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Abstract

Prior literature indicates that quadratic models and the Black-Karasinki
model are very promising for CDS pricing. This paper extends these mod-
els and the Black (1995) model for pricing sovereign CDS�s. For all
ten sovereigns in the sample quadratic models best �t CDS spreads in-
sample, and a four factor quadratic model can account for the joint
e¤ects on CDS spreads of default risk, default loss risk and liquid-
ity risk with no restriction to factors correlation. Liquidity risk
appears to a¤ect sovereign CDS spreads. However quadratic
models tend to over-�t some CDS maturities at the expense of
other maturities, while the BK model is particularly immune
from this tendency. The Black model seems preferable because
its out-of-sample performance in the time series dimension is
the best.

Key words: sovereign CDS pricing, discrete time quadratic model,
Black model, Black-Karasinski model, method of lines, Extended Kalman
Filter.

JEL classi�cation: G12; G13.

1 Introduction

As the CDS market has grown, a number of reduced form CDS pricing models
have been proposed and tested. These models have been extended to multiple
factors driving default intensities, to jumps in default intensities, to stochastic
recovery rates after default and also to stochastic liquidity risk of CDS contracts.
All the while default and liquidity intensities have been modelled mainly through
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Feller processes, which are tractable, but also through quadratic Gaussian mod-
els and Black-Karasinski models, which seem particularly promising and a step
beyond Feller processes. However past literature has focused on some-
what restrictive speci�cations of the quadratic and Black-Karasinski
models, namely quadratic models that do not accommodate liquid-
ity risk or single factor versions of the Black-Karasinski model with
constant recovery rates.
Other potentially interesting but relatively unexplored models for

CDS pricing are extensions of the Black (1995) shadow rate model,
with its ability to rule out negative default intensities in the same way
as it rules out negative interest rates. The Black model has gained
acceptance among interest rate term structure models, but not yet
among credit risk pricing models. Then the value of extensions of
the Black model for credit risk pricing seems an obvious question to
address.
Not only quadratic, Black-Karasinki and Black models all seem

promising for CDS pricing and could be further developed, but guid-
ance is missing about their relative merits and comparative weak-
nesses. Therefore this paper addresses these issues by extending,
testing and "racing" quadratic, Black-Karasinski and Black models
for the purpose of sovereign CDS pricing. The focus on sovereign
CDS�s is due to the very size and economic relevance of the sovereign
CDS market, and to the attention it has received by the academic
literature.
All the said models have the common feature that the default in-

tensity and the default loss are non-linear non-negative functions of Gaussian
factors. For quadratic models the default intensity and default loss are respec-
tively quadratic and exponential quadratic in the Gaussian factors. For the
Black-Karasinski model the default intensity and default loss are exponential
in the Gaussian factors. For the Black (1995) model the default intensity and
default loss are respectively powers and exponential powers of Gaussian
factors with zero lower bounds.
This "race" of models excludes Feller processes, since such processes require

undesirable restrictions to the correlation between the factors driving CDS pric-
ing, such as independent Wiener processes. For example the factors driving the
default intensity and the default loss need to have no instantaneous the cor-
relation. Another problem is that Feller processes cannot be negative, which
requires some "trick" to keep Feller processes from turning negative during
Kalman Filter or maximum likelihood estimation. Instead CDS pricing based
on Gaussian factors does not su¤er from these problems of Feller processes.
Moreover Pan and Singleton (2008) concluded that a Black-Karasinski model
is preferable to an a¢ ne model based on the Feller process for sovereign CDS
pricing.
The empirical evidence in this study shows that "in-sample" Black-

Karasinski, Black and quadratic models all �t sovereign CDS spreads
quite well, with a four factor quadratic model best �tting CDS spreads
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for each of the ten countries in the sample. However "out-of-sample"
each of these models displays distinctive strengths and weaknesses.
Quadratic models have a marked tendency to over-�t some CDS

spread maturities at the expense of other maturities. This tendency
is weaker for the Black model. On the contrary the main strength of
the BK model is that it is largely immune from this tendency. The
Black model displays the best out-of-sample performance in the time
series dimension, even superior to that of a quadratic model with
liquidity risk that employs more parameters than the Black model.
For these reasons the Black model seems the best compromise.
The empirical evidence also shows that liquidity risk a¤ects sov-

ereign CDS spreads jointly with default risk and default loss risk,
thus con�rming previous studies that separately detected the e¤ects
of default loss risk and liquidity risk on CDS spreads. Even when all
these risks are correlated, quadratic models have convenient closed
form solutions for CDS valuation, while the BK and Black models re-
quire numerical solutions that become almost prohibitive when more
than two of the risk factors are correlated. This computational chal-
lenge also a icts a¢ ne models based on correlated Feller processes.
However, the correlation between more than two of the risk factors
does not seem of primary importance for out-of-sample model perfor-
mance. Finally the non-monotonic relationship between latent factors
and CDS spreads in quadratic models makes it more di¢ cult to give
an economic interpretation to factors correlation parameters and to
factors drift parameters.
The paper is organised as follows. The next section reviews the most rele-

vant literature. The next two sections present the theoretical pricing models.
Another section illustrates the empirical performance of the models. The con-
clusions follow. The Appendixes complete the paper.

2 Literature

The literature on CDS pricing has grown to such an extent that it cannot be
here summarised. Pan and Singleton (2008) "race" a set of one factor sovereign
CDS pricing models comprising an a¢ ne model and a Black-Karasinski model.
Thereafter most CDS pricing models assume that one or more Feller processes
drive the credit risk and liquidity risk of CDS contracts, as in Schneider, Soeg-
ner, Veza (2010), in Zinna (2013) or in Badaoui, Cathcart and El-Jahel (2013,
2015). Zinna (2013) provides evidence of sovereign default risk premia and
their considerable variation and predictability. Badaoui, Cathcart and El-Jahel
(2013) show that a large fraction of sovereign CDS spreads compensate liquidity
risk rather than credit risk. Badaoui, Cathcart and El-Jahel (2015) study the
link between liquidity premia driving sovereign CDS spreads and the underlying
sovereign bonds yield spreads.
However other CDS pricing models assume that default intensities follow
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quadratic Gaussian processes, as in Chen, Cheng, Fabozzi, Liu (2008), in Doshi,
Ericsson, Jacobs and Turnbull (2013), in Elkamhi, Jacobs and Pan (2014), or
Black-Karasinski processes as in Rubia, Sanchis-Marco, Serrano (2016). It is to
this second strand of literature that this paper contributes. In particular this
paper tests variants of discrete time quadratic models for CDS pricing, �rst pro-
posed by Realdon (2006), later extended by Doshi (2011) who accommodated
stochastic bond recovery value, and later applied also by Elkamhi, Jacobs and
Pan (2014) for corporate CDS pricing. Also Doshi, Ericsson, Jacobs and Turn-
bull (2013) use a somewhat similar discrete time quadratic model for pricing
corporate CDS�s with �rm leverage and stock volatility as driving factors.
A feature of this paper is to compute the Black and Black-Karasinski CDS

pricing models through the vertical method of lines (MOL). MOL is based on
exponential time integration, according to which partial di¤erential equations
are only discretised in space, but not in time. Vertical MOL was proposed in
�nance by Khaliq, Voss and Yousuf (2007) to value exotic options with L-stable
Pade�schemes. Vertical MOL proves particularly suitable for pricing problems
involving default intensities. Apart from the �nite di¤erence approach of Pan
and Singleton (2008), other recent papers employ radial basis functions (RBF) to
solve partial di¤erential equations for CDS pricing. Guarin, Liu and Ng (2011)
use RBF to price CDS�s with two stochastic factors driving default intensities.
Guarin, Liu and Ng (2014) use RBF to price CDS�s and even to solve multi-
dimensional Fokker-Planck equations of a new non-linear �lter for the latent
factors. RBF are promising, but unreported computations with MOL proved
faster than with RBF, therefore the present paper uses vertical MOL rather than
RBF to solve partial di¤erential equations and compute CDS spreads according
to the Black and Black-Karasinski models.
In recent years Badaoui, Cathcart and El-Jahel (2013, 2015) among others

proposed a¢ ne models based on Feller processes that account for liquidity risk
and show that liquidity risk does a¤ect sovereign CDS spreads. The common
feature of CDS pricing models that have incorporated liquidity risk is that liq-
uidity risk a¤ects the values of the two legs of the CDS in an asymmetric way,
meaning that liquidity risk alters the ratio between the value of the protection
leg and the value of the fee leg of the CDS. According to Lovreta (2016) CDS
spreads increase in periods of strong demand for default protection against lim-
ited supply of default protection, as protection sellers charge higher CDS spreads
because it becomes more di¢ cult to o¤set the taken position. Thus higher CDS
spreads re�ect liquidity risk premia due to limited supply from protection sellers.
Also Rubia, Sanchis-Marco and Serrano (2016), who study the pricing errors of
a Black-Karasinski CDS pricing model that only takes default risk into account,
attribute much of the pricing errors to liquidity risk factors. The present paper
too studies CDS liquidity risk, but in the context of quadratic models.
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3 The Black-Karasinski (BK) and the BlackMod-
els for CDS pricing

This section presents the extended versions of the Black-Karasinksi model and
of the Black (1995) model to be tested later on CDS spreads. At time t the
sovereign default intensity is �Qt under the risk-neutral measure Q. The expected
value of the recovery value at time t of the bond defaulted at the same time t is
RQt still under the risk-neutral measure Q. R

Q
t is a kind of average of possible

recovery values at time t of the bond just after default at time t, where the
said average is taken under the measure Q. RQt is time varying. R

Q
t would be

lower than average historical recovery rates under the real measure, however
sovereign defaults are such rare events that historical recovery rates may be
of little guidance. The bond actual recovery value is the market price of the
bond immediately after default divided by the face value of the bond. The
sovereign default event may be debt maturity acceleration, failure to pay, debt
restructuring or debt repudiation. In the Black model to be tested, �Qt is a
function of the time t value of the two latent factors x1;t and x2;t so that

�Qt = max (x1;t; 0)
q1 +max (x2;t; 0)

q2 : (1)

q1 and q2 are parameters to be estimated. The Black (1995) model for pricing
default-free bonds assumes rt = max (x1;t; 0), where rt is the instantaneous
short interest rate at time t, hence the similarity with the model studied here.
We assume that

RQt = 1� e�max(x3;t;0)
2

where x3;t is a third factor independent of x1;t and x2;t. This speci�cation for
RQt will later �t CDS spreads well. In what follows we refer to the amount
1 � RQt as to the "default loss". Given a �ltered probability space with the
usual properties, we assume

dx1;t = (p � x2;t + �1 � (�1 � x1;t)) � dt+ �1 � dwQ1;t
dx2;t = �2 � (�2 � x2;t) � dt+ �2 � dwQ2;t
dx3;t = �3 � (�3 � x3;t) � dt+ �3 � dwQ3;t:

dxi;t for i = 1; 2; 3 is the stochastic di¤erential of the factor xi and dw
Q
i;t the

stochastic di¤erential of a Wiener process in the risk-neutral measure Q over the
in�nitesimal time interval [t; t+ dt]; �i; �i; �i and p are all constant parameters.
We assume that

dwQ1;tdw
Q
2;t = dt � �12; dw

Q
1;tdw

Q
3;t = dw

Q
2;tdw

Q
3;t = 0:

Therefore the Wiener processes are not correlated except for dwQ1;tdw
Q
2;t = �12�dt,

while �12; �1; �1; �1; �2; �2; �2; �3; �3; �3; p are all parameters. p links the drift
of x1;t to x2;t. Therefore even when � = 0, x1 and x2 are not unconditionally
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independent. All parameters are identi�able in estimation. Equation 1 implies
that �Qt cannot turn negative and CDS rates for maturities longer than the
instantaneous maturity are guaranteed to be positive, even when x1;t and x2;t
are both negative. This paper also tests an extension of the Black-Karasinski
model whereby, all other things as in the Black model,

�Qt = exp (x1;t) + exp (x2;t)

RQt = 1� e� exp(x3;t):

3.1 Processes in the real measure

We also assume that in the physical probability measure

dx1;t = (p
� � x2;t + ��1 � (��1 � x1;t)) � dt+ �1 � dw�1;t

dx2;t = �
�
2 � (��2 � x2;t) � dt+ �2 � dw�2;t

dx3;t = �
�
3 � (��3 � x3;t) � dt+ �3 � dw�3;t

dw�1;t � dw�2;t = �12 � dt; dw�1;t � dw�3;t = dw�2;t � dw�3;t = 0:

dw�1;t; dw
�
2;t; dw

�
3;t are di¤erentials of Wiener processes in the physical probability

measure. The superscript "�" indicates parameters and variables under the real
probability measure. Let t = 1; 2::;M , denote the set of M dates on which we
observe CDS spreads. x1;t; x2;t; x3;t denote the values of the three latent factors
on day t. � is the time between consecutive observations and is approximately
equal to one divided by the number trading days in one year. Therefore � = 1

260
since we observe about 260 daily prices per year in the data. Then, with little
loss in accuracy, in the empirical tests we approximate the above stochastic
di¤erential equations using the Euler discretisation, so that the approximate
physical conditional transition density of xt�� = (x1;t��; x2;t��; x3;t��)

0 given
x(t�1)�� =

�
x1;(t�1)��; x2;(t�1)��; x3;(t�1)��

�0
, which we denote as l (xt j xt�1),

is

l (xt j xt�1) s N
�
� + (I3 � �)xt�1;��0

�
(2)

� =

0@ ��1 �p� 0
0 ��2 0
0 0 ��3

1A ��, � =
0@ ��1 � ��1
��2 � ��2
��3 � ��3

1A ��,
� =

0B@ �1 0 0

�12 � �2
p
1� �212 � �2 0

�13 � �3
�32��12��13p

1��212
� �3

q
1� �213 �

(�32��12��13)2
1��212

� �3

1CAp�
with �13 = �32 = 0. N

�
� + (I3 � �)xt�1;��0

�
is the multivariate normal

density with mean �+(I3 � �)xt�1 and covariance ��0. I3 is the 3�3 identity
matrix.
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3.2 The pricing equation

The Black and BK models are solved through the vertical method of lines pre-
sented in Khaliq, Voss and Yousuf (2007) and Realdon (2016). An Appendix
describes the MOL scheme, which unreported simulations showed to be prefer-
able to the implicit �nite di¤erence method and to be quicker then radial basis
functions in order to price CDS�s.
Let D denote the value at time t of a claim that pays 1 � RQT at time T

provided the underlying bond does not default before T and that pays noth-
ing otherwise. V denotes the value at time t of a defaultable discount bond
with maturity at time T , no recovery in case of default and face value 1.
Z = exp (�r � (T � t)) is the time time t value of a default-free bond with
maturity T and face value 1. r is the instantaneous default-free interest rate,
assumed constant over time. This simplifying assumption entails hardly any loss
in CDS pricing accuracy and does not a¤ect our conclusions about the relative
performance of the CDS models in the "race". Absent arbitrage and dropping
unnecessary time subscripts, from the above assumptions we obtain the pricing
equation

D = Z � V � U (3)

@V

@�
=
@2V

@x21

1

2
�21 +

@2V

@x1@x2
�12�1�2 +

@2V

@x22

1

2
�22 +

@V

@x1
(px2 + �1 (�1 � x1)) +

@V

@x2
�2 (�2 � x2)� V � �Qt = 0

(4)

lim
x1!�1

@2V

@x21
! 0; lim

x1!1

@2V

@x21
! 0; lim

x2!�1

@2V

@x22
! 0; lim

x2!1

@2V

@x22
! 0; V (� = 0) = 1

(5)

@U

@�
=
@2U

@x23

1

2
�23 +

@U

@x3
�3 (�3 � x3) = 0 (6)

lim
x3!�1

@2U

@x23
! 0; lim

x3!1

@2U

@x23
! 0; U (� = 0) = 1�RQT : (7)

� = T � t, V is a function of x1, x2 and � . U is a function of x3 and � .
V (� = 0) = 1; U (� = 0) = 1 � RQT are the values of V and U when � = 0,
i.e. when t = T . V tends to be linear in the factors x1; x2 as these factors tend
to plus in�nity, in which case V tends to 0, or as the factors tend to minus
in�nity, in which case V tends to 1. Similarly U tends to be linear in the factor
x3 as this factor tends to plus in�nity, in which case U tends to 0, or as x3
tends to minus in�nity, in which case U tends to 1. The assumption that x3 is
independent of x1 and x2 is needed to greatly simplify the numerical solution for
D, and it is a restriction of the Black and BK models that is not needed by the
quadratic models presented below. In the empirical part the partial di¤erential
equations for V and U are each solved through the vertical method of lines
(MOL) illustrated in the Appendix.
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3.3 Calculation of CDS spreads

Rede�ne with Zk;t = e��� �k�r the price at time t of a default-free discount bond
with k time periods to maturity; each time period is of length �� , thus the
discount bond matures at time t + k � �� . Also rede�ne with Vk;t the time t
value of a defaultable discount bond with k periods to maturity, which becomes
worthless in case of default.
Let t� denote the time of default. If t < t� � t + �� we assume that the

defaulted coupon bond is worth RQt+�� at time t+ �� . Similarly the protection-
leg of a CDS written on the coupon bond makes a payment worth 1�RQt+k at
t+k ��� if t+(k � 1) ��� < t� � (t+ k � ��) with 0 � RQt+k � 1 for k = 1; 2; ::;N.
t+N��� is the time of the last payment of the CDS protection fee and the time
when the CDS terminates.
Rede�ne Dk;t as the value at time t of a defaultable claim that pays 1�RQt+k

at t + k � �� if t� > t + k � �� . Let D�
k;t be the value at time t of a defaultable

claim that pays 1 � RQt+k at t + k � �� if t� > t + (k � 1) � �� . Then the time t
value of the CDS protection leg isPN

k=1 Zk;t �
�
D�
k;t �Dk;t

�
: (8)

As �� ! 0 expression 8 becomes the "recovery of face" assumption, according
to which the defaulted bond is worth RQt� at the exact time of default t

�. CDS
fees are typically paid quarterly and in arrears, with a partial fee payment in
case default occurs in between fee payment dates. We can approximate these
contractual provisions by assuming that CDS fees, each equal to CDSt � �� , are
paid at the times t+ k � �� with k = 1; 2; ::;N. CDSt is the time t CDS spread
for maturity N��� such that

CDSt =

PN
k=1 Zk;t �

�
D�
k;t �Dk;t

�
PN

k=1 �� � Zk;t � Vk;t
:

In the empirical tests we set �� = 1
26 , which approximates the fact that a partial

fee payment is due in case default occurs in between fee payment dates and also
approximates the fact that the CDS pays o¤ soon after default. The time step
�� = 1

26 is also used for solving the BK and Black models through vertical MOL,
as explained in the Appendix, and such time step size proved quite accurate.
Vk;t, D�

k;t and Dk;t will be calculated according to the BK and Black models
above.

4 Discrete time quadratic model for CDS pric-
ing

This section illustrates the discrete time quadratic CDS pricing model to be
tested later. In discrete time the model requires fewer parameter constraints
than in continuous time as explained below. For the quadratic models we set
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each time step equal to � = 1
260 , not �� =

1
26 as for solving the BK and Black

models. The shorter time step � = 1
260 makes discrete time quadratic models

approximate continuous time quadratic models, so that the comparison with
continuous time BK and Black models becomes more meaningful.
For the quadratic model we rede�ne V qn;t as the time t value of a defaultable

discount bond with n trading days to maturity, so that the bond matures at
t + n � �; such discount bond becomes worthless in case of default and is not
perfectly liquid, meaning that the bond holder may have to sell the bond at some
discount in order to be able to �nd a willing buyer at all times. Sometimes the
liquidity discount may become a premium when there is strong demand for that
bond, for example if the bond is a "special" bond for repo contracts. In such
cases holding the bond gives a "convenience yield" to the bond holder similar
to the "convenience yield" for holding a commodity. This liquidity discount or
premium will later determine how CDS liquidity risk a¤ects CDS spreads.
Let �Qt be the default intensity for one trading day, i.e. for the period

(t; t+�], under the risk-neutral pricing measure Q. Let lQt be the liquidity risk
intensity for the same trading day under Q. Again r is the continuously com-
pounded default-free interest rate for the same trading day. The no-arbitrage
risk-neutral valuation equation for V qn;t is

V qn;t = E
Q
t

h
e���(r+l

Q
t+�

Q
t ) � V qn�1;t+1

i
(9)

where EQt [::] denotes expectation under the risk-neutral measure Q conditional
on time t information. We further assume that

lQt + �
Q
t = �

0xt + x
0
t	xt (10)

xt = (x1;t; ::; xm;t)
0 (11)

xt+1 � xt = � (� � xt) +��Qt+1 (12)

xt+1 � xt = �� (�� � xt) +��t+1 (13)

�Qt+1 v N (0m�1; Im) (14)

�t+1 v N (0m�1; Im) (15)

� = S
p
� (16)

� = � � �; � = � � �� (17)

V qn;t = exp (An +B
0
nxt + x

0
tCnxt) : (18)

xt;�;�;�
�; �Qt+1; �t+1;Bn are m�1 vectors. 	;�;�

�;�;��;Cn;�;S are m�m
matrices. An; A0 are scalars. �,��,�,��,�,��,�, S are parameters. The
processes for x are speci�ed under both the real measure and the risk-neutral
measure Q. x follows a �rst order Gaussian auto-regressive process. The
time t conditional covariance matrix of (xt+1 � xt) is EQt

�
xt+1 � x0t+1

�
= ��0.

�Qt =
�
"Q1;t+1; ::; "

Q
m;t

�0
and �t+1 = ("1;t+1; ::; "m;t+1)

0. "1;t+1; ::; "m;t+1 and

"Q1;t+1; ::; "
Q
m;t+1 are scalar Gaussian random shocks respectively in the real and
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risk-neutral measures. N (0m�1; Im) denotes the multivariate normal density
with mean 0m�1 and covariance matrix Im. 0m�1 is a m � 1 vector of zeros.
Im is the m � m identity matrix. Under these assumptions Realdon (2006)
showed that

An = ��rt +An�1+B0n�1��+(��)
0
Cn�1��+ ln

jj
abs j�j+

1

2
Gn�1

0G0
n�1

(19)

B0n = ���0+B0n�1 (I3 � �)+2 (��)
0
Cn�1 (I3 � �)+2�Gn�1

0Cn�1 (I3 � �)
(20)

Cn = ��	+ (I3 � �)0Cn�1 (I3 � �) + 2 � (I3 � �)0Cn�10C0n�1 (I3 � �)
(21)

s:t: : A0 = 0; B0 = 0m�1; C0 = 0m�m

where 0m�m is an m�m square matrix of zeros, Gn�1 = B
0
n�1+2 (��)

0
Cn�1

and  =
��
��0

��1 � 2Cn�1��1=2.
Above we de�ned Dk;t and here we de�ne D

q
n;t is a similar way for the

quadratic model with time step � = 1
260 rather than �� =

1
26 . Then D

q
n;t is

the value at time t of a defaultable claim that pays 1�RQt+n at time t+�n if
t� > t + �n, where RQt+n is again the expected value of recovery value of the

defaulted bond. For the quadratic model we set 1� RQt+n = D
q
0;t+n = e

�x24;t+n

which we refer to as the (expected) default loss. It can be shown that the absence
of arbitrage implies

Dq
n;t = E

Q
t

h
e���(rt+�

Q
t ) �Dq

n�1;t+1

i
= exp

�
ADn +B

D0
n xt + x

0
tC

D
n xt

�
s:t: : AD0 = 0; B

D
n = 0m�1; C

D
0 =

0BB@
0 0 :: 0
0 0 :: 0
:: :: :: ::
0 0 :: �1

1CCA

ADn = ��rt+ADn�1+BD0n�1��+(��)
0
CDn�1��+ ln

jj
abs j�j+

1

2
GD
n�1

DD0GD0
n�1

BD0n = BD0n�1 (I3 � �) + 2 (��)
0
CDn�1 (I3 � �) + 2 �GD

n�1
DD0CDn�1 (I3 � �)

CDn = ��	D+(I3 � �)0CDn�1 (I3 � �)+2�(I3 � �)
0
CDn�1

DD0CD0n�1 (I3 � �)
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withGD
n�1 = B

D0
n�1+2 (��)

0
CDn�1 and 

D =
��
��0

��1 � 2CDn�1��1=2. ADn ;BD0n ;CDn
satisfy the same equations as An;B0n;Cn with � = 0m�1, with 	D replacing
	 and with CD0 set equal to an m�m matrix whose entries are all equal to 0
except for the entry in the m-th row and m-th column which is �1. 	D and 	
are de�ned below and vary with the model speci�cations. Given Dq

n;t and V
q
n;t,

for quadratic models we compute CDS spreads as

CDSt =

PN
k=1D

q
(k�1)�10;t �D

q
k�10;tPN

k=1 �� � V
q
k�10;t

:

Since �� = 10��,Dq
n=k�10;t corresponds toDk;t and V

q
n=k�10;t corresponds to Vk;t.

The value of the default protection leg is approximated as
PN

k=1D
q
(k�1)�10;t �

Dq
k�10;t with little loss in accuracy.
Liquidity risk has been incorporated in CDS pricing models in various ways,

in some cases by adjusting the CDS protection leg, as in Badaoui, Cathcart
and El-Jahel (2013), in other cases by adjusting both the protection leg and
the fee leg, as in Badaoui, Cathcart and El-Jahel (2015). However the common
feature of CDS pricing models that incorporate liquidity risk is that liquidity
risk a¤ects the two legs of the CDS in an asymmetric way, meaning that liquidity
risk alters the ratio between the values of the two legs. This is the case also in
the model presented here, since Dq

n;t and the CDS protection leg are una¤ected
by the CDS liquidity intensity, while V qn;t and the fee leg of the CDS are. The
stochastic default loss of the protection leg can account for the fact that bond
illiquidity may a¤ect the stochastic recovery value of the defaulted bond.

4.1 Quadratic models Q4, Q3

The empirical tests consider three and four factor quadratic models whereby
� = S �

p
� with

S =

0BBBBBB@

�1 0 0 0

�21 � �2
p
1� �221 � �2 0 0

�31 � �3
�32��12��31p

1��221
� �3

q
1� �231 �

(�32��21��31)2
1��221

� �3 0

�41 � �4
�42��21��41p

1��221
� �4 K � �4

s
1� �214 �

�
�42��12��14p

1��212

�2
�K2 � �4

1CCCCCCA
K =

�43 � �31�41 �
(�32��21��31)(�42��21��41)

1��221q
1� �231 �

(�32��21��31)2
1��221

:

�21 is the conditional correlation between x2;t+1 and x1;t+1, and �31; �32; �41; �42; �43
have similar meaning, while �1; �2; �3; �4 are volatility parameters.
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For quadratic models, but not for Black and BK models, we consider also
CDS liquidity risk and its impact on CDS spreads. We test model Q4, a
quadratic model where m = 4, lQt = x1;t, �

Q
t = x

2
2;t + x

2
3;t so that

	 =

0BB@
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1CCA ; 	D =

0BB@
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1CCA ; 1�RQt+n = e�x24;t+n ; �0 = (1; 0; 0; 0)
0BB@
x1;t+1
x2;t+1
x3;t+1
x4;t+1

1CCA =

0BB@
x1;t
x2;t
x3;t
x4;t

1CCA+
0BB@
�1 0 0 0
0 �2 0 0
0 �3 �3 0
0 0 0 �4

1CCA
0BB@
0BB@
�1
0
�3
�4

1CCA�
0BB@
x1;t
x2;t
x3;t
x4;t

1CCA
1CCA ��+ S �

0BBB@
"Q1;t+1
"Q2;t+1
"Q3;t+1
"Q4;t+1

1CCCAp�

� =

0BB@
�1
0
�3
�4

1CCA ; �� =
0BB@
��1
0
��3
��4

1CCA ; � =
0BB@
�1 0 0 0
0 �2 0 0
0 �3 �3 0
0 0 0 �4

1CCA ; ��=
0BB@
��1 0 0 0
0 ��2 0 0
0 ��3 ��3 0
0 0 0 ��4

1CCA :
In Q4 the one factor x1 driving the liquidity intensity l

Q
t can be positive or

negative and has non-zero drift, unlike in Badaoui, Cathcart and El-
Jahel (2013) who assume no drift for factors driving liquidity risk.
In model Q3 lQt = 0 and �Qt = x22;t + x

2
3;t, 1 � R

Q
t+n = e�x

2
4;t+n . Therefore

Q3 is the same as Q4 except for �0 = (0; 0; 0; 0), so that in Q3 the fee leg of the
swap is not a¤ected by the liquidity intensity. Q3 is a restricted version of
Q4 whereby �1 = �1 = ��1 = x1;0 = 0. Comparing Q4 with Q3 identi�es
the impact of the liquidity intensity on CDS spreads.
As in Badaoui, Cathcart and El-Jahel (2013), in Q4 the liquidity

intensity a¤ecting the CDS fee leg may be positive or negative. In-
stead the analysis in Lovreta (2016) suggests that the liquidity intensity should
be positive so as to increase CDS spreads. The reason is that demand from
protection buyers may at times exceed supply from protection sellers, making it
expensive for protection sellers to close out their position through an o¤setting
trade. Also Badaoui, Cathcart and El-Jahel (2015) assume that the liquidity
intensity be non-negative. However, if in Q4 we impose that lQt = x21;t
so that the liquidity intensity cannot turn negative, all other things
equal, the empirical perfomance of model Q4 tends to be slightly
worse than when lQt = x1;t, therefore the focus of this paper is on this
latter speci�cation.
Badaoui, Cathcart and El-Jahel (2015) also state that one factor

may su¢ ce to model liquidity risk in sovereign CDS pricing. Their
conclusion is based on a principal component analysis of CDS spread
variations. Unreported results show that a four factor quadratic
model with two factors driving the liquidity intensity still does not in
general beat model Q4.
As the stochastic factors are latent, parameter identi�cation restrictions are
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needed for estimation purposes. The above quadratic models are similar to the
quadratic model canonical form in continuous time of Ahn, Dittmar and Gallant
(2002), hereafter referred to as ADG, which ensures that parameters are iden-
ti�able. The ADG speci�cation for the default intensity would be �Qt = x

0
t	xt

with ����0, ������0, S diagonal (triangular) and �;�� triangular (diagonal).
According to ADG only one of the S and � matrixes is triangular, while the
other one is diagonal. Instead in the above quadratic models both S and � are
triangular at the same time. The reason is that in discrete time the conditional
covariance of xt+1, i.e. E

Q
t

�
xt+1 � x0t+1

�
= ��0, does not depend on �, unlike

in continuous time. This entails that in discrete time model parameters remain
identi�able even when both � and � are triangular.

5 Empirical results

This section reports the empirical tests of the CDS models illustrated above.

5.1 The sample and the models

The data consists of daily sovereign CDS spread observations provided by Bloomberg.
The daily quotes cover the periods and the sovereigns in Table 1, namely Brazil,
Colombia, Hungary, Peru, Poland, Romania, Russia, South Africa, Turkey,
Venezuela. For example, Brazil CDS spreads span the period from 14/3/2006
to 4/10/2013, which corresponds to 1968 trading days. For each country Table
1 reports the number of trading days. For all countries there are around 260
trading days per year. For each country the analysis hereunder uses CDS
spreads of the one, two, three, �ve, seven and ten year maturities. The four
year maturity is discarded because it often displays stale prices. CDS spreads
are computed as the mid point between the bid and the ask quotes. For each
country and CDS maturity Table 1 reports the minimum, maximum, mean and
standard deviation of CDS spreads for all maturities.

[Table 1 about here]

The two year maturity for Hungary displays short episodes of stale prices as
does the one year maturity for Peru, which explains the relatively poor perfor-
mance of all models for these two CDS maturities.
The sample of CDS spreads is split in two alternative ways. The

�rst split uses all observed CDS spreads for "in-sample" estimation
except for those of the last 400 trading days, which are used for "out-
of-sample" testing. The second split uses all observed CDS spreads,
even those of the last 400 trading days, for "in-sample" estimation
except for the one year, two year and three year CDS spreads, which
are used for out-of-sample testing.
The estimates and tests hereunder concern the following models:
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- "Black-Karasinski" model (BK) whereby the MOL solution region in
each "space" dimension is [xi;1; xi;200] for i = 1; 2; 3 and whereby the MOL
solution nodes are xi;j = � (20� 0:1 � j) with j = 1; ::; 200;
- "Black" model whereby the MOL solution region in each "space" di-

mension is [xi;1; xi;200] for i = 1; 2; 3 and whereby the MOL solution nodes are
xi;j = � (1� 0:01 � j) with j = 1; ::; 200;
- quadratic models Q4 and Q3 illustrated above.
The empirical tests of all models use Quasi Maximum Likelihood and the

Extended Kalman Filter and require the maximisation of the log-likelihood
function lk, as explained in the Appendix. hj denotes the estimated stan-
dard deviation of the daily observation errors for the j-year CDS maturity with
j = 1; 2; 3; 5; 7; 10. The observation error is the di¤erence between model pre-
dicted CDS spread and observed CDS spread on a given day and for a given
CDS maturity. The Quasi-likelihood was maximised in Matlab by �rst
using the simplex algorithm of the "fminsearch" routine and then
by using the results as the input for another round of optimisation
through the "patternsearch" routine. This approach seemed the most
e¤ective.

5.2 The tables

The starting values of the latent factors at time t = 0, namely x1;0, x2;0, x3;0,
x4;0 are parameters to be estimated, which avoids arbitrary assumptions about
the prior probability density of x1;0, x2;0, x3;0, x4;0. Tables 2,3,4,5,6 present
the in-sample estimation results and out-of-sample performance for each
CDS pricing model and country. The BHHH estimator provides the esti-
mates of the standard deviations of the parameter estimates. In each table
the columns headed "param" provide the parameter estimates and the columns
headed "stdev" provide the corresponding standard deviations of the parameter
estimates. The estimates in Tables 2,3,4,5 are computed by excluding
the observations of the last 400 trading days of the overall sample.
The estimates of �;� and of ��;�� di¤er because risk premia demanded by the
market drive the di¤erence between the real measure and the risk-neutral mea-
sure. Since all CDS contracts are US dollar denominated, we assume that the
US default-free term structure of interest rates is �at and constant at 3; 16%,
which is an average of the US Treasury term structure across maturities up to 10
years and across the whole sample period. Unreported numerical simulations
show that such assumption of a �at and constant default-free term structure
implies little loss in the accuracy of CDS pricing models.
Model results di¤er across countries partly because the sample periods di¤er

across countries. Our main purpose is to compare the performance of di¤erent
models for each single country. The rows in Tables 2,3,4,5 named AIC dis-
play the Akaike information criterion and the rows named SBIC display
Schwartz�Bayesian Information Criterion for each model and country.
AIC and SBIC compare the empirical performance of non-nested models
with di¤erent numbers of parameters. SBIC uses a stronger penalty than
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AIC for adding parameters to a model.

5.3 Results for Black-Karasinski model

Table 2 summarises the estimation results for the Black-Karasinski (BK) model.
For all countries except Venezuela, whose CDS spreads are extremely high, x1
is more volatile than x2 as �1 > �2. x2 not only drives the default intensity �

Q
t ,

but also the drift of x1. Imposing that p = p�, p is positive and signi�cant
for all countries, therefore the drift of x1 rises with x2 under the real and
risk-neutral measures.
Under the risk-neutral measure Q, both x1 and x2 are mean reverting for

all countries, as �1 and �2 are positive and signi�cant for all countries, ex-
cept for the estimates of �2 for Poland and South Africa, which are not
signi�cant. Under the real measure both x1 and x2 are still mean reverting for
most countries, since ��1 and �

�
2 are mostly positive, even though often

not signi�cant.
The parameter �12 is the correlation between the Wiener processes driving

x1 and x2. The estimates of �12 are signi�cant and positive for all countries, ex-
cept for Romania and Venezuela, for which the correlation estimates
are not signi�cant. The fact that both �12 and p are signi�cant implies that
simpler BK models whereby the latent factors driving �Qt are independent seem
mis-speci�ed, although factors independence simpli�es the pricing computa-
tions.
For six of the ten countries �1�1 > ��1�

�
1 and/or �2�2 > �

�
2�
�
2. The re-

sults for these countries are consistent with risk premia that make default
probabilities under the risk-neutral measure Q higher than default probabilities
under the real measure. Such risk premia reward CDS investors for ex-
posure to risk due to the uncertain dynamics of �Qt .
The expected default loss expressed as a fraction of the bond face value is

1�RQt = e� exp(x3;t) in the BK model and it decreases as x3;t rises. For seven
countries �3 is positive and for all countries it is strongly signi�cant,
while ��3 is positive and strongly signi�cant for all countries except
Turkey. Therefore x3;t and the expected default loss 1�RQt are mostly mean
reverting under the risk-neutral and under the real measures.
��3 and �3 are the long term mean reversion levels of x3;t under the real and

risk-neutral measures respectively. When x3;t = �3 the expected default
loss under Q due to immediate default is e� exp(�0:4318) = 0:52 for Hun-
gary, e� exp(�8:1835) = 0:999 for Brazil, e� exp(�4:6437) = 0:99 for Colom-
bia, e� exp(�1:223) = 0:745 for Peru, e� exp(�6:0698) = 0:998 for Poland,
e� exp�(1:5114) = 0:8 for Romania, e� exp(�0:6643) = 0:598 for Russia, e� exp(�1:0642) =
0:708 for South Africa, e� exp(�0:9835) = 0:688 for Turkey, e� exp(�0:4181) =
0:518 for Venezuela. Some of these estimates seem high, but expected
losses (due to immediate default) should be higher under Q than
under the real measure. Moreover, due to few recent sovereign de-
faults, even expected default losses under the real measure are hardly
estimable.
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If the market prices risk due to the uncertain dynamics of the
expected default loss over time, expected default losses (due to future
default) should be higher under the risk-neutral measure Q. Since
expected default losses (due to immediate default) decrease in x3;t,
expected default losses (due to future default) decrease as the drift
of x3;t increases. For �ve of the ten countries �3�3 < ��3�

�
3, but this

is not convincing evidence that under the real measure the drift of
x3;t is higher, and expected default losses (due to future default) are
lower, than under the risk-neutral measure Q. Under this point of
view, the Black model seems more convincing than the BK model, as
explained below.
The expected default loss under Q is also volatile over time. The lowest value

of �3 is 0:7294 for Turkey and �3 is greater than 1 for all the other countries. To
simplify computations, which otherwise risk becoming prohibitive, x3 is assumed
independent of x1 and x2, so that the dynamics of the expected default loss are
independent of the dynamics of default probabilities.

[Table 2 about here]

5.4 Results for Black model

Table 3 presents the results for the Black model illustrated above. In Table 3 q1
and q2 are parameters to be estimated, therefore the Black model has two more
parameters than the BK model. The estimates of q1 and q2 are greater than 1
for all countries, except for q2 for South Africa, and almost all such estimates
are signi�cantly great than 1. For some countries the estimate of q2 is very
high, so that the default intensity can be low even as x2;t is high. Poland is the
only country for which the estimate of q2 is not signi�cant, because the
estimated standard deviation of q2 is very high. When q1 = q2 = 1 the
survival probability reduces to the Black (1995) model. Estimation results for
the model when q1 = q2 = 1 are not reported here because they were relatively
disappointing. Estimation results for the model when q1 = q2 = 2 are not
reported here for brevity, but such results tend to be only slightly worse than
those reported, which assume no restrictions for q1 and q2.
As in the BK model, x2;t not only drives the default intensity �

Q
t , but also

the drift of x1;t. As in the BK model, also in the Black model the latent
factors driving �Qt , namely x1 and x2, are not independent, since �12 and p are
signi�cantly di¤erent from 0 for all countries, except for �12 of Venezuela.
As in the BK model, also in the Black model we impose p = p�. As in the BK
model, also in the Black model p > 0 for all countries, again implying that
the drift of x1;t rises with x2;t. �12 is positive for some countries and negative
for others. As in the BK model, also in the Black model x1 and x2 are mean
reverting for most countries under the risk-neutral measure Q, since �1 and
�2 are positive for most countries and signi�cantly di¤erent from 0 for all
countries. ��2 shows that under the real measure x2;t is again mean reverting
for all countries, except for Colombia, while ��1 shows that x1;t does not
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revert toward ��1 for six of the ten countries. For more than half of
the countries �1�1 > ��1�

�
1 and/or �2�2 > �

�
2�
�
2. For these countries risk

premia appear to make default probabilities under the risk-neutral measure
higher than under the real measure.
For the Black model the expected default loss at time t (due to immediate

default) is e�max(x3;t;0)
2

under the risk-neutral measure Q and therefore it
tends to decrease in x3;t. �3 is signi�cantly higher than one for all countries
except Turkey, which implies that the expected default loss is indeed volatile.
In the Black model x3;t is mean reverting under both the real and risk-neutral
measures for most countries as �3; ��3 > 0. As in the BK model, also in the
Black model x3 is assumed independent of x1 and x2, so that the expected
default loss is independent of default probabilities. For all countries �3 <
��3. This result, coupled with the fact that �3 and ��3 are mostly
positive and signi�cant, means that the long term mean reversion
level of x3;t tends to be higher in the real measure than in the risk-
neutral measure Q, which, since default losses decrease in x3;t, in turn
implies that expected future default losses tend to be higher in the
risk-neutral measure Q than under the real measure, other things
equal. This implies that the risk due to uncertain time variations in
the expected default loss seems a risk priced by the market for most
countries, according to the Black model. Under this point of view,
the Black model seems more convincing than the BK model.
The Akaike information criterion AIC and Schwartz�s Bayesian

Information Criterion SBIC in Tables 2 and 3 suggest that in-sample
the Black model better �ts CDS spreads than the BK model for six
out of the ten countries, while BK performs better for Peru, Poland,
Romania and South Africa. While the Black model has already gained
acceptance in the literature on the term structure of interest rates, these results
show its good empirical performance also for sovereign CDS pricing.

[Table 3 about here]

5.5 Results for model Q3

Table 4 presents the results for Q3, i.e. the quadratic model where lQt = 0,
�Qt = x

2
2;t + x

2
3;t and 1�R

Q
t = e

�x24;t . x2 and x3 drive the default intensity and
x4 drives the expected default loss. All factors are correlated, so that expected
default losses and survival probabilities are not independent, unlike in the BK
and Black models. In Q3 liquidity risk is ignored, as it was ignored for the BK
and Black models. Table 4 shows that x3 is mean reverting under the
risk-neutral measure for all countries, but not under the real measure.
x2 is mean revering under both the real and risk-neutral measures,
except for Peru and South Africa. x4 is mostly mean averting. x1
plays no role in Q3. Correlation coe¢ cients for the shocks driving x2, x3 and x4
are both positive and negative and often signi�cantly di¤erent from
zero.
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BK, Black and Q3 all assume two factors driving the default in-
tensity and one factor driving the default loss. Both AIC and SBIC
in Tables 2, 3 and 4 show that in-sample Q3 performs clearly better
than BK and Black for all countries, with the exception of Venezuela
where Black beats Q3. The relative strength of Q3 seems partly due
to the fact that the factor driving the default loss is correlated with the factors
driving the default intensity, while the BK and Black models rule out such cor-
relation to avoid prohibitive numerical solutions for CDS spreads, which are
not an issue for quadratic models. Taken together Tables 2, 3 and 4 provide
strong in-sample evidence in favour of model Q3 in the "race" with BK and
Black for sovereign CDS pricing.
Tables 2, 3 and 4 assume that only credit risk a¤ects sovereign CDS spreads,

not liquidity risk. This assumption does not seem to distort the above
"race" and the conclusions about the relative merits of BK, Black and Q3.
However omitting liquidity risk can entail model mis-speci�cation, as implied by
recent studies, such as Badaoui, Cathcart and El-Jahel (2013, 2015). Therefore
we consider also quadratic model Q4, which "adds" liquidity risk to
Q3. Q3 is a special case of Q4 as we impose the restricttions �1 = �1 = ��1 =
x1;0 = 0. The p values of the in-sample likelihood ratio test for these
parameter restrictions are shown at the bottom of Table 4 in the row
named "p value lk ratio". p values are virtually equal to 0 for all countries,
therefore the restrictions of Q3 are clearly rejected in favour of Q4. Liquidity
risk appears to a¤ect CDS spreads.

[Table 4 about here]

5.6 Results for model Q4

Table 5 reports the results for model Q4 presented above. In Q4 the liquidity
factor is x1 and it can be positive or negative, while x2 and x3 drive the default
intensity and x4 drives the expected default loss as in Q3. Unlike Q4, no
model in previous literature seems to account for both stochastic recov-
ery and liquidity risk at the same time in pricing CDS�s. According to both
AIC and SBIC, in-sample Q4 performs signi�cantly better than Q3 for all
countries. This is evidence that liquidity risk improves CDS pricing, a result
that con�rms the �ndings in Badaoui, Cathcart and El-Jahel (2013, 2015) and
in Corò, Dufour, Varotto (2013) among others.
For Q4 the volatility parameters �1, �2, �3, �4 are all signi�cant for all

countries. The long term mean ��1 of the liquidity factor x1 under
the real measure is signi�cant only for Hungary and Venezuela. For
most countries ��1 appears not signi�cantly di¤erent from 0. These results
support the assumption of Badaoui, Cathcart and El-Jahel (2013) of
no drift under the real measure for the factors driving liquidity risk.
The evidence in favour of risk premia due to the uncertain dynamics
of the liquidity risk factor seems weak.
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Under the risk-neutral measure the factors x2 and x3 driving the
default intensity are mean reverting for almost all countries, and so
is the factor x4 driving the default loss. ��4 is not signi�cant for any
country. �3 is positive and signi�cant for all countries, while ��3 is sig-
ni�cant for only four countries. As in Q3, also in Q4 most correlation
coe¢ cients are signi�cantly di¤erent from 0 and can be positive or
negative. Figure 1 shows how CDS spreads predicted by Q4 match Brazil�s
actual CDS spreads over the in-sample period (the whole sample minus
the last 400 trading days) and the out-of-sample period (the last 400
trading days).

[Table 5 about here]
[Figure 1 about here]

The "in-sample" evidence is clearly in favour of model Q4 and
against the BK model. Table 6 summarises such evidence for all
models in the rows named "Average AIC" and "Average SBIC" near
the bottom of the table. Average AIC and Average SBIC are averages
of AIC and SBIC across the ten countries. Even though they do
not have a precise statistical meaning, they summarise "in-sample"
performance: Q4 ranks �rst, Q3 second, Black third and BK fourth.
Country level SBIC and AIC are largely consistent with this ranking.
Unreported results con�rm that quadratic models perform best even
if we use the entire available data sample for "in-sample" estimation.
However the "out-of-sample" evidence leads to di¤erent conclusions,
as discussed below.

6 In-sample and out-of-sample pricing errors

To compare in-sample and out-of-sample model performance, Tables
2 to 6 display two measures of distance between model predicted
CDS spreads and observed CDS spreads: MAPE (mean absolute per-
centage errors) and RMSE (root mean squared errors). MAPE and
RMSE are calculated using daily CDS spreads, excluding the �rst
observation date. Tables 2 to 5 present MAPE, which are the aver-
age absolute value of the daily di¤erence between model predicted
CDS spread and observed CDS spread divided by the observed CDS
spread. Table 6 presents RMSE, which are the square root of the
average of the square of the daily di¤erence between model predicted
CDS spread and observed CDS spread. During the 2008-2009 �nan-
cial crisis there are short periods of stale CDS spreads for the two year
maturity for Hungary and for the one year maturity for Peru, which
explain the unusually high pricing errors for all models for these two
maturities.
Tables 2 to 6 report two types of out-of-sample RMSE and MAPE

in the grey shaded areas of the tables. The �rst type are time series
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out-of-sample RMSE (hereafter TSOOS RMSE) and MAPE (here-
after TSOOS MAPE); these are computed by �rst estimating the
models using all the CDS maturities, but excluding the observations
for the last 400 trading days in the sample, and then by using the
models so estimated to predict though the Kalman Filter the out-of-
sample CDS spreads for the last 400 trading days. The "in-sample"
counterparts of TSOOS RMSE are TSIS RMSE (time series in-sample
RMSE) and the in-sample counterparts of TSOOS MAPE are TSIS
MAPE.
The second type out-of-sample errors are cross sectional out-of-

sample RMSE (hereafter CSOOS RMSE) andMAPE (hereafter CSOOS
MAPE); these are computed by �rst estimating the models using only
the CDS spreads of maturities of �ve, seven and ten years (this is the
"in-sample" estimation) and then by using the models so estimated
to predict the out-of-sample CDS spreads of maturities of one, two
and three years. This severe test can highlight model de�ciencies. A
model may be able to �t long term CDS spreads well at the expense
of implying unrealistic dynamics of the default intensity and of short
term CDS spreads; this is indeed the case of the quadratic models
as shown below. The "in-sample" counterparts of CSOOS RMSE
are CSIS RMSE (cross sectional in-sample RMSE) and the in-sample
counterparts of CSOOS MAPE are CSIS MAPE.
The rows named "Average" in Tables 2 to 6 compute the aver-

age MAPE (in-sample or out-of-sample) and the average RMSE (in-
sample or out-of-sample) across all CDS maturities for each single
country and model.
TSOOS MAPE and TSIS MAPE for each model and country are

reported in Tables 2 to 5. The bottom row of Table 6 reports for
each model Average* TSIS MAPE (time series in-sample MAPE),
Average* TSOOSMAPE (time series out-of-sample MAPE) and Av-
erage* MAPE (across both TSIS and TSOOS MAPE). These aver-
ages are computed across all countries and all CDS maturities using
the MAPE reported in Tables 2 to 5. It is striking that Q3 has
the lowest Average* TSIS MAPE of 4:22%, but the highest Aver-
age* TSOOSMAPE of 4:688%, while Black has the highest Average*
TSIS MAPE of 4:955%, but the lowest Average* TSOOS MAPE of
3;885%. In-sample and out-of sample relative model performance
di¤ers markedly. Q4 has the lowest overall Average* MAPE (across
both TSIS and TSOOSMAPE) of 4:376%, but the out-of-sample per-
fomance of the Black model in the time series dimension seems the
best.
Tables 2,3,4,5 show that for most models and countries TSOOS

MAPE and TSOOS RMSE are smaller than their in-sample coun-
terparts TSIS MAPE and TSIS RMSE. The reason for this unusual
result is that the in-sample period spans the �nancial crisis of 2008
and 2009. Such market turbulence was absent in the out-of-sample
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period. Tables 2,3,4,5 also show that for almost all models and coun-
tries MAPE tend to be highest for the 1 year and/or 2 year CDS
maturities.
For each model, country and CDS maturity TSIS RMSE in Ta-

ble 6 tend to be higher than the corresponding h1; h2; h3; h5; h7; h10 in
Tables 2 to 5, which are the Kalman Filter estimates of the stan-
dard deviation of the daily di¤erence between model predicted CDS
spread and observed CDS spread for each CDS maturity. The rea-
son is that these observation errors are not "white noise", while the
Kalman Filter estimates assume that observation errors be Gaussian
"white noise".
Tables 2 to 6 show that for all models Venezuela has the highest

Average TSIS RMSE and the lowest Average TSIS MAPE, while
Poland has the lowest Average TSIS RMSE and one of the highest
Average TSIS MAPE. These averages are computed across the six
CDS maturities. This in-sample evidence suggests that, for countries
with higher CDS spreads, CDS pricing errors tend to be higher in
absolute value (RMSE), but lower as a percentage of CDS spreads
(MAPE). This feature of all the tested models shows that the models
perform quite well even when credit risk is very high. For example,
for the BK model the Average TSIS RMSE of 47 basis points of
Venezuela are the highest, as shown in Table 6, but the Average
TSIS MAPE of 2; 384% of Venezuela shown in Table 2 are the lowest.
Instead for Poland the Average TSIS RMSE of 7 basis points are the
lowest, as shown in Table 6, but the Average TSIS MAPE of 6; 115%
are the highest, as shown in Table 2.
The row named "Avg* TSOOS RMSE" in the bottom part of Ta-

ble 6 computes the average TSOOS RMSE across all countries and
maturities for each model. The rows named "Avg* TSIS RMSE",
"Avg* CSOOS RMSE", "Avg* CSIS RMSE" compute similar aver-
ages for TSIS RMSE, CSOOS RMSE and CSIS RMSE respectively.
The smallest Avg* TSOOS RMSE are those of the Q4 and Black
models (0:00081), followed by the Q3 model (0:00087) and by the BK
model (0:0009). Thus time series out-of-sample evidence con�rms the
"in-sample" merits of Q4. Model Q4 again "beats" model Q3. Adding
a liquidity factor improves out-of-sample perfomance. However Avg*
TSOOS RMSE con�rm the evidence based on MAPE: out-of-sample
Q3 performs worse than Black, despite similar "�t" in-sample. Avg*
TSIS RMSE are similar and around 0:00165-0:00166 for all the four
models.
The out-of-sample de�ciencies of quadratic models are best high-

lighted by cross sectional out-of-sample evidence. In the row "Avg*
CSOOS RMSE" of Table 6, model Q4 scores by far the worst (0:0141),
followed by Q3 (0:0077) and then by Black (0:0059), while BK scores
best (0:0037). These average CSOOS RMSE are computed for each
model across the one, two and three year CDS maturities and across
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all countries. Cross sectional out-of-sample evidence is in strong
favour of the BK model and against quadratic models and in par-
ticular against Q4. Q4 performs even worse than Q3 because its
greater number of parameters (34 for Q4 instead 25 for Q3) causes
Q4 to more strongly over-�t the "in-sample" CDS maturities of �ve,
seven and ten years.
The columns headed "CSOOS&CSIS RMSE" in Table 6 display

for each model, each country and each maturity:
- the CSIS RMSE for the maturities of �ve, seven and ten years

in the grey areas;
- the CSOOS RMSE for the maturities of one, two and three years;
- the Average CSOOS&CSIS RMSE across all six maturities in

the rows named "Average"; remarkably the Average CSOOS&CSIS
RMSE of the BK model are the lowest of all models in almost every
country; for example for Brazil Average RMSE are 0:0015 for BK,
0:0019 for Black, 0:0028 for Q3 and 0:0022 for Q4; the BK model
is the most immune from the tendency to over-�t "in-sample" CDS
maturities at the expense of "out-of-sample" CDS maturities.
Quadratic models can well �t the "in-sample" long term CDS

spreads, while at the same time predicting completely unrealistic
short term CDS spreads. For example note the one year CSOOS
RMSE of 0:0979 in the "CSOOS&CSIS RMSE" column for Venezuela
for Q4. Q4 also performs much worse then Q3 along the same met-
ric, and again this seems due to the higher number of parameters of
Q4, i.e. to more over-�tting of the "in-sample" maturities. Q3 has
about the same number of parameters as the BK and Black models.
This failure of quadratic models in the out-of-sample "cross section"
of CDS spreads is notable since these models assume the absence of
arbitrage across contemporaneous CDS spreads of di¤erent maturi-
ties, i.e. they consistently price of all CDS maturities. The reason
for the failure may be that in quadratic models the default intensity,
the expected default loss and the CDS spreads are quadratic, and
therefore non-monotonic, functions of the factors.
This "non-monotonicity" of quadratic models also entails that the

CDS spreads are non-monotonic in the drift parameters �3; �4 even
while �3; �4 > 0. In the BK and Black models default intensity
and expected default loss are monotonic in the factors, therefore if
�1;�2; �3 > 0 CDS spreads cannot decrease as �1; �2; �3 increase.
A similar "non-monotonicity" concerns also the correlation para-

meters of quadratic models. For example, as �34 rises in model Q4,
the instantaneous correlation between x3;t and x4;t rises, but the cor-
relation between the expected default loss, which is quadratic in x4;t,
and the default intensity, which is quadratic in x3;t, can either rise or
fall, and so can CDS spreads too.
These "non-monotonicities" make it more di¢ cult to give an eco-

nomic interpretation to the risk-premia, drift and correlation parame-
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ters of quadratic models than to the risk-premia, drift and correlation
parameters of the BK and Black models.

7 Conclusion

This paper has tested new speci�cations of promising non-linear Gaussian CDS
pricing models using the sovereign CDS spreads of ten quite diverse countries.
The models are quadratic Gaussian models, extensions of the Black (1995) model
and extensions of the Black-Karasinski model. All these models prove to
have relative strengths in �tting di¤erent aspects of sovereign CDS
spreads, with the quadratic models performing best of all in-sample. Quadratic
models are also more tractable than Black and Black-Karasinky models. The
empirical evidence supports the view that liquidity risk a¤ects CDS
pricing jointly with default risk and default loss risk and quadratic
models can easily model the correlations between all these risks, un-
like the BK and Black models. However quadratic models have a
marked tendency to over-�t some CDS spread maturities at the ex-
pense of other maturities. The BK model is particularly immune from
this tendency and this seems the main strength of the BK model.
The Black model seems the best compromise; it has less of a ten-

dency than quadratic models to over-�t some CDS maturities and
displays the best out-of-sample performance in the time series di-
mension, even slightly superior to that of a quadratic model with
liquidity risk, which has a few more parameters.
The choice of model may depend on out-of-sample errors in the

cross section or in the time series of CDS spreads, but out-of-sample
errors in the time series seem more relevant, as we estimate a model
on past CDS spreads of all maturities and then use the model to
predict current and future term structures of CDS spreads. For this
reason the Black model seems the best compromise.

A Vertical method of lines

Vertical MOL that is employed in this paper to price CDS according to the Black
and Black-Karasinski models is taken from Realdon (2016) and is hereunder
summarised for the reader. Realdon reports that MOL has advantages over the
�nite di¤erence method for solving pricing PDE�s. Here we only show how MOL
with sequential splitting is used to compute survival probabilities for the Black-
Karasinki, while the solution for the Black model is almost the same. Only
in this Appendix, we write x to mean x1 and y to mean x2. Thus V (x; y; �)
or more simply V is a function of x; y and � . Then, dropping time subscripts
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equation 4 becomes for x; y 2 (�1;1)
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�21
2
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2
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�2 (�2 � y) + (exp (x) + exp (y))V
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PDE 22 is solved over the �nite region [x1; xI ]� [y1; yI ]. We de�ne the following
grid

xi = i � �x+ x0; �x =
xI � x0
I

; yj = j � �y + y0; �y =
yI � y0
I

for i; j = 1; 2; ::; I:

We now use vertical MOL to discretise the PDE in both "space" dimensions,
but not in the time dimension, and then we "sequentially split" the discretised
PDE. De�ne �k = k � �� for k = 0; 1; 2; ::;K. �� is the size of a time step.
[0;K � �� ] is the time interval over which PDE 22 is solved. Using vertical MOL
with sequential splitting, we approximate PDE 22 during the interval [�k; �k+1]
as
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We can rewrite this system of equations as
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for i; j = 1; 2; ::; I and k = 0; 1; 2; ::;K with
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uk+1j is the j-th column of Uk+1. vk+1;i is the i-th row of Vk+1. The solution
to system 23 is

uk+1j = �Mu (j)
�1
(II � exp (�� �Mu (j))) � qk+1j (u) + exp (�� �Mu (j)) � vk+1j (�k)

(24)
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v (II � exp (�� �Mv)) �
�
qk+1;i (v)

�0
+ exp (�� �Mv) �

�
uk+1;i

�0
for i; j = 1; 2; ::; I. II is the I � I identity matrix. qk+1j (u) is known from
the previous time step. It is expedient to assume that the cross derivative be
0 on the boundaries, so that qk+11 (u) = qk+1I (u) = [0; ::; 0]

0 and qk+1;1 (v) =
qk+1;I (v) = [0; ::; 0]. If �12 6= 0, solution 24 may be unstable, unless �� ! 0.

B Extended Kalman �lter (EKF)

This Appendix describes how EKF is implemented to estimate models Q3 and
Q4, The other models are estimated in a similar way. We introduce the following
notation and assumptions:
- xt = (x1;t; x2;t; x3;t; x4;t)

0 are the latent factors; xt is a 4� 1 vector;
- bxt� is the estimator of xt conditional on information on date t � 1; bxt is

the estimator of xt conditional on information at time t;
- Pt� = Et�1

�
(xt � bxt�) (xt � bxt�)0�; Et�1 [::] is the real measure expecta-

tion operator conditional on time t� 1 information;
- ot = (o1;t; o2;t; o3;t; o5;t; o7;t; o10;t)

0 are the CDS spreads observed in the
market on date t for maturities of 1; 2; 3; 5; 7; 10 years;
- z (xt) = (z1;t (xt) ; z2;t (xt) ; z3;t (xt) ; z5;t (xt) ; z7;t (xt) ; z10;t (xt))

0 is the
time t vector of CDS spreads computed using a model; each spread being a
function of xt; z (xt) is a 6� 1 vector;
- �t is the vector of observation errors at time t, which is normally distributed

such that �t s N (06�1;H6); 06�1 is a 6 � 1 column vector of zeroes; H6 is a
6� 6 diagonal matrix;
- the observation errors �t are uncorrelated with the xt and with all lags

of xt; x0 are the initial values of the latent factors and are parameters to be
estimated.
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The EKF equations are

bot� = Et�1 [ot] = z (bxt�) (25)bxt� = ���� + (I� ��)xt�1 (26)bPt� = ��bP0t�1��0 +��0 (27)

Ft = DtPt�D
0
t +H (28)bxt = bxt� + bPt�D0

tF
�1
t (ot � bot�) (29)bPt = bPt� � bPt�D0

tF
�1
t Dt

bPt� (30)

Dt =

�
@z (xt)

@x0t

�
xt=bxt� : (31)

Dt is a 6� 4 matrix. The quasi-likelihood function of ot conditional on
time t� 1 information is lt�1 (ot) s N (bot� ;Ft), where N (bot� ;Ft) denotes
the multivariate normal density with mean bot� and covariance Ft, therefore

ln (lt�1 (ot)) = �
6

2
ln 2� � 1

2
ln (abs (jFtj))�

1

2
(ot � bot�)0F�1t (ot � bot�)(32)

lk = �Mt=1 ln (lt�1 (ot)) : (33)

abs (jFtj) denotes the absolute value of the determinant of Ft. lk is the log
of the quasi-likelihood to be maximised to estimate the model para-
meters. M is the number of CDS observation dates for a given country. �
is the time between consecutive observations. On average there are about 260
daily prices per year in the data, therefore � = 1=260.

References

[1] Ahn D., Dittmar R., Gallant R., 2002, "Quadratic term structure models:
theory and evidence", Review of �nancial studies 15, 243-288.

[2] Badaoui S., Cathcart L. and El-Jahel L., 2013, "Do sovereign credit default
swaps represent a clean measure of sovereign default risk? A factor model
approach", Journal of Banking and Finance 37, 2392�2407.

[3] Badaoui S., Cathcart L. and El-Jahel L., 2015, "Implied liquidity risk pre-
mium in the term structure of sovereign credit default swap and bond
spreads", European Journal of Finance, 1-29.

[4] Ballestra L.V. and Pacelli G., 2013, "Pricing European and American op-
tions with two stochastic factors: A highly e¢ cient radial basis function
approach", Journal of Economic Dynamics & Control 37, 1142�1167.

[5] Black F., 1995, "Interest rates as options", Journal of Finance 50, 1371-
1376.

27



[6] Black F. and Karasinski P, 1991, "Bond and option pricing when interest
rates are lognormal", Financial Analysts Journal 47, n.4, 52-59.

[7] Chen, R-R., X. Cheng, F. J. Fabozzi, and B. Liu, 2008, "An explicit multi-
factor credit default swap pricing model with correlated factors", Journal
of Financial and Quantitative Analysis 43, 123�60.

[8] Chen L., Filipovic D. and Poor V., 2004, "Quadratic term structure models
for risk-free and defaultable rates", Mathematical Finance 14, 515-536.

[9] Corò F., Dufour A. and Varotto S., 2013, "Credit and liquidity components
of corporate CDS spreads", Journal of Banking & Finance 37, 5511�5525.

[10] Doshi H., 2011, "The Term Structure of Recovery Rates", Working paper
McGill University, June 2011.

[11] Doshi H., Ericsson J., Jacobs K. and Turnbull S.M., 2013, "Pricing Credit
Default Swaps with Observable Covariates", Review of �nancial studies,
2048-2094.

[12] Elkamhi R., Jacobs K. and Pan X., 2014, "The Cross Section of Recovery
Rates and Default Probabilities Implied by Credit Default Swap Spreads",
Journal of �nancial and quantitative analysis 49, n.1, 193�220.

[13] Favero, C., Pagano, M., Von Thadden, E.L., 2010, "How does liquidity
a¤ect government bond yields?" Journal of Financial and Quantitative
Analysis 45, n.1, 107�134.

[14] Galil K., Moshe Shapir O., Amiram D., Ben-Zion U., 2014, "The determi-
nants of CDS spreads", Journal of Banking & Finance 41, 271�282.

[15] Guarin A., Liu X., Ng W.L., 2011, "Enhancing credit default swap valua-
tion with mesh free methods". European Journal of Operational Research,
805�813.

[16] Guarin A., Liu X. and Ng W.L., 2014, "Recovering default risk from CDS
spreads with a non-linear �lter", Journal of Economic Dynamics and Con-
trol 38, 87-104.

[17] Higham N. J., 2005, "The Scaling and Squaring Method for the Matrix Ex-
ponential Revisited," SIAM Journal on Matrix Analysis and Applications
26, n.4, 1179-1193.

[18] Khaliq A.Q.M., Voss D.A. and Yousuf M., 2007, "Pricing exotic options
with L-stable Pade´ schemes", Journal of Banking & Finance 31, 3438�
3461.

[19] Kim D.H. and Singleton K.J., 2012, "Term structure models and the zero
bound: An empirical investigation of Japanese yields", Journal of Econo-
metrics 170, 32-49.

28



[20] Li J. and Zinna G., 2014, "On Bank Credit Risk: Systemic or Bank Spe-
ci�c? Evidence for the United States and United Kingdom", Journal of
�nancial and quantitative analysis, Vol. 49, Nos. 5/6, Oct./Dec. 2014, pp.
1403�1442.

[21] Longsta¤F.A., Pan, J., Pedersen L.H., Singleton, K.J., 2011. How sovereign
is sovereign credit risk? American Economic Journal 3, 75�103.

[22] Lovreta L., 2016, "Demand�supply imbalances in the credit default swap
market: empirical evidence", The European Journal of Finance 22, n.1,
28-58.

[23] Mohan K.K., Alpesh K. and Lok Pati T., 2013, "Application of radial
basis function with L-stable Padé time marching scheme for pricing exotic
option", Computers and Mathematics with Applications 66, 500�511.

[24] Pan J. and Singleton K.J., 2008, "Default and Recovery Implicit in the
Term Structure of Sovereign CDS Spreads", The Journal of Finance 63,
n.5, October, 2345-2384.

[25] Realdon M., 2006, "Quadratic term structure models in discrete time",
Finance Research Letters 3, n.4, 277-289.

[26] Realdon M., 2017, "Gaussian models for Euro high grade Government
yields", European Journal of Finance 23, n.15, 1468-1511.

[27] Rubia A., Sanchis-Marco L., Serrano P., 2016, "Market frictions and the
pricing of sovereign credit default swaps", Journal of International Money
and Finance 60, 223�252.

[28] Schneider P., Soegner L. and Veza T., 2010, "The economic role of jumps
and recovery rates in the market for corporate default risk". Journal of
Financial and Quantitative Analysis 45, 1517�1547.

[29] Vasicek O.A., 1977, "An equilibrium characterization of the term struc-
ture", Journal of Financial Economics 5, 177-188.

[30] Zinna G., 2013, "Sovereign default risk premia: Evidence from the default
swap market", Journal of Empirical Finance 21, 15�35.

29


