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APPROXIMATE SOLUTION OF SECOND KIND INTEGRAL 
EQUATIONS ON INFINITE CYLINDRICAL SURFACES 

ANDREW  T. PEPLOW* AND SIMON N. CHANDLER-WILDE↑

Abstract. The paper considers second kind integral equations of the form = )()( xx g +φ   
)()()( ydsyyx,k∫ S φ (abbreviated )φφ K+= g , in which S is an infinite cylindrical surface of arbitrary 

smooth cross-section. The “truncated equation” (abbreviated )aaaa KE φφ += g , obtained by  
replacing S by Sa, a closed bounded surface of class C2, the boundary of a section of the interior 
of S of length 2a, is also discussed. Conditions on k are obtained (in particular, implying that K 
commutes with the operation of translation in the direction of the cylinder axis) which ensure that 
I-K is invertible, that I - Ka is invertible and (I — Ka)-1 uniformly bounded for all sufficiently 
large a, and that aφ  converges to φ  in an appropriate sense as ∞→a . Uniform stability and 
convergence results for a piecewise constant boundary element collocation method for the 
truncated equations are also obtained. 

A boundary integral equation, which models three-dimensional acoustic scattering from an infi- 
nite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the 
integral equation and the corresponding boundary value problem) and convergence of a particular 
collocation method. 

Key words. second kind integral equations, Wiener-Hopf equations, boundary element method, 
Helmholtz equation, collocation method 

AMS subject classifications. 65R20, 45E10, 65N38, 35J05 

 1. Introduction. We are concerned in this paper with second kind integral 
equations of the form 
(1)   ,∈),()()(∫)()( Sxydsyyx,kxgx  S φφ +=
and their numerical solution, in the case when S is an infinite cylindrical surface with 
arbitrary cross-section in three-dimensional space. In equation  (the )(∈)( SBC1 g
space of bounded continuous functions on S) is assumed known and )(SBC∈φ  is to 
be determined. We abbreviate (1) in operator form as 
(2)    φφ K+= g  
and make sufficient assumptions on the smoothness of the surface S and on the be- 
haviour of the kernel k (k is continuous or weakly singular) so that K : BC(S)  →
BC(S) is bounded but not compact. In particular, we suppose that 

}R∈,∈),(:),,{(= 321321 xxxxxxS Γ     
where  is a Jordan curve of class C2R⊂Γ 2. 

Integral equations of the form (1) frequently arise when reformulating linear el-
liptic boundary value problems in the interior or exterior of S as boundary integral 
equations. We consider an example of this type in Section 4 of the paper, in which 
acoustic scattering by an infinite rigid cylinder is investigated, with 

(3)    ),(
)(∂

∂
2=)( yx,G

yn
yx,k  
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where n(y) is the normal to S at y, directed into the exterior of S, and 

(4)     
y-x

eyx,G
y-xi

π

κ

4
:)( =  

is a fundamental solution of the Helmholtz equation, . 0uu 2 =+κΔ
When solving (1) numerically it is convenient, as a preliminary stage, to truncate 

the infinite surface S. Let +
~S  and _S~  denote the half cylinders denned by 

}0><:∈),,{(=:±
~

3321 xSxxxS      
and, for a ≥ 2, let 
   .}≤:∈),,({=:~

3321 axSxxxSa  
Let E_ be the surface 
(5)   }),(,Ω∈),(:),,({: 21321321 xxfxxxxxxE_ ==  
where Ω  is the interior of , and f is any given continuous function on Γ Ω  satisfying 

  
,∈),(,0=
,∈),(,0>

),(
21

21
21 Γ

Ω
xx
xx

xxf

and such that −−− ∪= ESS ~:  is a smooth surface of class  (see Figure 1). Let 2C
~ .∪=:and)},(=,∈),(:),,{(=: +++21321321+ ESSxxfxxxxxxE Ω  

 
FIG. 1. Cross-section through the surface S_. 

 
For  and  let V + x denote the translation of the set V by the 3R⊂V ,R3∈x

vector x, and let  be the unit vector in the x3
3 R∈e 3 direction. Then, for  define ,2≥a

Sa := ~ ~=)_(∪)+(∪ =,∈),(:),{(∪ 3213213+3 xxxxxxSaeEaeE_S aa Ω  
 (see Figure 2). Note that Sa is a smooth closed surface of class C2. ))},(( 21 xx∫a +±

Let  : = {S, S∑ +, S-} }R:{ 3 ∈≥+∪ b2,abeSa  and, for , define the ∑∈⊂ *ST
integral operator  by )(on TBCKT

 

(6)     .∈)()()()( Txydsyyx,k∫ xK TT ψψ =
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FIG. 2.  Cross-section through the surface Sa. 

 
Le t   .2≥for,=:and:± ± aKKKK

aSaS
A crucial requirement for the theory developed is a translation invariant assump- 

tion on the kernel function k, that, for all (x, y) },:){(: ∑∈∈=∈ TTyx,I  
 

    .R∈),(=)+,+( 33 tyx,ketyetxk
 

We analyse, in Section 2 of this paper, the approximation to (1) obtained by 
replacing the infinite surface S by the finite closed surface Sa and the convergence 
to φ , of the solution )( aa SBC∈φ  of the approximate equation, as  To .∞→a
make precise the definition of aφ  and the sense in which )( aa SBC∈φ approximates 

)(∈ SBCφ , introduce mappings between these two spaces. For  )R(∈let,1≥ ∞CFa a
be an even function satisfying ,R,1)(0 ∈≤≤ ttFa , and 

 

          
.1+≥,0
,≤≤0,1

=)(
at

at
tFa

 
For  define  by 2≥a )(→)(: aa SBCSBCE
 

(7)  
⎪⎩

⎪
⎨
⎧ =

=
,~\∈,0

,~∈),,(),()(
:)( 32131

aa

a-a
a

SSx

SxxxxxxF
xE

ψ
ψ  

 
and  by )(→)(: SBCSBCR aa

(8) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤=

==

.,~\∈),,(),()),,((

,≥,~\∈),,(),()),,((

,~∈),(

:)(

3321321

3321321

a_xSSxxxxxFa_xx

axSSxxxxxFaxx

Sxx

xR

aa

aa

a

a

ψ

ψ

ψ

ψ  

Then )( aa SBC∈φ  is defined by 
(9)       ,aaaa KE φφ += g  
which we will refer to as the “truncated” version of (1). 

In Section 2 we construct a partial theory of the solvability of equation (1) and 
of the truncated equation (9). Theorem 2.8 suggests that the existence of a solution
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to the truncated equation for all sufficiently large a depends not just on the unique 
solvability of the original integral equation (1) but also on that of the “half cylinder” 
equations obtained by replacing S by S±. Specifically, it shows that I - Ka is invertible 
and uniformly bounded for all  sufficiently large a provided I – K,  I - K+ and I – K_  
are injective.  These condit ions also ensure the invert ibi li ty of the original  operator 
I  -  K  (Corollary 2.9) ,  so that  the spectrum of K  is  contained in the union of  {0} and 
the sets of eigenvalues of K, K+, and K-. This result may be powerful for establishing 
existence of a solution to equation (1) and, in the case when (1) is a boundary integral 
equation, for establishing existence of solution for the corresponding boundary value 
problem formulation. These points are illustrated by the example in Section 4. 

In Section 3 we consider the numerical solution of the integral equation on Sa, 
defining  by )(∈)(

na
n SBCφ

(10)     ,)()()( nn
na

n KE φφ += g

where   and   i s  an  in t e rpo la to ry  p ro jec t ion  ope ra to r  on to  a  space  na
n PKK

n
=)(

nP

of  p iecewise  cons tan t  func t ions  on  a  f in i te  e lement  mesh  on  Note  tha t   
naS )(n

nP φ

is a piecewise constant collocation method approximation to .naφ and  is the )(nφ
i terated col locat ion method approximation of  Sloan [12].  The resul ts  of  Sect ion 2 
are extended to show that the operators  are uniformly bounded for all 1)( )−nK-(I
suff ic ient ly  large n  and that   converges  to  )(n

naR φ φ  uniformly  on compact  subsets  

of  S  p rovided  tha t   and   as  n  ,  where  h∞+→na 0→nh ∞→ n  i s  the  d iameter  of  

the largest element of the mesh on . Further, if  
naS )(,∞→0→)( n

naRxasx φφ
converges to φ  uniformly on S, 

The integral equation (9) may seem a perverse choice as approximation for (1): the 
approximation obtained by replacing S by aS~  in (1) may seem more obvious: indeed, 
this alternative approximation can be analysed in a similar (in fact simpler) manner. 
However, the resulting theory appears to be inapplicable in practical situations in        
which (1) is a boundary integral equation. In such applications it is generally the             
case that (1) with S replaced by  is still a boundary integral equation so that the ±S
injectivity of  can be established in a similar manner to that of I - K (cf.           ±− kI
Section 4). Equation (1) with S replaced by  is generally not a boundary integral ±S~

equation, and it is not clear, in practical cases, how the injectivity of  (which       ±~SkI
the alternative theory requires) might be established. 
      Integral equations on smooth closed bounded surfaces in R3 and their numerical 
treatment have a wide l i terature:  see Colton and Kress [9,10] for that  part  relevant 
to the acoustic scattering example of Section 4. The piecewise constant collocation 
method discussed in Section 3 is the most commonly used boundary element method 
(Brebbia et al. [6]). For integral equations of the class discussed in this paper on 
smooth bounded surfaces, the stability and convergence of this boundary element 
method can be analysed using standard results from the collectively compact operator 
theory of Anselone [1], 
         To the best of our knowledge, this paper is the first attempt to develop a theory 
for integral equations of the form (1) and their numerical solution. Our arguments 
generalise ones in collectively compact operator theory [1]. Our assumptions, results, 
and methods of proof are closest to those of Atkinson [5], Anselone and Sloan [2-4], 
and Chandler-Wilde [8], who consider the approximate solution of integral equations 
on the real line. 

2. The Original and Truncated Equations. Let k .)(),()( Iyx,yx,kyx ∈=  
We suppose  throughout  tha t ,  for  a l l   and  2≥a aSx ∈ , ),(1 ax SLk ∈  and tha t  k
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satisfies the following assumptions, A1-A4: 

 
A1. For all (x, y) .∈),(),(},∑∈:∈),{(∈ 33 Rtyx,kteytexkTTyxI =++=  
A2. .∞)()(sup:

∈,≥
<= ydsyx,k∫c

a

a

 S
Sx2a

 

A3. .0→as0→)()(_)(sup=:)(
≤,∈',,2≥

hydsy,x'kyx,k∫h
a

a
S

hx'xSxxa
Δ  

A4. For .∞±→as0→)()(,∈),,(= 3±321 xydsyx,k∫Sxxxx
±E  

Let BT := .∑∈},1≤:)(∈{ ∞∞ TallforTL ψψ   Note that Assumptions 
A1-A3 imply that 

(11)    bounded and equicontinuous, TT
T

BKU
∑∈

in that 
       cKT

TBT
≤sup ∞

∈,∑∈
ψ

ψ
 

and 

  ).(≥)(sup
≤,∈,∈,∑∈

hx'KT
hx'xTx'x,TBT

Δψ
ψ

 

Thus, if Assumptions A1-A3 are satisfied, then KT is a bounded operator from L∞ (T) 
to BC(T) for each T  (indeed, K∑∈ T is compact if T is bounded), and 

(12)       .≤sup
∑∈

cKT
T

 

From A1-A3 we have also the following technical lemma: 
LEMMA 2.1.  Define ,0),(),( ≥−+ tfortt ΦΦ  by 

   ),()(sup:)( ~
~∈

ydsyx,k∫t
±S

3tex mΓ
Φ =±  

Where Γ~  : = )).(),((max:)()(},∈),(:)0,,{( -2121 tttbytandxxxx ΦΦΦΦΓ +=  Then 
 .0)( ∞+→→ tastΦ

Proof.  Consider  From Assumption A2, ).t(+Φ ,∞)()(sup ∈ <ydsyx,k∫ SSx  so 
that  is well denned and +Φ

       0→)()(~ ydsyx,k∫
3+ te+S  

as  with x fixed. Applying Al, it follows that +∞→t

(13)    0→)()(~ ydsyx,k∫
+S  

as  with x  =  and  fixed. But, by Assumption A3 +∞→t ),,( 21 txx − Γ∈),( 21 xx
uniformly continuous on S. It follows that the convergence (13) )()(~ ydsyx,k

S +
∫
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is uniform in (x1 ,x2)  ,  so that   as Γ∈ 0)( →+Φ t +∞→t .  Similarly,  0)( →−Φ t  as  
.∞+→t  □  

Assumption A4 gives rise to a similar result concerning the integral over  .±E

LEMMA 2.2. Define ,0≥),(),( tfortt ΨΨ+  by 
   ),()(~∈

sup:)( ydsyx,k±E∫
3teΓx

t
±

=±Ψ  

and .0)()).(),((max:)()( +∞→→−+= tastThentttbyt ΨΨΨΨΨ  
Proof. From Assumption A2,  is well defined and, from Assumptions A2 and A3, Ψ

)()( ydsyx,k±E∫  is uniformly continuous on . It follows that ±S 0)t( →Ψ  from Assumption A4.

 □ 
We shall employ principally the following notions of convergence. For a sequence {Tn} 

∑⊂  and  we shall write  if, for all A > 0, ∑∈T TnT → }:{ AxnTx ≤∈  = }:{ AxTx ≤∈ for 

all sufficiently large n. For a sequence { }nψ , with ),(n nTL∞∈ψ  we shall write 

,0allfor,and,sup,if)( >∞<∞→∞∈→ AnnTnTTLn ψψψ  

ess .sup  ∞→as0→)(_)(≤,∈ nxxnAxTx ψψ

REMARK 2.1.  then, for all sufficiently large n,  TnTIf → ∪−+⊂ )(\ nbETnT
),( ncE +− where  and 0, ≥ncnb ., ∞→∞+→ nasncnb  Thus, i f  T is  bounded, = T  nT

for all  sufficiently large n,  so that,  i f   then (T),Lψ ∞∈ .0→−⇔→
∞

ψψψψ nn  

REMARK 2.2.  If  for each n then )BC(Tψ nn ∈ BC(T)∈ψ . 

REMARK 2.3. If   then ψψ →n ∞n∞ sup≤ nψψ . 

REMARK 2.4. If  and  BC(T)ψn ∈ BC(T)n ∈ψ . for each n, then the convergence  
ψ →n ψ  is strict convergence in the sense of Buck [7]. 

REMARK 2.5. A useful test of convergence is: ⇔→ψψ n  every subsequence of { }nψ  
has a subsequence that converges to ψ . 

Our next two results are, respectively, a collective compactness and a convergence property of 
the operator sequence { }

nTK , in the case T→Tn . 

LEMMA 2.3. Suppose that )(,∈,⊂}{ ∞ nnnn TLTTT ∈ψΣΣ for each n, and  

 .  T h e n ,  f o r  s o m e  s u b s e q u e n c e  )(∈ψ→ψ},{ TBCK
mmm nnn Tψ .  ∞<sup ∞nn ψ

Proof. Define  for A > 0, and let . Note },≤||;∈),,{(: 3321 AyTyyyT*
A = nn ψK=x

nT

that, for all A > 0,  for all sufficiently large n. n
*
A TT ⊂

By (11), { }nx  is bounded and equicontinuous. By the Arzela-Ascoli theorem and the 

above remarks, it follows that  has a subsequence,  which is a Cauchy sequence on }{ nx }{ (1)
nx

*
1T *

2 . Similarly,  has a subsequence,  , which is a Cauchy sequence on T  }{ 1)(m
nx }{ )2(

nx

Continuing the argument, we may construct, for each m Є N, a subsequence  of }{ )(m
nx

}{ 1)( -m
nx  which is a Cauchy sequence on . Then  is a Cauchy sequence on  for *

mT }{ )(n
nx *

mT
each m  Є  N and thus converges to an element of BC(T) .  □ 

LEMMA 2.4 .    Suppose that  )(∈∈⊂}{ ∞ nnn TL,T,T ψΣΣ  for  each n,  

and .n ψψ →  Then ψψ Tn KK
nT → . ),T(L∞∈ψ

Proof. If T is bounded then, by Remark 2.1, the above is no more than a statement that KT 

is continuous. Suppose that T is unbounded. Since, by (11), { }nT ψK
n

 is bounded and equicon-

tinuous, to show  we need only show pointwise convergence of  to ψKψK TnTn
→ nT ψK

n

ψK  T
Let C := supn ,n ∞

ψ  choose x = (x1, x2, x3,) Є T, and define *
AT  as in the previous 

proof.  For al l  A  > |x3 |  and provided *
AT nT⊂  ( true for al l  sufficiently large 
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n), 
 

(y)ds(y)ψ(yy)(ψk(x,*∫xKxK nnAT nTnnT ))≤)()( ψψ  

      
  )(|),()(|),(

\\
yds yxk|∫Cyds yxk|∫C *

ATT*
ATnT

++

 
   )(|),(|)()(

≤
sup )-()

3

ydsyxk∫Cyy
Ay

c nCEnbE(n +∪+
+≤ ψψ  

     )(|)(|2
\

ydsyx,∫C *
ATT

+

fo r  a l l  s u f f i c i e n t l y  l a r g e  n ,  w h e r e   a n d   ( T o  o b t a i n  0≥nn c,b ∞+→nn,cb

this last inequality we have used Assumption A2, that,  ),\(∪)\(⊂\ *
An

*
An TTTTTT

and that, by Remark 2,1,Tn\T C (E+ - bn) ∪  (E- + cn) for all sufficiently large n.) 
Applying Assumption Al and recalling the definitions of Ψ  and  we obtain Φ

))()(()((y)≤||
sup≤(x)(x) 33 xcx+bCyA3ycKK nnnTnTn

ΨΨψψψψ ++  

    + )).()((2 33 xAx+AC ΦΦ +  
Given Є > 0, by Lemma 2.1, the final term on the right hand side is ≤ Є/2 if A is chosen 
sufficiently large enough. Then, since  ψψ →n  and by Lemma 2.2, the remaining terms 

are  for all sufficiently large n. Thus 2/≤∈ ( ) ( ) 0→xKxK nTnTn
ψψ  as n  for every ∞→

fixed x. □          
We apply the above compactness and continuity properties first of all to give 

a condition for the continuous dependence of φ  on g in equation (1), in the case 
( ) ( )SBCKI∈g .  

THEOREM 2.5. If I - K is injective then (I — K)-1 exists and is a bounded 
operator on (I – K)BC(S). 

{ }⊂nProof. Suppose that the theorem is false. Then there exists a sequence ψ  
BC (S )  wi th  1n =

∞
ψ  for  each  n  such tha t  .0→∞nn Kψψ .  S ince  1∞ =nψ ,  

we can find a sequence {an}  R such that ⊂ ,)(sup 2
1~ ≥∈ xnx χΓ  where )(⊂}{ SBCnχ  is 

defined by .∈),()( 3 Sxeaxx nnn ψχ =   From Assumption Al it follows that 
 Thus ).()( 3 xKeaxK nnn χψ =

 (14)    0→∞∞ nnnn KK ψψχχ =  
as    .∞→n

Since { χ n} is bounded in BC(S), by Lemma 2.3 we can choose a subsequence 
}{

mnχ  and  Є BC(S) such that χ .→ χ
mnχK  From (14) it follows that χ→

mnχK  

and then, from Lemma 2.4, that .K→ χ
mnχK  Thus .= χKχ  Since ≥∞χ  

( )
2
1≥nΓ~inf ∈ xx χ  and I - K is injective we have a contradiction. □ 

In the next two theorems we commence an examination of conditions for (I –
K)BC(S) = BC(S) and of the convergence of ,aφ  the solution of the integral equation 
(9) on Sa, to φ  as  ∞→a

THEOREM 2.6. Suppose that I - K is injective and that, for some A > 0 and 
all   exists and is a bounded operator on BC(Sa), with C := ( ) 1,≥ aKIAa

( ) .∞<≥sup 1
aKIAa  Then (I — K)-1 exists as an operator on BC(S) with 

( ) CKI ≤1   Moreover, if  g Є BC(S), {an}   R⊂ + and ∞→na , then (I –

( ) .→) 11 gg KIEK anna  
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Proof. Let g  BC(S) and define the sequence ∈ },{ nφ  where )(∈
naSBCnφ  for 

each n, by  Then g.
nn aa EK-In

1)(=φ

(15)     g.
nn aa EK nn += φφ  

Since { } is a bounded sequence, by Lemma 2.3 there exists a subsequence nφ }{
mnφ   and  

 BC(S) such that ∈φ
     .φφ →g

mnnmn aa E+K
m

 

Thus,  from (15),  φφ →
mn  Hence, from Lemma 2.4,  φφ KK

mnmna →  ,  and thus 

.KEK
mnmn aa mn gg ++ →φ φ  T h u s  g+= φφ K  a n d  s o   Є  ( I  –  K ) B C ( S )  and g

we have shown that I - K is surjective, so that (I - K)-1 exists as an operator on 
BC(S). 

By the same argument, given g  Є BC(S), every subsequence of  has gnaEK-I 1-)(

a subsequence converging to   Thus, by Remark 2.5, g1-)( naK-I

      gg 1-1- )(→)( K-IEK-I nn aa
for every g  Є  BC(S).  From this and Remark 2.3 it  follows that | |(I -  K)- 1 | |  ≤  C .  
□ 

THEOREM 2.7. Suppose that the conditions of the previous theorem are satisfied. 
Define  and  If gnnn aa EK-I 1-)(:=φ .)(: 1- gK-I=φ 0→)(xφ  as ∞→x  then 

 as  ∞→n0R nna →
∞

φφ

Proof.  By definition, 
(16)     g

nn aa EK nn =φφ  
and ,K g=φφ   so that 
(17)     .EKE

nnn aaa n g=φφ                                     
F r o m  ( 1 6 )  a n d  ( 1 7 )  i t  f o l l o w s  t h a t  
     ,)(- 1- xnKIE naann −=φφ

Where ,KEEKx
nnn aaan φφ −=  so that 

(18)       ∞.≤∞- ||X||C||E|| nan n
φφ  

      For  each n,  le t  ( ) .: nn 21- a=A  By Assumptions Al  and A2,  and from the  
definition of  , Φ

      )x(Ksup≤)xK(Esup
1_anS\naSx∈1_anS\naSx∈ na

φ      

       )(supc)ds(),k(sup≤ ∞
1

yyyx∫
nA

nA SS\y_anS\naSx∈ S φφ
∈

+     

       .)y(supc||||)t(sup≤
AnS~\Sy

∞
n

At
φ+φΦ

∈≥
 

The same upper bound applies to )x(EKsup nana1_nana S~`S∈x
φ  so that, for x ∈  

1_na
na S\S  

                                    .)y(supc2)t(sup2≤)x(X
AnS~\Sy∈

∞
A≥t n

n
φ+φΦ  
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For, ,S~∈x

1_na
 

 ),()(),()())()((=)(
11

ydsyyxK∫ydsyEx,yk∫xX _naS\naSn S\Sna
_na

φφ  

So that  
  )y(supc2≤)y(supc2≤)x(X

nA1_an S~S\ySS\y
n

φφ
∈∈

 

Thus  
  ( ) .,)y(supc2tsup2≤X

AnSSy
∞

At
∞

n

n
φ+φΦ

∈≥

 

   
so  tha t ,  by  Lemma 2 .1 ,  0→∞nX  | and ,  by  (18) ,  0→_

∞φφ naEn  a s   ∞→n
        Now, 

)x(_)x(sup)x(Rsup)x(sup≤R_
nn

nn

n

n
a

S\S∈x
a

S\S∈xS\S∈x∞a n
aa

n
φφ+φ+φφφ  

                                                   )(_)(sup2)(sup2≤
∈

xxx n
aa nn S∈xS\Sx

φφφ +  

                   ∞
_2)(sup3≤

1_
~∈

φφφ nn
a

a
S\Sx

Ex
n

++  

S i n c e  ( ) ( ) ( ) 1S\S∈≤ _nax,xxE_x na φφφ  T h u s  0→∞na nR_ φφ  a s    ∞→n
□ 

The next theorem is a criterion for the existence of a solution to equation (9)  
for all sufficiently large a ≥ A and the uniform stability of the approximate inverse  
operators. 
      THEOREM 2 .8 .  I f   and   are  in jec t i ve ,  then  ,K_I,K_I + K_I 1_

)_( aKI   
exists and is a bounded operator on BC(Sa) for all sufficiently large a ≥  A and  

.∞)K-I(sup:C
1-

aAa
<=

≥
 

1_
)_

aKI(  exists (i.e. I - Ka is injective) then, since Ka is         Proof. Note that if 
compact, (I - Ka}-1 is a bounded operator on BC(Sa} by the Fredholm Alternative. 
       Suppose now that the theorem is false. Then there exist sequences    +⊂ Ran}{

and   such that }{ψ n )(, naSBCa nn ψ∞→ and 1=∞nψ  for each n, and 

(19)                                             .0K nn na →− ∞ψψ  

Since 1n =∞ψ  we can find a sequence ( )}{ nx  such that ( ) ( ) ( ) ( ) ∈)( 321
nnnn ,x,xx=x  

naS  f o r  e a c h  n  a n d   ( )
2
1≥)( n

n xψ . 

       There are two cases to consider: ∞→)( )(
3

n
n xaa  as ∞→n ; }{)( )(

3
n

n xab  

is bounded. 
         CASE (a). For each n, define   and  by )(

3
_: n

n xST na= )(∈ nn TBCX

(20)                                       .∈),()( 3
)(

3 n
n

nn Txexxxx +=ψ
Then, by Assumption Al, it is easy to see that 
(21)                           . na TxxXKexxK nnT

n
nn ∈),()( 3

)(
3 =+ψ
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CASE (b). We choose subsequences  and }{

mna ( )}{ 3
mnx such that either  _{

mna
( )nmx3 }  i s  bounded or   i s  bounded.  Def ine   i n  t h e   ( )}{ 3

mnxa
mn + = mnam aS:T

mn
T

case  bounded, and  for each m, by ( )− }{ 3
mn

n xa
m
T ,mx

(22)                               .3 )()( mm
Tx ,eaxxx

mm nnm ∈±= ψ  

Then  
(23)                       .∈),()( mmT TxxXKaxK

mmmmn nna =±ψ  

Clearly, in both cases (a) and (b), 1=∞mX  for each m and, from equations (20)  

and (21) in Case (a), (22) and (23) in Case (b), 

(24)                     0→ψ__
∞∞ mmnmm nan KXKX mTm ψ=  

as  Note also that , where T = S (Case (a)) or T = S± in the case.  .m ∞→ TT .m →

{ }( )m
m

n
n xa 3m  bounded (Case (b)) ,  and that ,  for some A > 0 ,  

(25)            ( )
2
1≥sup

≤∈

xX m
Ax,mTx

 

for all m. 
Applying Lemma 2.3,  has a subsequence  such that  }{ mXK

mT }{ jmXK
mT →jmT XK

jm

X ∈  BC(T).   From (24) it follows that  and then, from Lemma 2.4, that  XX jm →

  Thus TXKX = but ,  by (25) ,  2
1≥∞X .  This  is  a  contradict ion  .KXK XTjmT jm

→

since T = S, S+, or S-, so that I - KT  is injective.     □ 
         Combining these results, Theorems 2.6-2.8, we have immediately the following 
corollaries, conditions for the solvability of equation (1) and of (9) and for the con- 
vergence of φφ toa . 

COROLLARY 2.9. If  and  are injective, then ,K_I,K_I + K_I ( ) 1-KI −  
exists and is a bounded operator on BC(S), so that equation (1) has a unique solution φ  
for all g Є BC(S). 

COROLLARY 2.10. If  and are injective, then equation (9) ,K_I,K_I + _K_I
has a solution, aφ  for all sufficiently large a ≥ A. Moreover, φφ →a  the solution of 

equation (1), as ∞→a . Further, if ( ) 0→xφ as ∞→x , then .R aa 0→∞ _ φφ  
     3 .  Numerical  Solution of  the Truncated Equations.  In  this  sect ion we 
extend the arguments of Section 2 to investigate the convergence of a simple piecewise 
constant finite element collocation method applied to the truncated equation (9) in 
the limit  and  , where h is the diameter of the largest element of the ∞→a 0→h
mesh. 
     For T ∈  ∑  bounded we call Π  =  a mesh on T if, for each i ,   },.....{ )()1( Nγγ

( ) Tγ i ⊂  is open in   and ( ) ( ) ,,, jiθγγT ji ≠=∩ ( ) T
1

=
=U

N
i

iγ  For a mesh II let  
h( ) denote the diameter of the largest element of Π Π . 
     Given a  sequence {Tn :  n  ∈  N} Σ⊂   (each Tn  bounded)  and a  mesh  Π n  =   

( ) ( )},....,{ 1 nN
nn γγ  on Tn, for each n, one can construct a sequence of piecewise constant 

interpolation operators {Pn : n ∈  N}, where Pn : BC(Tn)  defined by )()(: nTLTBCP nn ∞→

(26)                           ,,....1,∈),()( )()(
n

i
n

i
nn NiγxxxP == ψψ

where  is a given interpolation point in . ,....,2,1,...1, ,
)( == nNix n

i
n

)(i
nγ
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    REMARK 3.1. If  )(, nTBCnTnT ∈∑∈→ ψ  for each n,  ,BC(T)∈ψ→nψ  a n d  
,0)(: →∏= nhnh then, for each A > 0 and all sufficiently large n, 

)()(sup≤)()(sup
nhA+≤xT,∈x≤x,∈

xxxxP nnn
ATx

ψψψψ  

0→sup+ )ψ(x'_ψ(x)
nn h≤x'_x,hA+≤x',xT,∈x'x,

       

as ., ψ ψ→∞→ nnPthatson  
       We have the following lemma, analogous to Lemma 2.4, a continuity property of 
the operator sequence { })(nK , where )(nK  : BC(Tn)  BC(T→ n) is denned by 
(27)        .)(

nT
n PKK

n
=

LEMMA  3.1. Suppose that {Tn} )(,, nn TBCT ∈∑∈∑⊂ ψ  for each n,  
{ }nPTBC ),(∈ψ is the sequence of piecewise interpolation operators given by (26), 

ψψ →n .and  Then  0→nh .)(
ψψ Tn

n KK →

        Proof. Apply Lemma 2.4 and Remark 3.1 to the sequence { }nnPψ .   
        Throughout the remainder of the section we suppose that the following additional 
assumption is satisfied: 
      A5. {Pn} and  are denned by (26) and (27), with T}{ )(nK n  =  for n  

naS ∈  N, 
and {an} . Also, ),2[ ∞⊂ ∞→→∏=∞→ nhhn ,)a nn as0(:, . 

       Suppose that Assumption A5 is satisfied and, for n ∈  N, define  a piecewise ,~ )n(φ
constant finite element collocation method approximation to 

naφ , by 

    )(∈)(~,)(~)(~
naSBCnPnn

naKnPgnaEnPn
nP φφφ +=  

Sloan [12] proposed using the iterated collocation solution rather than the colloca- 
tion method approximation. The iterated collocation solution, , is )()(

na
n SBC∈φ

obtained by applying one Neumann iteration to )(~ nφ : thus 
    )()( ~: n

aa nn
KgE φφ +n . 

Note that )()(~ n
n

n Pφφ = , so that  and )(nφ )(~ nφ  agree at the collocation points, and 
)n(φ )n(φsatisfies equation (10). From the results of Sloan [12] it can be expected that  

will approximate 
naφ  more accurately than )(~ nφ  and we concentrate on proving the 

convergence of 
naφ  in the remainder of this section. Note that, since )()(~ n

n
n Pφφ = , 

     φφφφ →→~ )()( nn if , 
by Remark 3.1. 
     We now present results on the stability and convergence to φ  of the iterated 
collocation solution, . Our results are discrete versions of Theorems 2.6-2.10 of )n(φ
the last section. 
       THEOREM 3.2. Suppose that I - K is injective and that, for all sufficiently large 

1)( )(, −−≥ nKINn e x i s t s  a n d  i s  a  b o u n d e d  o p e r a t o r  o n   a n d   )(
naSBC Nn≥sup

.T h e  f o r  a l l    == :→gEI:,SBC∈g na
nn φφ 1)()( )()(∞||)(|| 1-n <− )(KI

.0→||_||,∞→)(.∞→_
∞

)(1- n
naRgKI φφφ thenxalsoIfnas)(  

     Proof. Let g∈ BC(S) and define the sequence  as above. Then }{ )(nφ
(28)       . gE+PE+K= na

(n)
nna

(n)(n)(n) φφφ
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Since , by Lemma 2.3 there exists a subse- ∞||||sup||||sup )(

≥
)(

≥ <= n
Nn

n
nNn P φφ

quence  and  such that }{ )( mnφ )(∈ SBCφ

     φφ →+)()( gmnaEmnmnK

Thus, from (28), . The proof that  now follows that of Theorem  φφ →)( mn φφ →)(n

2.6, utilising Lemma 3.1 in place of Lemma 2.4. Similarly, the proof that _|| φ  
∞→as0→||∞

)( nR n
na φ  follows that of Theorem 2.7. □   

THEOREM 3.3.  If I - K, I - K+ , and I – K- are infective, then  1-)( )( nK-I
exists and is a  bounded operator on BC(Tn ) for all sufficiently large n    N  and ≥

∞||)(||sup 1-)(
≥ <n

Nn K-I . 
Proof. Suppose that the theorem is false. Then, arguing as in the proof of 

Theorem 2.8, it follows that there exists a subsequence { })( mnK  and a sequence 
{ } with  and )(∈

mnam SBCψ N∈,1=|||| ∞ mmψ , such that mψ

      . 0→∞||||∞|||| )(
mmnmnamm

mn
m PKK ψψψψ =

Since , we can find a sequence ,1=|||| ∞mψ { })(mx  such that  =  )(mx ),,( )(
3

)(
2

)(
1

mmm xxx

2
1)()( ≥)(and,∈,∈ mm

mna xmS ψN . 

Now, arguing as in proof of Theorem 2.8, one can construct a sequence {Tm}  ⊂
∑ such that  a sequence },,,{m −+∈→ SSSTT }{ mχ , with mχ   BC(T∈ m} and 

2
1

≥|)(|sup ≤,∈ xmAxTx m
χ  for some A > 0 and each m, and a sequence of piecewise 

constant interpolation operators, , where  : BC(T}{ *
mP *

mP m) (T∞→ L m) for each m, 
such that 
    ,0→)∏(,0→|||| *

∞
*

mmmTm hPK
m

χχ

as m , where  is the mesh on T∞→ *∏m m corresponding to the operator . For *
mP

example, in Case (a) of the proof of Theorem 2.8 , )∞→∞→||( )(
3 masxa m

mn

       ,=: )(
3
m

am xST
mn

     ,∈),(:)( 3
)(

3 m
m

mm Txexxx +=ψχ

       ,∏=:∏ )(
3

* m
mm x

and, for )(∈*
mTBCψ , 

         , m
m

nm TxexxPxP ∈),(:)( 3
)(

3
** += ψψ

where )(∈
mnaSBCψ  is defined by )(:)( 3

)(
3

* exxx mψψ = . A contradiction is now 

obtained as in the last paragraph of the proof of Theorem 2.8, utilising Lemma 3.1 in place 
of Lemma 2.4.  □  

Combining the two theorems, we obtain the following, our main convergence result 
for the iterated collocation solution. 

COROLLARY 3.4. If I - K, I - K+, and I – K - are injective, then, for all 
sufficiently large n   N, equation (10) has a solution, and , the solution of ≥ φφ →)(n

(1), as n . Further, if  ∞→ ∞→→ xasx 0)(φ , then . 0→∞|||| )( φφ n
naR
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   4. An Application to Acoustic Scattering. We apply the results of the pre- 
vious sections to the case in which S is the surface of an acoustically rigid cylinder 
embedded in a homogeneous fluid occupying D, the exterior of S. 

For T  let n (x) denote the normal to T at x, directed into the exterior of T, ∑∈
and let DT denote either the interior or the exterior of T. Following Colton and Kress 
[9], let (Dℜ T) denote the linear space of all complex functions )(∩)(∈ 2

T TDBCDCΨ  
such that: 

(i) the normal derivative on the boundary exists in the sense that the limit 

(29)   ,∈),()).(+(∇lim=∂
)(∂

0>,0→
Txxυxhυxu

υ
xu

hh
 

exists uniformly on compact subsets of T, where (x) = n(x) if Dυ T is the exterior 
domain, (x) = - n(x) if Dυ T  is the interior domain; 

 (ii) 
(30)    ∞<|)()).(+(∇|sup

∈<<0,∈
xυxhυxu

hTx
for some ∈  > 0;  

(iii) 
(31)    ∞<)(∇sup

∈≥)(,∈
xu

Tx,distDx T

 

for all ∈ > 0, 

Note that if u (Dℜ∈ T) then, by (i) and (ii), ∈∂
∂

n
u

 BC(T). 

Consider the scattering of an incident acoustic wave, bounded and continuous 
on S, and of angular frequency ω  (  time dependence). This gives rise to the tiωe
following boundary value problem for the space dependent part of the scattered field. 

BVP1 Find u (D) such that ℜ∈

(32)     ,0=+ 2 DinuκuΔ

(33)     S.onF
n
u

=∂
∂

 

In equation (33), F  BC(S) is given ∈ ,
n∂
u∂F(

i

−=  where  is the incident iu

field) as is  C. We will assume throughout that Im ∈κ κ  > 0, so that the medium of 
propagation is lossy. The results we obtain apply only partially to the case Im κ  > 0. 

This boundary value problem can be reformulated as a boundary integral equa- 
tion. Define G(x,y) by equation (4). For R > 0 let BR := }:∈{ 3 Rxx <R . For    

h > 0 sufficiently small, let  := {x + hn(x) : x hS ∈  S}, so that is parallel to hS
and distance h from S and of class [9, p.37], and let D1C h be the region exterior to 
Sh. Applying Green’s representation theorem [9, p. 68] in Dh , letting R RB∩ ∞→ , 
noting that G(x, y) decays exponentially as , and that u, are bounded ∞→|-| yx

in hD  by (31), we obtain 

  .∈),()(∂
)(∂

-
)(∂

)(∂
)(=(x) h

s Dxydsyx,G
n
yu

yn
yx,G

yu∫u h  

Letting h   0, and utilising equations (29), (30), and (33), we see that →

(34)   ,∈),()(
)(∂

)(∂
+)(=)( Dxydsyu

yn
yx,G∫xUxu S  
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Where 
 
(35)   .∈),()()(_=:)( Dxydsyx,GyF∫xU S  
 
Equations (34) and (35) represent u in D as the combination of a single- and a double- 
layer acoustic surface potential. Prom standard properties of these potentials [9] it 
follows that U  BC∈ )(D  (in fact U ))(Dℜ∈  and that the double-layer in (34) is 
continuous up to the boundary S, its limiting value given by [9, Thm 2.13]. Thus, letting 
x in (34) approach S, we find that )(∈|: SBCsu=φ  satisfies the following boundary 
integral equation: 
 

(36)   ,∈),()(
)(∂
)∂2)()( Sxydsy

yn
yx,

s∫xx φφ (
+=g  

where g := 2 U |s  ∈  BC(S). This equation is of the form (1) with k(x,y) given by  
(3). Using a mixture of elementary and standard arguments (e.g. [9, p. 50]) it can be  
seen that k, given by (3), satisfies Assumptions A1-A4 (for details see Peplow [11]). 

In order to apply the results of the previous sections we need also to consider 
the same integral equation but with S replaced by S+, S- or Sa, for some a > 0. 
We will show uniqueness of solution of equation (36), and of the same equation with 
S replaced by S+ or S-, by using the following uniqueness result for corresponding 
boundary value problems. Note that this result, in particular, shows that BVP1 has 
at most one solution. 

THEOREM 4.1. Suppose that T ,∑∈  DT is either the interior or exterior of T, 
and )( TDℜ∈ν  satisfies 

(37)   TDinυυ 02 =+ κΔ

and either 

(38)    0=υ

or 

(39)   0=∂
∂
n
υ

 

on T.  Then  = 0. υ
Proof. For h > 0, define Th = }∈:)({ Txhxυx + . Then Th is the parallel 

surface distance h from T lying in DT  Let  be the region exterior (interior) to h
TD

Th if DT is exterior (interior) to T. For ∈  > 0, define by  )(∈ ∞
∈

3RCF =)(∈ xF

exp )+1∈_( 2x . 

Applying Green’s first theorem to υ  and  in the region  utilising ∈Fυ ,∩ h
TR DB

equation (37), then letting R  we obtain ,∞→

          { } ds
υ
υυF∫dxυυF∫ h

TDh
TD ∂

∂∇ ∈∂
222

∈ ++κ  

(40) dxυFυ∫- h
TD

∇.∇ ∈=  

Letting h  and utilising (38) or (39) we find that the integral over  vanishes 0→ h
TD∂

and equation (40) holds with  replaced by Dh
TD T  .Multiplying this equation by κ , 
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and taking the imaginary part, we obtain 

(41)   }∇.∇{)( ∈
2
∈

2
∈ dxυFυ∫ImqPIm TDκκ =+  

where  : = ∈p .}∇{:,}|{ 2
1

2
∈∈

2
1

22
∈ dxυF∫qdx|υF∫ TDTD =κ  Noting that ∈∈ ∈≤∇ FF  

and applying the Cauchy-Schwarz inequality, we obtain 
(42)     .)( 22

∈∈∈∈ ∈≤+ qpqPIm κ
It follows that Im ∈∈ ∈≤ qpκ  and Im ∈∈ ∈≤ pqκ  so that  Thus, .qp)(Im 2

∈∈κ
for 0, =<∈ ∈pIm κ . Thus  = 0 in Dυ T. □ 

Using the above result, the following theorem shows that both equation (1) and 
equation (9), with k defined by (3), have at most one solution. Note that in this next 
theorem and through to the end of this section KT is defined by equation (6) with k 
defined by (3). We give a fairly brief version of the proof of Theorem 4.2 — the result 
is in any case standard in the case T bounded [9] — for further detail see Peplow [11]. 

THEOREM 4.2.  For all T TKI −∑∈ ,  is injective on BC(T). 
Proof, Suppose that T ∈,∑∈ ψ  BC(T) and ψ  = . From [9, Theorem ψTK

2.30] (which applies immediately if T is bounded, with some additional argument, if 
T = S, S+  or S-), KT  maps BC(T) onto the Hölder space  and C   ),(,0 TC α )(,0 Tα

onto  It follows that ).(,1 TC α )(,1 TC αψ ∈ . 
Let DT denote the exterior of T and define 

       ,∈),()(
)(∂

)(∂:)( TT Dxydsy
yn

yx,G∫xυ ψ=  

   .\∈),()(
)(∂

)(∂:)( TT Dxysdy
yn

yx,G∫xw 3Rψ=  

Clearly 

(43)     ,in0=+ 2
TDυυ κΔ  

(44)            .\in0=+ 32
TDRww κΔ  

From [9, Theorem 2.13 and 2.23], and noting that ),(
2
1)()(

)(∂
)(∂ xydsy

yn
yx,G∫T ψψ =  

 (since ψ  = ψTK ), it follows that )\(∈),(∈ 3
TT DRwDυ  and Tx ∈

(45)      ,= ψυ  
(46)      w =  0, 

and 

(47)     
n
w

n
υ

∂
∂

=∂
∂

 

on T. Noting (44) and (46) and applying Theorem 4.1, it follows that ω  = 0 in TD\3R , 

so that 0=∂
∂

n
w

 on T. Then, noting (43) and (47) and applying Theorem 4.1, it follows 

that TDυ in0=  and, from (45), that .0=ψ  We have shown that I – KT is injective.  
□ 

Having shown that the homogeneous version of (1), with S replaced by T, has 
no non-trivial solution, for all T ∑∈ , we can now obtain existence of solution to 
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equation (1) and equation (9), convergence of ∞→→ aa asφφ , and convergence of 
the numerical approximation , denned by equation (10). Applying Corollary 2.9 )(nφ
and Theorem 4.2 we have immediately 

COROLLARY 4.3. The integral equation (36) has precisely one solution. 
From Theorem 2.8, Corollary 2.10 and Theorem 4.2 we have 
COROLLARY  4.4. Equation (9), with k defined by (3), has a solution, aφ , for 

every a  2. For some A > 0, . Further, ≥ ∞<||)(||sup 1
≥ aAa KI φφ →a  as , ∞→a

and, if φ (x)  0 as x  , then → → ∞ ∞→0→|||| ∞ aasR aa φφ . 
Finally, from Theorem 3.3, Corollary 3.4 and Theorem 4.2 we have 
COROLLARY 4.5. Suppose that Assumption A5 is satisfied. Then equation (10), 

with k defined by (3), has a solution,  for all sufficiently large n  N, and )n(φ ≥

∞<||)(||sup 1)(
≥

n
Nn KI . Further,  as  0→)(,,∞→→)( xifandnasn φφφ

.∞→0→||||,∞→ ∞
)( nasRthenx n

a φφ
n

 
We remark that the proof of Theorem 4.2, which shows, inter alia, that, if φ  

satisfies equation (36) with g = 0, then υ  satisfies BVP1 with F = 0, can be extended 
(see Peplow [11]) to show that BVP1 and the integral equation (36) (with g := 2 U|s) 
are equivalent, in that, if φ  satisfies (36), then u, defined on S by u|s = φ , and in D by 
(34), satisfies BVP1. (We have already shown conversely that if u satisfies BVP1 then 
u|s satisfies (36).) Thus Corollary 4.3 also establishes, by integral equation methods, 
unique existence of solution of BVP1. 
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