𝑾T𝑲𝑲𝑲𝑲𝑲𝑲𝑾𝑾 = 𝑰𝑰 
(22) 

where 𝑲𝑲 = �𝐾𝐾𝑖𝑖,𝑗𝑗� ∈ ℜ(𝑛𝑛s+𝑛𝑛t)×(𝑛𝑛s+𝑛𝑛t) is the kernel matrix of the input cross-domain samples 10 

and 𝐾𝐾𝑖𝑖,𝑗𝑗 = 𝑘𝑘(𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗), 𝑾𝑾 = 𝑲𝑲−1/2𝑾𝑾� ∈ ℜ(𝑛𝑛s+𝑛𝑛t)×𝑚𝑚 maps the cross-domain samples from the 11 

space ℜ𝑛𝑛s+𝑛𝑛t to the 𝑚𝑚-dimensional space ℜ𝑚𝑚 and 𝑛𝑛s + 𝑛𝑛t > 𝑚𝑚, 𝜇𝜇 is the tradeoff parameter 12 

to balance the contributions of the distribution adaptation and the model complexity, 𝑲𝑲 =13 

𝑰𝑰𝑛𝑛s+𝑛𝑛t − 1/(𝑛𝑛s + 𝑛𝑛t)𝟏𝟏𝟏𝟏𝑇𝑇 is the centering matrix, and 𝑲𝑲 = �𝐿𝐿𝑖𝑖,𝑗𝑗� ≥ 0 can be calculated as 14 
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𝐿𝐿𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧

1
𝑛𝑛s2

, 𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋s

1
𝑛𝑛t2

, 𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋t

−
1

𝑛𝑛s𝑛𝑛t
, �

𝒙𝒙𝑖𝑖 ∈ 𝑋𝑋s,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋t

𝒙𝒙𝑖𝑖 ∈ 𝑋𝑋t,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋s

. (23) 

The optimal feature mapping 𝑾𝑾∗ obtained by solving Eq. (22) can be further used to calculate 1 

the cross-domain features 𝑾𝑾∗𝑲𝑲 subject to similar distribution. 2 

A few researchers have introduced TCA to reduce the distribution discrepancy of the cross-3 

domain data in IFD. Chen et al. [418] used TCA to extract transferable features of the collected 4 

data from rolling element bearings under different operation conditions. Xie et al. [419] 5 

employed TCA and SVM-based classifier for fault diagnosis of gearboxes under different 6 

operation conditions. 7 

TCA just adapts the marginal probability distribution of the input cross-domain data, but 8 

ignores the conditional probability distribution from the feature space to the target classes. Thus, 9 

JDA is further proposed to solve this problem, which is defined as follows [30]. 10 

min 
𝑾𝑾

    � trace(𝑾𝑾T𝑲𝑲𝑲𝑲𝑐𝑐𝑲𝑲𝑾𝑾) + 𝜆𝜆 ⋅ ‖𝑾𝑾‖𝐅𝐅2
𝐶𝐶

𝑐𝑐=1

 

s. t.    𝑾𝑾T𝑲𝑲𝑲𝑲𝑲𝑲𝑾𝑾 = 𝑰𝑰 

(24) 

where 𝑲𝑲𝑐𝑐 = �𝐿𝐿𝑖𝑖,𝑗𝑗
(𝑐𝑐)� ≥ 0, and 𝑲𝑲𝑐𝑐 = 𝑲𝑲 when 𝑐𝑐 = 0. Otherwise the elements of 𝑲𝑲𝑐𝑐 is 11 

𝐿𝐿𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧

1
𝑛𝑛s,(c)
2 , 𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋(𝑐𝑐)

s = {𝒙𝒙𝑖𝑖|𝒙𝒙𝑖𝑖 ∈ 𝑋𝑋s ∧ 𝑋𝑋𝑦𝑦𝑖𝑖=𝑐𝑐}

1
𝑛𝑛t,(c)
2 , 𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋(𝑐𝑐)

t = {𝒙𝒙𝑖𝑖|𝒙𝒙𝑖𝑖 ∈ 𝑋𝑋t ∧ 𝑋𝑋𝑦𝑦𝑖𝑖=𝑐𝑐}

−
1

𝑛𝑛s,(c)𝑛𝑛t,(c)
, �

𝒙𝒙𝑖𝑖 ∈ 𝑋𝑋(𝑐𝑐)
s ,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋(𝑐𝑐)

t

𝒙𝒙𝑖𝑖 ∈ 𝑋𝑋(𝑐𝑐)
t ,𝒙𝒙𝑗𝑗 ∈ 𝑋𝑋(𝑐𝑐)

s

, (25) 

where the sub-domains 𝑋𝑋(𝑐𝑐)
s  and 𝑋𝑋(𝑐𝑐)

t  are the set of samples belonging to the class 𝑐𝑐 in the 12 

source domain. Similar to solving TCA, the cross-domain features 𝑾𝑾∗𝑲𝑲 can be obtained by 13 

optimizing the function shown in Eq. (24). 14 
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With regard to fault diagnosis, Tong et al. [420, 421] employed JDA to complete the 1 

diagnosis tasks of bearings respectively used in the motor and the belt conveyor idler, and 2 

achieve better diagnosis accuracy than TCA-based diagnosis models. 3 

Diagnosis models based on TCA and JDA use the simple nonlinear mapping to extract 4 

features, which is difficult to fit the complicated distribution of data. As a result, the diagnosis 5 

models may get poor transfer results on the target domain because of the under-corrected 6 

discrepancy of the source and target domains. 7 

(2) Deep learning and AdaBN 8 

The advent of deep learning replaces the simple nonlinear mapping in TCA and JDA with 9 

the deep hierarchical architectures. Several publications solve the TIM scenarios just by deep 10 

learning-based diagnosis models. Zhang et al. [416] constructed a deep CNN-based diagnosis 11 

model for fault diagnosis of motor bearings under varying operation conditions and different 12 

noisy environments. Peng et al. [414] employed the ResNet-based diagnosis models for 13 

locomotive bearings, which were robust to varying operation conditions and the added noise. In 14 

Ref. [422, 423], the adaptive batch normalization (AdaBN) [441] was used to improve the 15 

performance of CNN-based diagnosis models for bearings under different operation conditions. 16 

Deep learning-based diagnosis models are beneficial to reducing the cross-domain 17 

discrepancy by extracting deep-layer features [33]. However, they are unable to adapt serious 18 

cross-domain discrepancy in some diagnosis scenarios, such as TDM. 19 

(3) Deep transfer learning 20 

In order to correct the serious cross-domain discrepancy, deep transfer learning impose 21 

constraints on the parameters of deep learning-based model by minimizing the distance metric to 22 

distribution discrepancy. Maximum mean discrepancy (MMD) is commonly-used nonparametric 23 
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distance to the distribution discrepancy, which is defined as follows. 1 

𝐷𝐷ℋ2 (𝑋𝑋,𝑌𝑌) ≔ sup
Φ∈ℋ

�𝐸𝐸𝑋𝑋~𝑝𝑝[Φ(𝒙𝒙)]− 𝐸𝐸𝑌𝑌~𝑞𝑞[Φ(𝒚𝒚)]�, (26) 

where sup {⋅} is the supremum of the input aggregate, ℋ represents the reproduced kernel 2 

Hilbert space (RKHS), and Φ(⋅) is the nonlinear mapping from the original space to RKHS. 3 

The MMD of learned cross-domain features is viewed as the regularization term of optimization 4 

objective for deep learning-based diagnosis models. For example, the publications [424, 425, 5 

431] employed MMD to regularize the optimization objectives of stacked AE-based diagnosis 6 

models as 7 

min
𝜽𝜽

   
1

2𝑚𝑚
��𝒙𝒙𝑖𝑖𝒟𝒟 − 𝒙𝒙�𝑖𝑖𝒟𝒟�

2
+ 𝛼𝛼 ⋅ KL(𝑝𝑝‖𝑝𝑝𝑙𝑙) + 𝛽𝛽 ⋅ 𝐷𝐷�ℋ2 [𝑓𝑓𝜃𝜃(𝒙𝒙s),𝑓𝑓𝜃𝜃(𝒙𝒙t)]

𝑚𝑚

𝑖𝑖=1

, (27) 

where 𝒙𝒙𝑖𝑖𝒟𝒟 = {𝒙𝒙𝑖𝑖s,𝒙𝒙𝑖𝑖t} is the cross-domain samples. In Eq. (27), the second term encourages to 8 

get the sparse features, and the third term minimizes the distribution discrepancy of the 9 

represented cross-domain features. Depending on the greedy layer-wise pre-training, the stacked 10 

AE is able to extract deep-layer features subject to similar distribution, and further realize the 11 

transfer scenarios of motor bearings [424, 425], gears [424], and virtual car body-side 12 

production line [431]. The regularization terms of MMD can also be used in training CNN to 13 

construct the end-to-end diagnosis models [426, 427]. Among them, Yang et al. [26] introduced 14 

multi-layer MMD into the optimization of CNN-based diagnosis model to realize the TDM 15 

transfer scenarios of transferring diagnosis knowledge from the laboratory-used motor bearings 16 

to the locomotive bearings, which was one of the earliest work in this scenario. The proposed 17 

CNN-based diagnosis model was trained by 18 

min
𝜽𝜽

      
1
𝑛𝑛s
�𝐽𝐽(𝒚𝒚𝑖𝑖s,𝒚𝒚�𝑖𝑖s)
𝑛𝑛s

𝑖𝑖=1

+ 𝛼𝛼 ⋅
1
𝑛𝑛t
�𝐽𝐽(𝒚𝒚�𝑖𝑖t,𝒚𝒚�𝑖𝑖t)
𝑛𝑛t

𝑗𝑗=1

+ 𝛽𝛽 ⋅ 𝐷𝐷�ℋ2 (𝒵𝒵s,ℒ,𝒵𝒵t,ℒ), (28) 

where the first term was used to train a domain-shared classifier by labeled source domain 19 
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samples, the second term was expected to minimize the error between the predicted labels 𝒚𝒚�𝑖𝑖t 1 

and pseudo labels 𝒚𝒚�𝑖𝑖t for target-domain samples, which could improve the diagnosis accuracy 2 

on the target domain by reducing the among-class distance of the learned features, and the last 3 

term was to adapt the distribution of the multi-layer features {𝒵𝒵s,ℒ,𝒵𝒵t,ℒ} both in the 4 

convolutional layers and the full-connected layers. Considering the difficulties in determine the 5 

Gaussian kernel parameters, Yang et al. [417] introduced multi-kernel MMD into the 6 

optimization of CNN-based diagnosis model, and it could be trained by solving a convex 7 

optimization problem as 8 

min
𝜽𝜽

max
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(29) 

where the weighted sum of the 𝑈𝑈-kernel MMD of the learned features was used to estimate the 9 

cross-domain discrepancy. In terms of the weaknesses of Gaussian kernel-based MMD, Yang et 10 

al [443] further proposed the polynomial kernel induced MMD to improve the transfer 11 

performance of the deep transfer learning-based diagnosis models, and the diagnosis results 12 

were higher and more robust to kernel parameters than the conventional-used Gaussian kernel 13 

induced MMD. In addition to MMD, other distance metrics are used to construct deep transfer 14 

learning-based diagnosis models. Qian et al. [429] used high-order Kullback-Leibler divergence 15 

to measure the distribution discrepancy, and further train a sparse filter-based diagnosis model 16 

for gears. Ref. [428] adapted the distribution of learned cross-domain features by reducing the 17 

center distance, which attempts for fault diagnosis of motor bearings under varying operation 18 

conditions. Wang et al. [430] proposed a deep transfer learning-based diagnosis model for power 19 

plant thermal system, in which CORAL was employed to align the covariance of the cross-20 
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domain features. 1 

Deep transfer learning-based diagnosis models are useful to correct serious cross-domain 2 

discrepancy based on the theories of deep learning and transfer learning, which has been widely 3 

concerned for transfer scenarios in IFD. In these models, the transfer results relate to the 4 

distance metric to the distribution discrepancy. The diagnosis models may obtain poor transfer 5 

results on the target domain if the distances are unable to adequately describe the discrepancy. 6 

(4) Other approaches 7 

In Ref. [432], the authors found a low-dimensional latent space by the transfer factor 8 

analysis, which helped select the cross-domain features with small discrepancy. Zhang et al. 9 

[433] mapped the cross-domain samples into two 𝑑𝑑-dimensional subspaces by the principal 10 

component analysis, and the subspaces are aligned to minimize the cross-domain discrepancy. 11 

Zheng et al. [434] proposed a diagnosis model for bearing fault diagnosis, which could fuse the 12 

diagnosis knowledge from multiple operation conditions and further complete the diagnosis 13 

tasks on another condition. 14 

4.3.2. GAN-based approaches 15 

Generally, GAN consists of the generative model 𝐺𝐺(⋅) and the discriminative model 𝐷𝐷(⋅) 16 

[442]. The former acquires the distribution information of the target-domain samples, and 17 

further generates fake samples with the similar distribution to the target-domain samples when 18 

inputting random noise or the source-domain samples. The later focuses on training the 19 

parameters of the generative model to make the generated fake samples undistinguished from 20 

the actual samples in the target domain. The generative and discriminative models are gamed 21 

with each other in GAN, which is defined as 22 

min
𝐺𝐺

max
𝐷𝐷

    𝐸𝐸𝒙𝒙s∈𝑋𝑋s[log𝐷𝐷(𝐺𝐺(𝒙𝒙s))] + 𝐸𝐸𝒙𝒙t∈𝑋𝑋t[log(1 − 𝐷𝐷(𝐺𝐺(𝒙𝒙t)))]. (30) 
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In the field of IFD, Xie et al. [435] proposed the cycle-consistent GAN for fault diagnosis of 1 

bearings under different operation conditions, in which the fake samples were generated 2 

according to the samples from other operation conditions. Li et al. [436] constructed multiple 3 

generative models for fault diagnosis of bearings under varying operation conditions, and the 4 

fake samples were generated by the sample from one fault. Han et al [437] presented a deep 5 

adversarial CNN for machines from one operation condition to another. Guo et al. [35] proposed 6 

the diagnosis models based on the adversarial learning for fault diagnosis among different 7 

bearings, which was one of the earliest works for TDM scenarios. They constructed a diagnosis 8 

model including condition recognition and domain adaptation, which was trained by the 9 

following optimization objective. 10 

min
𝜽𝜽
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(31) 

By minimizing the third regularization term in Eq. (31), the diagnosis model could not 11 

distinguish the domain classes of the input cross-domain samples. Consequently, the model was 12 

able to serve well both in the source and target domains. 13 

GAN-based approaches are able to generate fake labeled data that are similar to the actual 14 

data in the target domain. These fake data are able to help train reliable diagnosis models for the 15 

target domain. Therefore, such approaches are not affected by the condition whether labeled 16 

samples in the target domain are available, and they are expected to work for both the TIM 17 

scenarios and the TDM scenarios. 18 

4.3.3. Instance-based approaches 19 

In instance-based approaches, it is assumed that minority of labeled samples are labeled in 20 
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the target domain, which is insufficient to train reliable diagnosis models. Therefore, the purpose 1 

of instance-based approaches focuses on using the related samples in the source domain to 2 

improve the performance of the diagnosis model 𝑓𝑓t(⋅) in the target domain [27]. TrAdaboost 3 

[31] is a typical instance-based approach, which derives from the Adaboost algorithm. In the 4 

method, the source and target domain samples are weighted to balance their contributions of 5 

training the diagnosis models, as shown in Fig. 16. If the given diagnosis model misclassifies a 6 

sample in the target domain, the weights for this sample will be enhanced. Furthermore, the 7 

weights of the misclassified samples in the source domain will be reduced. As a result, the 8 

decision boundary will be enforced towards the orientation of correctly classify the target-9 

domain samples. 10 

 11 

Fig. 16. Illustration of the TrAdaboost algorithm: (a) directly train the diagnosis models with the source and target 12 

domain samples, and (b) train the diagnosis models by using TrAdaboost algorithm. 13 

Based on the architecture of TrAdaboost, Shen et al. [36] used the cross-domain features to 14 

train a set of kNN-based diagnosis models by TrAdaboost algorithm, which helped recognize the 15 

health states of bearings under varying operation conditions. In this method, the singular value 16 

decomposition was first employed to extract fault features from the monitoring data of motor 17 

bearings. After that, a metric to vector angle cosine was designed to select the features that were 18 
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subject to small cross-domain discrepancy. Finally, the features from the source and target 1 

domains were used to train a kNN-based diagnosis model by TrAdaboost algorithm. The results 2 

showed that the trained diagnosis model could correctly recognize the unlabeled samples in the 3 

target domain although there were a small number of labeled samples in the target domain. 4 

Instance-based approaches are easily-implemented for transfer scenarios. However, the 5 

transfer performance of them relates to the number of target-domain samples. Furthermore, they 6 

just are able to correct discrepancy in TIM scenarios, but incapable to implement transfer 7 

scenarios with serious discrepancy, such as TDM scenarios, because these approaches may lack 8 

the powerful capability of data fitting. 9 

4.3.4. Parameter-based approaches 10 

Similar to the instance-based approaches, parameter-based approaches also assume that 11 

there are minority of labeled samples in the target domain [27]. In the approaches, the 12 

parameters of diagnosis models are pre-trained with the source-domain samples. After that, the 13 

parameters of the pre-trained diagnosis models are saved and further reassigned to the diagnosis 14 

models served in the target domain. Finally, the minority of labeled samples in the target domain 15 

are used to fine-tune the target diagnosis models. 16 

Researchers have developed the parameter-based approaches for transfer scenarios. Zhang 17 

et al. [438] and Hasan et al. [37] aimed at transfer scenarios of motor bearings subject to varying 18 

operation conditions, in which the pre-trained diagnosis model was fine-tuned by the samples 19 

from the target operation conditions. Compared with the diagnosis model just trained with a 20 

small number of target-domain samples, the fine-tuned diagnosis model presented the faster 21 

convergence rate and higher diagnosis accuracy. Furthermore, some researchers employed the 22 

pre-trained model for image identification to perform fault diagnosis tasks of machines. Cao et 23 
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al. [439] proposed a deep CNN-based diagnosis model for fault diagnosis of gearboxes. The 1 

authors constructed a CNN model with 24 layers, and it was trained with the labeled images 2 

from the well-known datasets of ImageNet. Then, the well-trained parameters were used to 3 

initialize the other CNN-based diagnosis model subject to the same architecture as the pre-4 

trained one. The diagnosis model was finally trained with the collected vibration data that were 5 

converted as the 2D image format. Shao et al. [440] presented a parameter-based approach for 6 

fault diagnosis of motor bearings and gearboxes. In this approach, the well-known VGG-16 7 

network was expected to complete the diagnosis tasks of machines under different working 8 

conditions. The collected vibration data were first converted to the 2D time-frequency images 9 

by wavelet transform. Then, the vibration data in image format were used to fine-tune the pre-10 

trained VGG-16, in which three convolutional blocks in the bottom were frozen. 11 

Parameter-based approaches fine-tune the pre-trained diagnosis models for fault diagnosis 12 

tasks in the target domain, which consumes less computation resources in handling massive 13 

data. However, the transfer performance of these approaches mostly depends on the number of 14 

labeled samples in the target domain. 15 

4.4. Epilog 16 

Transfer learning is promising to expand IFD from academic research to engineering 17 

scenarios. The transfer problems of IFD are first defined, and the transfer scenarios are further 18 

categorized into TIM and TDM in this section. Aiming at the transfer diagnosis scenarios, a few 19 

exploratory studies are divided into feature-based approaches, GAN-based approaches, instance-20 

based approaches, and parameter-based approaches. Among them, feature-based approaches and 21 

GAN-based approaches are widely concerned because they can accomplish TDM scenarios 22 

subject to serious cross-domain discrepancy. In contrast, the instance-based approaches and 23 
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parameter-based approaches are easily-implemented, and mostly focus on TIM scenarios subject 1 

to slight cross-domain discrepancy. Furthermore, the transfer performance of these approaches 2 

may relate to the number of labeled samples in the target domain. 3 

5. Discussions: Future challenges and a roadmap in IFD 4 

Following the development of machine learning theories, IFD gradually releases the 5 

contribution of the human labor and automatically recognizes the health states of machines from 6 

the past up to the present, and its applications will serve to the engineering scenarios in the 7 

future period. At the end of this review, we attempt to picture the roadmap and discuss the future 8 

challenges of IFD, as shown in Fig. 17, which is expected to inspire the readers to orientate the 9 

potential trends of this field over the next five or ten years. 10 
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 1 

Fig. 17. Roadmap of applications of machine learning to machine fault diagnosis. 2 

(1) How to provide the high-quality big data for training diagnosis models based on 3 

machine learning? 4 

In the present period of IFD, the volume of the collected data is rapidly grown than ever 5 
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before. However, the quality of the collected data is not always satisfactory because a portion of 1 

them might be subject to the poor quality. The poor-quality data are defined as the incorrect data 2 

with inaccurate, uncertain, incomplete, and low-timeless. Lots of factors may lead to them, such 3 

as the disturbance of working environments, the anomaly of data acquisition devices, and the 4 

interruption of data transmission. The incorrect data will result in unreliable diagnosis results 5 

when these data are directly used to train the diagnosis models by machine learning. Therefore, 6 

it is necessary to develop effective methods to clean incorrect data and improve the quality of 7 

the collected big data. The clustering algorithms and reasoning models may help separate 8 

anomaly data and further improve the quality of collected data. Furthermore, the crowdsourcing 9 

database technologies could manage the big data with low value density and improve the data 10 

quality, which help construct the standard database to provide the high-quality data for training 11 

machine learning-based diagnosis models. 12 

(2) How to construct deep learning-based diagnosis models subject to special issues in the 13 

revolution of big data? 14 

With the revolution of big data, two special issues come to bring negative effects on the IFD 15 

using deep learning theories, i.e., imbalanced health states and analytics for data stream. 1) 16 

Imbalanced distribution in health states of machines is a common phenomenon in engineering 17 

scenarios. For example, the data collected from the healthy state are far more sufficient than 18 

those from the faults. If the imbalanced data are used to train the deep learning-based diagnosis 19 

models, the decision boundary of the models might be enforced to shift towards the health states 20 

with minority of instances, thus the diagnosis accuracy would be reduced. To overcome the 21 

issue, the cost sensitive learning may help construct diagnosis models subject to imbalanced 22 

health states. In addition, ensemble learning, such as Adaboost and XGboost, is expected to 23 
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improve the performance of deep learning-based diagnosis models when combined with the 1 

resampling strategies. 2) The monitoring data stream is regard as the increasingly-enlarged data 2 

with the continuous time series. By analyzing that, IFD is possible to provide the real-time 3 

diagnosis results. Such issue has been concerned by the researchers for years, but the unreliable 4 

data transmission and the bandwidth limitations prevent the monitoring data stream from 5 

arriving the destination in an unbroken sequence. Furthermore, the inefficient computation 6 

capability impedes the success of data stream analytics. As a result, the IFD using deep learning 7 

is just implemented based on the off-line historical data. Fortunately, the monitoring data stream 8 

is able to be collected and efficiently handled with the advent of IoT, broadband internet, and 9 

cloud computing. Therefore, the on-line IFD is encouraged to be developed to make real-time 10 

decisions on the incipient anomaly or the sudden faults of machines. The incremental learning is 11 

expected to facilitate the on-line IFD using deep learning. Furthermore, the lifelong learning 12 

may promote deep learning-based diagnosis models to constantly acquire the diagnosis 13 

knowledge from the monitoring data stream. 14 

(3) How to protect the performance of transfer learning-based diagnosis models from the 15 

negative transfer in engineering scenarios? 16 

The successes of transfer learning are subject to the assumption of related health 17 

information across multiple diagnosis tasks. If the assumption is invalid, the negative transfer 18 

may happen to reduce the transfer performance of the transfer learning-based diagnosis models 19 

by using the diagnosis knowledge from the source domain. Two reasons may cause the negative 20 

transfer. 1) It is possible to collect data from multiple source domains to match a common target 21 

domain, but the health information contained in these source domains is not all related to the 22 

that in the target domain in engineering scenarios. For example, the data from motors with 23 
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different specifications can be collected to form multiple source domains. Some of them could 1 

provide positive diagnosis knowledge for a generator with similar physical construction to the 2 

motors, but not all of them. Consequently, it confuses the researchers to select the optimal one 3 

and guarantee the performance of the transfer learning-based diagnosis models. Therefore, it is 4 

necessary to develop metrics to cross-domain transferability, which may help select the relevant 5 

source domains. Furthermore, GAN could help generate fake high-transferability data to extend 6 

the available data for IFD using transfer learning. 2) The constructed transfer learning-based 7 

diagnosis models are incapable to extract the related health information. According to Section 8 

4.3, several approaches can be used in IFD, but the transfer performance of them is different for 9 

a given transfer scenario due to diverse performance ceilings. To select the optimal one and 10 

guarantee the transfer success, it must take much time by experimental trials. For this issue, the 11 

architecture of learning to transfer is expected to automatically select the optimal approaches 12 

with the highest performance based on the historical knowledge. Furthermore, with the help of 13 

transitive transfer learning, the diagnosis knowledge of the source domain may be reused in the 14 

target domain if the negative transfer inevitably happens in engineering scenarios. 15 

(4) How to improve the interpretability of the deep learning-based diagnosis models? 16 

Although there are state-of-the-art achievements of deep learning-based diagnosis models, 17 

an open issue of black box for deep hierarchical networks still confuses the academic 18 

researchers. It is difficult to acquire how these models learn the diagnosis knowledge from the 19 

monitoring data. As a result, the diagnosis models are constructed by experimental trials once 20 

and once again rather than the strictly theoretical background. To bridge the gap, two research 21 

interests are recommended to be concerned. 1) The deep learning-based diagnosis models are 22 

trained by minimizing empirical risk, which really lacks rigorous theory. As a result, the 23 
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physical meanings of them are difficult to be interpretable. The statistical learning theories, such 1 

as SVM and PGM, have rigorous theory grounds, which promote to constructed diagnosis 2 

models with easily-understood model parameters, features, and diagnosis results. Therefore, it is 3 

still worthy to investigate statistical learning in IFD with the revolution of big data. 2) The 4 

process of learning features through deep learning is similar to the filtering process. Therefore, 5 

the adaptive filter theory is beneficial to analyzing the physical meanings of deep learning-based 6 

diagnosis models. In addition, the visualization technologies, such as maximizing the activation 7 

and feature inversion, are expected to visually express what the diagnosis models learn from the 8 

input data. According to the above research, the interpretability results are helpful to construct 9 

the deep learning-based diagnosis models with the optimal architectures reasonably. 10 

6. Conclusions 11 

In this paper, we review the applications of machine learning to machine fault diagnosis, 12 

which is roughly divided into three periods. In the past, IFD is implemented by the steps of data 13 

collection, artificial feature extraction, and health state recognition. By using traditional machine 14 

learning theories, the diagnosis models are able to automatically recognize the health states of 15 

machines. However, the literature review presents that the artificial feature extraction still relies 16 

on the expert knowledge. With the rapid development of machine learning over the recent years, 17 

the advent of deep learning brings positive effects on the enhanced benefits. The deep learning 18 

theories construct end-to-end diagnosis models to automatically learn features from the collected 19 

data, and subsequently recognize the health states of machines. It should be concerned that the 20 

successes of deep learning-based diagnosis models are subject to enough labeled samples. Such 21 

assumption is unpractical in engineering scenarios. To bridge the gap, transfer learning theories 22 

are promising to construct diagnosis models, in which the diagnosis knowledge can be 23 
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transferred across multiple diagnosis tasks. Finally, we discuss the challenges of IFD and further 1 

picture a roadmap. This review is expected to systematically present the development of IFD 2 

and provide the valuable guidelines of the future research in this field. 3 
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Table 1 Summary of applications of ANN to machine fault diagnosis. 1 

Objects References Methodologies 

Bearings Yang et al. [101], Samanta et al. [102], Yu et al. [103], Castejon et al. [104], 

Muruganatham et al. [105], Unal et al. [106], Zarei et al. [107], Almeida et al. 

[108], and Ahmed et al. [109] 

BPNN 

 Wang et al. [110], Lei et al. [111], Vijay et al. [112], Jiang et al. [113], and Tang et 

al. [114] 

RBFN 

 Lei et al. [115], Wu et al. [116] WNN 

Gears Abu-Mahfouz et al. [117], Rafiee et al. [118], Hajnayeb et al. [119], Cerrada et al. 

[120], Kane et al. [121], Waqar et al. [122], and Tyagi et al. [123]  

BPNN 

 Lai et al. [124], Li et al. [125], and Liu et al. [126] RBFN 

 Chen et al. [127] WNN 

Motors Ayhan et al. [128], Sadeghian et al. [129], Arabaci et al. [130], Cabal-Yepez et al. 

[131], Hernandez-Vargas et al. [132], and Moosavi et al. [133] 

BPNN 

 Ghate et al. [134], and Palacios et al. [135] RBFN 

 Boukra et al. [136] WNN 

Engines Sharkey et al. [137], Lu et al. [138], Chen et al. [139, 140], Khazaee et al. [141, 

142], and Zabihi-Hersari et al. [143] 

BPNN 

 Wu et al. [144, 145] RBFN 

 Shen et al. [146], Zhang et al. [147] WNN 

Others Kuo et al. [148], Ilott et al. [149], Wu et al. [150], Mohammed et al. [151], Walker 

et al. [152], Malik et al. [153], and McCormick et al. [154, 155] 

BPNN 

 Wu et al. [156], and Villanueva et al. [157] RBFN 
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 Liu et al. [158], Chen et al. [159], Guo et al. [160], Xiao et al. [161], and Jin et al. 

[162] 

WNN 
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Table 2 Summary of applications of SVM to machine fault diagnosis. 1 

Objects References Methodologies 

Bearings Abbasion et al. [224], Yang et al. [225], Xian et al. [226], Hao et al. [227], 

Gryllias et al. [228], Islam et al. [229], Sugumaran et al. [192], Zheng et al. 

[202], Jack et al. [208], Rojas et al. [210], HungLinh et al. [230], Kang et al. 

[216], and Li et al. [222] 

OAA-based SVM 

 Yang et al. [231], Yang et al. [232], Wu et al. [233, 234], Saidi et al. [235], Zhu 

et al. [236], Ziani et al. [237], Islam et al. [238], Widodo et al. [211], Zhang et 

al. [239], and Zhu et al. [219] 

OAO-based SVM 

 Sugumaran et al. [192, 195], Wang et al. [196], Dong et al. [197], Zhang et al. 

[201], Li et al. [177-179], Xu et al. [186], Zheng et al. [202], and Chen et al. 

[206] 

Varieties of SVM 

 Jack et al. [208, 209], Samanta et al. [215], Rojas et al. [210], Widodo et al. 

[211], Li et al. [223], Zhang et al. [239], Chen et al. [206], Zhu et al. [219], 

Dong et al. [221], HungLinh et al. [230], Kang et al. [216], Su et al. [220], Zhu 

et al. [217], and Li et al. [222] 

SVM with 

optimization 

algorithm 

Gears Liu et al. [240], and Li et al. [241] OAA-based SVM 

 Lu et al. [242], Cheng et al. [243], Xing et al. [244], Liu et al. [245], Shen et 

al. [246], Jiang et al. [188], Heidari et al. [198], and Bordoloi et al. [247] 

OAO-based SVM 

 Saravanan et al. [193], Shen et al. [246], Tang et al. [182], Jiang et al. [188], 

Yang et al. [180], Heidari et al. [189, 198], Jiang et al. [190], Li et al. [63, 181, 

187], and Chen et al. [200] 

Varieties of SVM 

 Samanta et al. [218], Li et al. [212], Chen et al. [200], Bordoloi et al. [247], SVM with 
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and Zhang et al. [248] optimization 

algorithm 

Motors Widodo et al. [213, 249], Ebrahimi et al. [250], Shahriar et al. [251], Kang et 

al. [252], Singh et al. [64], and Ebrahimi et al. [203] 

OAA-based SVM 

 Kurek et al. [253], Gangsar et al. [254-256], Sun et al. [257], Martinez-

Morales et al. [258], Keskes et al. [199], and Widodo et al. [214] 

OAO-based SVM 

 Tsoumas et al. [259], Bacha et al. [174], Salem et al. [184], Kang et al. [183], 

Keskes et al. [176, 199], Ebrahimi et al. [203], and Zgarni et al. [175] 

Varieties of SVM 

 Widodo et al. [213, 214] Optimization 

Engines Li et al. [260], and Zhang et al. [51] OAA-based SVM 

 Lee et al. [261], Wang et al. [262], Liu et al. [207], and Jafarian et al. [263] OAO-based SVM 

 Vong et al. [191], Jena et al. [264], Liu et al. [207], Cai et al. [185], and Li et 

al. [205] 

Varieties of SVM 

 Li et al. [205] SVM with 

Optimization 

algorithm 

Others Namdari et al. [265], and Jegadeeshwaran et al. [169] OAA-based SVM 

 Rapur et al. [170, 171], Pang et al. [163], Hang et al. [204], Tang et al. [167], 

and Zhang et al. [168] 

OAO-based SVM 

 Chiang et al. [194], Yuan et al. [166], and Jin et al. [165], Tang et al. [182], 

Wang et al. [164], Hang et al. [204] 

Varieties of SVM 

 Tang et al. [167], and Zhang et al. [168] SVM with 

optimization 
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algorithm 
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Table 3 Summary of the applications of CNN to machine fault diagnosis 1 

Architectures Input data References 

2D CNN Time-frequency 

spectrum 

Ding et al. [370], Sun et al. [374], Verstraete et al. [401], Guo et al. [402], 

Han et al. [371], Xin et al. [403], Guo et al. [372, 373], Cao et al. [375], Chen 

et al. [404], Han et al. [405], Islam et al. [369], Zhao et al. [376], and Zhu et 

al. [406] 

 Reshaped 

matrix 

Jiang et al. [407], Li et al. [377], Liu et al. [378], Lu et al. [379], Wang et al. 

[381], Xia et al. [382], and Wang et al. [380] 

 Images Janssens et al. [386], Wen et al. [383], Yuan et al. [385], Zhou et al. [384], 

and Suh et al. [408] 

1D CNN Raw data or 

frequency 

spectrum 

Ince et al. [399], Yan et al. [400], Eren et al. [387, 389], Jing et al. [392, 394], 

Appana et al. [391], Chen et al. [388], Jia et al. [390], Jiao et al. [393], Yao et 

al. [396], Han et al. [395], Huang et al. [409], Jiang et al. [398], and Li et al. 

[397] 

  2 
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Table 4 Categories of transfer scenarios in machine fault diagnosis. 1 

Transfer scenarios Assumptions Factors leading to transfer scenarios 

Source domain Target domain 

Data collected from 

the identical machine 

(TIM) 

Available labels  Minority of labels 

 Unavailable labels 

 Varying speed 

 Varying load 

 Various working environments 

Data collected from 

different machines 

(TDM) 

Available labels  Minority of labels 

 Unavailable labels 

 Different machine specifications 

 Diverse structures 

 Different measurement environments 

 Different working environments 
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Table 5 Summary of applications of transfer learning to machine fault diagnosis. 1 

Approaches References Transfer scenarios Methodologies 

TIM TDM 

Feature-based Chen et al. [418], Xie et al. [419], and 

Tong et al. [420, 421] 

√  TCA and JDA 

 Zhang et al. [416, 422], Qian et al. [423], 

and Peng et al. [414] 

√  Deep learning and 

AdaBN 

 Lu et al. [424], Wen et al. [425], Li et al. 

[426], Zhang et al. [427], Wang et al. 

[428], Qian et al. [429], Wang et al. [430] 

Yang et al. [26, 417, 443], and Xu et al. 

[431] 

√ √ Deep transfer learning 

 Wang et al. [432], Zhang et al. [433], and 

Zheng et al. [434] 

√ √ Transfer factor analysis, 

and subspace alignment 

GAN-based Xie et al. [435], Li et al. [436], Han et al. 

[437], and Guo et al. [35] 

√ √ GAN and MMD 

Instance-based Shen et al. [36] √  TrAdaBoost 

Parameter-based Zhang et al. [438], Hasan et al. [37], Cao 

et al. [439], and Shao et al. [440] 

√  Deep learning and fine 

tuning 
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 1 

Fig. 1. Development and milestones of IFD using machine learning. 2 
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 1 

Fig. 2. Diagnosis process of IFD using traditional machine learning theories. 2 
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 1 

Fig. 3. Architecture of expert system-based diagnosis models. 2 
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 1 

Fig. 4. Architecture of BPNN with two hidden layers. 2 
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 1 

Fig. 5. Classification by the linear SVM. 2 
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Fig. 6. Illustration of the kNN algorithm. 2 
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 1 

Fig. 7. Illustration of PGM: (a) Bayesian classifier, and (b) hidden Markov model. 2 

  3 



Page 127 
 

 1 

Fig. 8. Illustration of the decision tree. 2 
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Fig. 9. Diagnosis process of IFD using deep learning theories. 2 
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 1 

Fig. 10. Architecture of AE. 2 
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 1 

Fig. 11. Greedy layer-wise pre-training for stacked AE. 2 
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 1 

Fig. 12. Architecture of RBM. 2 
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 1 

Fig. 13. Convolution and pooling process: (a) Convolution process by using the kernel 𝒌𝒌𝑐𝑐 ∈ ℜ2×1×1, and (b) 2 

pooling process by using the filter 𝒔𝒔2×2. 3 
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 1 

Fig. 14. Architecture of the residual block. 2 
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 1 

Fig. 15. Steps of feature-based transfer learning approaches [26]. 2 
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 1 

Fig. 16. Illustration of the TrAdaboost algorithm: (a) directly train the diagnosis models with the source and target 2 

domain samples, and (b) train the diagnosis models by using TrAdaboost algorithm. 3 
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 1 

Fig. 17. Roadmap of applications of machine learning to machine fault diagnosis. 2 
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