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    A SIMPLE THEORETICAL DESCRIPTION OF THE BEHAVIOUR OF INTUMESCENT 
 

PAINTS. 

ABSTRACT 

        A simple theoretical description is given of the behaviour of a layer of intumescent paint 

under the action of a constant heat input at one surface. The physical model of Buckmaster, 

Anderson and Nachman is used and several new results are derived. In particular a relationship 

is derived between the tune it takes for the temperature at the inner surface of the layer to 

rise to a given value and the parameters characterising the layer of paint. Other results depend 

upon the assumption that the front at which intumenscence takes place moves through the 

layer slowly compared with decay tunes of thermal transients within the layer. 
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1.     INTRODUCTION 

 When heat is externally applied to an object coated with an intumescent paint, the 

presence of the paint has a delaying effect upon the increase in temperature of the object. 

The usefulness of such paints has been apparent to the United States Navy for some years. 

The disastrous fire aboard the aircraft carrier USS Forrestal (1967) which resulted in the deaths 

of 133 men and 72 million dollars worth of damage, and the more recent fire on the flight 

deck of USS Nimitz (1981) with immediate deaths of 14 men and 60 million dollars damage, 

demonstrated the importance of delaying the detonation of weapons when subjected to heat. 

Two other contexts in which the paint proves useful are the protection of structures from rocket 

exhausts, and in the delaying of the collapse of the metal superstructure of large buildings when 

a fire occurs 

             To provide the required delay the paint must possess several properties. Here we give a 

simplified version of the paint's behaviour but one adequate to describe the delaying mechanism. 

The interested reader is referred to [1] [2]. When the paint is heated and reaches a specific 

temperature (T0), an endothermic reaction takes place with the evaporation of one component 

of the paint. At this temperature the remaining components are in a viscoelastic state and 

expand to form an open foam-like structure. The volume of the paint may have increased by 

as much as 400% and the gaseous component, which may make up as much as 50% of the 

mass of the paint, subsequently diffuses to the surface and escapes. 

Following Buckmaster, Anderson and Nachman [1] we assume that when the paint is heated 

through one surface the liberation of gas begins at this surface when it reaches the temperature 

TQ. Subsequently a thin front, at which the reaction is taking place, moves slowly through the 

layer of paint. The temperature at this front is firmly clamped at the value T0 and behind the 

front the paint takes on its expanded form. When the front reaches the inner surface we are 

left with a homogeneous expanded layer. To discuss the full development of the process it is 

convenient to divide it into three stages: stage one before the maximum temperature of the 

paint reaches T0 and normal thermal conduction is taking place; stage two during which the 

front is moving through the paint and; stage three, a return to normal conduction but with 

new thermal parameters characterising the layer of paint. 
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The experiments that have been performed with these paints usually consist of applying a 

constant supply of heat to the outer surface of the paint layer and measuring the temperature at 

the inner surface as a function of time. The existence of three stages of development is 

frequently displayed by the presence of a plateau in the observed graph (see Figure). Some 

paints even display two such plateaus clearly separated from each other. Measurements of mass 

loss by the layer indicate that it takes place not only during stage two but well into stage three 

In this report the assumption is made that the continuous variation of the thermal 

properties of the paint with gas density can be ignored. The only variation that is taken into 

account is a discrete jump in the values of the parameters at the advancing front. Buckmaster 

et al view this as a major limitation on the usefulness of this model. 

 

Time 

Figure  

2.   NOTATION 

 

The subscripts 1 and 2 apply to the thermal properties of the paint in its virgin state and 

after expansion respectively. 

k : coefficient of thermal conductivity 

c : specific heat per unit length 

D = k/c 

L0: initial thickness of layer. 
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L1 : final thickness of layer 

and  L1 = (1+R)L0 

ρ  : mass density. 

E  : energy influx at outer surface. 

N : heat of reaction per unit length. 

3. ENERGY CONSERVATION 

The effectiveness of a particular layer of paint is measured by the time ( ) it takes for the τ

temperature at the inner surface to rise from room temperature to some temperature (Td) that 

would be considered dangerous. We now derive an expression for τ  by applying the principle 

of energy conservation to this full period. The more detailed model described in later sections 

consists almost entirely of local statements of energy conservation and an expression for τ  

could be derived from the results obtained there; however, a direct derivation shows that the 

resulting form is independent of many of the approximations used in the detailed model. 

During the time τ  the energy input to the paint layer is E τ . This energy does three 

things. Firstly it provides energy c1L0T0 to raise the temperature of the whole layer to T0, 

secondly it provides the full heat of reaction NL0 and thirdly it provides energy. 
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This expression leads us to some simple conclusions. 

(a)    is independent of kτ 1 the paints initial thermal conductivity. 

(b)  τ  ’S dependence on L0 is of the form 

     2
00

BLAL +=τ  

where A and B are positive constants, so increasing the thickness of the layer will increase 

T  by more than a proportionate amount. 

(c)  T  's dependence on E is of the form 

     B
E
A

+=τ  

where A and B are again positive constants. For a low input of energy T  becomes very 

large but for a high input T  has a lower limit of 
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This is explained by the fact that when the inner surface reaches the temperature Td the 

outer surface is at temperature 
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In the event of a very fierce conflagration this lower bound for  may give a good τ

indication of the delay time with its quadratic dependance on the final thickness of the layer. 

(d) τ  depends on N through the term NL0/E. This could well be  

dominant if N is large compared to both T0(c1 -c 2(1 +R)) and Tdc2(l+R). 

(e) Intuitively one expects  to depend upon the temperatures Tτ 0 and Td through the 

combination T0 + Td but in fact they occur in the form 
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    .)TdT()R1(cTc 0201 −++  

 

If c2(l+R) > c1 then T  can be increased by having T0 as close to room temperature as 

possible whilst if c2(l+R) < c1 a temperature close to Td is beneficial. 

(f) The dependance of  upon the extent to which the layer expands ((1+R)) is not τ

clear because both c2 and k2 depend on this factor in unknown fashions. 

4. GENERALISATION OF (1)

The expression for τ  (1) can be very easily generalised to the case of paint which 

liberates several gases at various temperatures and with various heats of reaction. To do this let 

these components of the paint be labelled by the variable α so that their contribution to the 

specific heat per unit length of the unswollen paint is c(α) and 
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Also component α  outgases at temperature T(α), with heat of reaction per unit length 

of the unswollen paint N(α). Then 
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Many of the comments about (1) apply equally well to this expression. 
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5. STAGE ONE 
 

During this stage the equation to be solved is 
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and T = 0, t = 0.  
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The transient terms decay away leaving a steadily rising parabolic temperature profile. This 
stage finishes when the temperature at the outside surface reaches the value T0. If we ignore 
the contribution from the transients this takes a time 
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At the inner surface the temperature rises linearly with slope E/c1L0. Observation of this rising 
temperature can be used to decide whether we are justified in ignoring the transient terms. 
Using the data of reference [1] we find that in this particular case the rise time is 2.5s and the 
decay times of  
the transient terms are 0.1/n2 s. 
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6. STAGE TWO
 

During this stage the equations to be solved are 
 

   sx0
x

T
c
k

t
T

2

2

1

1 <<
∂
∂

=
∂
∂  

 

   Lxs
x

T
c
k

x
Tu

t
T

2

2

2

2 <<
∂
∂

+
∂
∂

−=
∂
∂  

where L(t) is the co-ordinate of the outer surface, u = dL/dt, and the front is situated at  

x = s(t). The boundary conditions are at 
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For convenience we have chosen the temperature at which the reaction takes place to 

be zero. The initial conditions are determined by the temperature profile at the end of stage one. 

The speeds with which the expanded paint and the front move are related in a simple way. 

If the densities of the paint either side of the front are  and  and the final thickness of 1ρ 2ρ

the layer is L1 then mass conservation tells us that 
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b r ings  the  ou ter  sur face  to  res t  and  y ie lds  
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At y = L0
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The diffusion equation and most of the boundary conditions are expressions of energy 

conservation at particular points. We can obtain a more useful expression of this conservation 

law if we consider the total energy of the system. The thermal energy contained in the region 

s < x < L is U(t) where 
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After some manipulation this yields 
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If the k1 term is ignored then integrating 
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Two times characterise the equations above, a lower bound for the transit time  

of the front 
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and the diffusive relaxation time behind the advancing front 
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One assumption we make in what follows is that 
 
       .dc ττ >>

 
An assumption which holds in the case of the figures quoted in section 9. The  

diffusive relaxation time ahead of the front is considerably shorter than τ d 

which supports our last step in the deriving of (2). 

Following Goodman [3] we introduce a parabolic temperature profile behind  

the front 
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and (2) becomes 
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The boundary condition at y = L0 gives 
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Substituting the parabolic profile into the diffusion equation we find that A and B 

must obey 
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If the first of these three equations is obeyed then the second equation follows from (4). 

Whilst 
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intimates that A  BL>> 0. 

Expanding A, B and t in powers of p and substituting in the equations (3), (4) and 

(5) yields the results 
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These series are also in rising powers of 
c

d
τ

τ
, the ratio we can take to be 

very much less than unity. The series for t describes how the front 

commences with a speed of 
c

L0
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 but slows slightly to a speed of about 
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 by the time it has reached the inner surface. The transit time of  

the front is given by the expression 

 

   ....
c

d
3
2

2
d

2

−+
τ

τ
−

τ
+τ  



-12- 

 

7. STAGE THREE

 

This stage resembles the first, the primary differences being that the layer has expanded to 

width (1+R)LQ and the specific heat and thermal conductivities have reduced values. When 

the transients have died away the temperature profile has the form 
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The temperature at the inner surface now rises at a rate 
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This is faster than the rise during stage one because c 2 is less than c1 on two scores, the 

expansion of the layer (a factor (1+R)-1), and the loss of mass due to escaped gas. Using the 

data of section 9 the increase can be of the order 50%. It is worth noting that this final paint 

layer is a poorer insulating layer than the initial unswollen layer. The transients during this 

final stage have decay periods given by the expressions 
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This shown an increase over the decay periods during stage one, using section 9 data, by a 

factor of 5 and 10. On the other hand the initial temperature is parabolic leading one to 

expect the transients to have much smaller amplitudes. 

 

8. COMPARISON WITH EXPERIMENT

 

The model presented in this report provides at least a qualitatively correct description of 

the head conduction process through a layer of intumescent paint. In this section we answer 

the question, what quantiative information about the layer can be extracted from an accurate 

graph of the temperature at the inner surface versus time? 



13 
 

(a) The stage one rate of rise of temperature yields a value of 
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(b) Similarly the stage three rate of rise yields 

 

     
.LR)(1c

E
Lc

E

0212 +
=  

 

(c) For some  layers during stage three the rate of rise of temperature gently decreases 

with  rising temperature. This is probably due to the fact that the outer surface is reaching 

temperatures at which heat loss to the environment should be taken into account. This can be 

done by including and extra term into the boundary condition at x = L, 
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It can easily be shown that the curvature of the graph reveals information about m/E. 

(d) If stage two has a clearly defined plateau then it tells us T0, the temperature at 

which the endothermic reaction takes place. 

(e) The transient behaviour of the temperature at the commencement of stage two, if 

distinct enough, can yield a value for the principle decay time 
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  (f) If the movement of the front is dominated by the heat of reaction N then the 

duration of stage two ( T 0) gives us a value for 
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However, if the more complicated expressions for T 0 derived in section 6 needs to be used we 

obtained a value of 
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9.    NUMERICAL VALUES 
 
 
 

  By way of illustration, numerical values are substituted for the various parameters describing 

the properties of the layer of paint, and the input energy flux. Care must be taken in drawing 

detailed conclusions from these calculations because the values of the parameters are open to 

considerable uncertainty and E and L0 can be varied. The values used are taken from 

reference [1] and are listed below. 
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