TR/90 November 1979

NUMERICAL SOLUTION OF A FREE BOUNDARY
PROBLEM BY INTERCHANGING DEPENDENT
AND INDEPENDENT VARIABLES

by

J. CRANK and T. OZIS



w926033x



ABSTRACT

The classical problem of seepage of fluid through a porous dam is
solved to illustrate a new approach to more general free boundary
problems. The numerical method is based on the interchange of the
dependent variable, representing velocity potential, with one of the
independent space variables, which becomes the new variable to be
computed. The need to determine the position of the whole of the
free boundary in the physical plane is reduced to locating the position
of the separation point on a fixed straight—Iline boundary in the
transformed plane.

An iterative algorithm approximates within each single loop both

a finite-difference solution of the partial differential equation and
the position of the free boundary. The separation point is located
by fitting a 'parabolic tail' to the finite-difference solution.






1.

Introduction

A free boundary problem involves the solution of an elliptic partial
differential equation subject to conditions on a boundary, .part of which
is unknown in position and shape. The most familiar model problem refers
to the seepage of water through an earth dam, separating a high reservoir
from a lower one. The upper surface of the water within the dam has to

be determined as part of the solution.

Successive authors have approached the problem by solving a sequence of
fixed boundary problems corresponding to successive, iteratively-computed
positions of the free boundary. Relaxation methods, finite differences
and finite elements have all been used to execute the solution. Key
references are to be found in Cryer (1976), Aitchison (1972; 1977),

and Furzeland (1977; 1979).

More recently, Aitchison (1977) and others referred to in Furzeland (1977;1979)
have avoided the iterations by using the Baiocchi transformation (1972)

to reformulate the problem as a variational inequality over a fixed domain.

The present paper transforms the region within the dam contained partly
by the free boundary into a domain with fixed, known boundaries by
interchanging the dependent variable with one of the independent, space

variables.

This idea is well-tried in fluid flow problems and has recently been applied
to moving boundary problems in heat flow (Crank & Phahle, 1973; Crank &
Gupta, 1975; Crank & Crowley, 1978, 1979).



In the transformed plane it is possible to solve the dam problem, for
example, by an iterative algorithm which approximates within each single
iterative loop both the solution of the partial differential- equation

and the position of the free boundary.

. The Seepage Problem

The mathematical formulation of the problem depicted in Figure 1, in

terms of the velocity potential ¢, is

IS I

2 = 0in ABCDE, (1)
b= 1, x =0 on AB , (2)
¢ = ¢4, x =L on CD, 3)
op/on =0, y =0 on BC, “)
® y, x = L on DE )
0=y, 0p/on=0on AE, (6)

where n is the outward normal on AE.

The double condition on AE is needed here as in all free boundary problems
in order to determine the position of AE as well as to solve the differential

equation (1).

We now replace ¢ (x,y), the usual dependent variable, by x = x(¢,y) as

the new dependent variable. It is easy to see that the partial differential

equation (1) becomes
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In general, on a boundary y = g(x) we have

20,9,
b, = -
[1+(g) 3

where, for example, ¢, = 0¢/0n n and n is the outward normal toy = g(x) .

., g=dyldx, ®)

Provided g' # o, we have on the free boundary AE

g0 %

o ay=0, y =¢. ©)
But (0¢/0y), = — (0x/0y)/ (0x/0d)so that
g.+(%] _ 0.y = n. (10)
% Jy
On the impervious foundation BC we have
2’; =0, y=0. (11)
The other boundary conditions are
x=0, ¢=1; x=1L, ¢ = 09,4, 0 <y<d. (12)
and x=L, ¢ =y onDE. (13)

Thus, we now wish to solve (7) subject to conditions (10) to (13) inclusive

in the region B'A'E'D'C in Figure 2 in the (y, ¢) plane. All the boundaries

are fixed. The original free boundary AE has become the known straight

boundary A'E', y = ¢. What we do not know, however, is the position

of E' on A'D' corresponding to the separation point E in Fig. 1, at which

the boundary condition on A'D' changes from x = L to the condition (9).



We cover the region with a mesh of spacings d¢, dy, and denote
x(18¢, jdy) by x;; Equation (7) can be approximated in part by

(Xio,j = 2% j + X))

2
T gy !
oy K, j — Xict,j)

= 0, (14)
In order to approximate 9%¢/dy” at the point (i8¢, jdy) we need three
values of ¢ on the lines corresponding to equally-spaced values of

Y, ¥Yi-1 > Yij, Yj+1 , but chosen such that x = x; ; at each point.
We interpolate linearly on each of the mesh lines y = yj+1 and y = yj_i

as illustrated in Figure 3. Thus on the y = y;+; line we obtain

O (X = Xij o) F O (X 11 —Xi5)s

¢(Xi,j) =

(15)

Xijr1 — Xitl, j+1

and similarly on y = yj.;.

Substitution of the resulting two values of ¢ together with ¢; itself

into the usual finite-difference replacement for 0°¢/¢y” in (14) yields
an approximation to (7) for the typical internal point (id¢,joy).

If we collect together terms in x;; we can write the difference equation

in the simplest iterative form

n n n n I’J -
Xisj-17 Xiop, j-1 (Xi+1’j_Xi—l,j

{ =0 b= 1630y’ +} el _
Xn Xn )3
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£20. + ¢1Xi_1aj_1_¢i—1 Xi, -1 N
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Xit, i+ Xi i1 Xiop,j-1

n n
R ST =i Xi, i+l

n
Xisjl ™
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3
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where x[; is then™ iterate of x; j - (16)



Correspondingly, on the boundary y =¢ we use either x = L or

2(8y)?
R — ) (17)
) ) n n

Xit1, i+~ Xi1,j-1

from (10).

Application of (16) to points on the lower boundary, y = 0, i.e. j = 0,
introduces .fictitious points on the line j = -1, one step outside the
region; these can be eliminated from (16) since (11) implies

Xi-1=Xi1 for all 1.

3. The iterative cycle

We start by assuming the separation point E' to be at one of the mesh
points on A' D' in Figure 2. Then we know that x = L along C D and D 'E'
and also that x = 0 on B'A. For every other mesh point within the
region and on the remaining parts of the boundary we have derived an
equation. We carry out one iterative cycle by sweeping along successive
j-lines from left to right in Figure 2 in the order j =0, 1, 2, ....
where y = j = 0 is the lower boundary. The new values of x;; are retained

for use in the next cycle subject to the proviso that on the boundary A'D'

we take the new value x}I' to be

n+l _ - n+l
Xj; = min (L, Xi; )

since we know that x ; ;. < L. We proceed with successive loops, iterating
values of the solution and the position of the separation point E' along
A 'D' in the same loop by using (18). The iteration proceeds until the
difference between successive iterates at each point of the mesh is less
than some prescribed amount. The highest mesh point on the boundary

A 'D' (Fig. 2) at which x = L is the best approximation to the separation



point that can be obtained directly from the set of finite-difference
equations (16) and (17). In general, however, the true separation point
will lie between two neighbouring mesh points and the finite-difference
solution itself will be least accurate near the separation point.

In particular, this solution will not satisfy the condition that the
gradient of the free boundary dx/dy, should approach zero at the separation
point. We therefore fit a "parabolic tail" to the finite-difference

approximation to the free boundary.

Improved position of separation point

Suppose the true position of the separation point is denoted by

E'(x =L,y =ys), (Fig. 2) where ys <yj, and (j,j) is the lowest

mesh point on the free boundary for which x < L in the finite-difference
solution.

Since dx/dy = 0 at E'(x = L, y = ys ) we write near E, forx <L,
x=L-A@y-y) , (19)

where A is a constant to be determined. Then

xjj =L-Ayj-yy) (20)
and

dyj 1

] e 1)

dX Yj ! 2A(Y_]_YS)

But from (10) we have

oy — 0% [ X T Xija 27
g'(yi) GYL [—8y J (22)

approximately



By inserting in (20), (21) and (22) the relevant values of x and y

from the final stage of the iterative solution, we obtain an interpolated

value for yg. If yg<yj.1, (19) also yields a revised value for x j.1 j-1.

In order to estimate the effect of the "parabolic tail" (19) on the
finite-difference solution elsewhere in the domain, a further stage of
the iterative process was performed using the value of xj.1,j.1 and of g

at that point from the "parabolic tail". If a significant change was

found in x j, j a new tail was fitted to update yg.

Numerical results

In order to facilitate comparisons with the results quoted by
Aitchison (1977) and Elliott (1976) we take L = 2/3,d =1/6, H =1
and hy = 1/6.

Calculations have been carried out on an 18 x 18 mesh (d¢= 0y = 0.0556)
and 30 x 30 mesh (3 ¢= 0y = 0.0333). In order to start the iterative

process the separation point was first assumed to be at the point D'
in Fig. 2, corresponding to D in Fig. 1. Starting at mesh points further

along the line D'A’ was later found to yield the same final results.

The initial values of x along the free boundary D'A were linear interpolates
between x - 2/3 at D' and x = 0 at A'. On each line, y = constant, initial
values of x at internal mesh points were obtained by linear interpolation

between the end values on C' D'A' and B' A'.

It has not been possible to carry out a formal study of convergence of
the iterative process for solving the non-linear difference equations (16).
Instead, Table 1 demonstrates the convergence of some of the numerical
values obtained on the line y = 1/6 at. selected stages of the 18 x 18

mesh iterative solution. Essentially the same behaviour was found for

the 30 x 30 mesh. The iteration process ceases when xinjﬂ—xinj <10°*

at all points of the mesh.



Fig. 4 shows an extract from the results obtained on the 18 x 18 grid
and Fig. 5 shows all the mesh points in the region of the separation

point.

In Table 2 the positions of the free boundary calculated by the present
method using the 18 x 18 and 30 x 30 meshes are compared with corresponding

results obtained by Aitchison (1977) and Elliott (1976).

Table 3 compares various values obtained for the y coordinate of the
separation point E. It is worth recalling that Cryer (1976) considered

the most reliable value to be 0.5297.

Conclusions

The primary aim of this paper is to demonstrate that the idea of inter-
changing the dependent with one of the independent variables can form the
basis of a method which iterates simultaneously the position of the free
boundary and the solution of the partial differential equation. The results
compare favourably with those obtained recently by mathematically more
sophisticated techniques. For a given mesh, this method locates the position
of the free boundary more precisely than do fixed-domain methods based on
a minimisation or similar formulation. We are conscious that we have used
only the very simplest iteration algorithm and that the convergence would
very probably be improved by using alternative algorithms. We have not felt
it worthwhile to explore this aspect in relation to the already over-studied
dam problem. Equally, the method could be developed using finite elements

instead of finite differences.



TABLE 1

Convergence of values of 10%x at selected internal points

of an 18x18 mesh on y=1/6

¢
4/18 8/18 12/18 17/18
Iteration
0 6222 4444 2667 444
50 6374 4753 2833 465
250 6404 4995 3181 550
289 6405 4995 3186 552




TABLE 2

Comparison of values of 10*x at chosen y-values on the free boundary.

Aitchison |Linear Quadratic
y (18 x 18) mesh | (30 x 30) mesh | (24 x 24) mesh. |element |element

0.5330 6669 6667 6667 - -
0.5333 6667 6667 6665 - -
0.5667 6549 6562 6423 - -
0.6000 6432 6458 6180 - -
0.6333 6149 6120 5960 5957 5975
0.6667 5806 5787 5652 5631 5648
0.7000 5462 5448 5314 5283 5285
0.7333 5089 5064 4943 4908 4914
0.7667 4667 4647 4425 4494 4519
0.8000 4205 4192 4095 4072 4132
0.8333 3722 3695 3611 3583 3653
0.8667 3174 3151 3081 3050 3243
0.9000 2549 2549 2498 2440 2460
0.9333 1860 1871 1835 1735 1904
0.9667 - 1078 - - -




TABLE 3 COMPARISON OF SEPARATION POINTS

Mesh Size Vs Elliott Aitchison
18 x 18 0.5338 - Values in the
range *
24 x 24 - 0.5338
30 x 30 0.5337 - 0.5289 - 0.5426

* The range comes from fitting an analytic expression through r points
of the numerical solution. For r = 13 to 16 inclusive ys is
effectively constant at yg, = 0.5289. Cryer (1976) quotes
ys = 0.5297 evaluated from the analytic solution by
Polubarinova-Kochina (1962).



References

Aitchison, J.M., 1972, Proc. R. Soc. A330, 573-580.

Aitchison, J.M., 1977, J. Inst. Maths. Applics., 20, 33-44.

Baiocchi, C., 1972, Ann. Mat. Pura Appl., 92, 107-127.

Crank, J. and Phahle, R.D., 1973, Bull. Inst. Maths. Applics, 9, 12-14.
Crank, J. and Gupta, R.S., 1975, Int. J. Heat Mass Transfer 18, 1101-1107.
Crank, J. and Crowley, A.B., 1978, Int. J. Heat Mass Transfer 21, 393-398.
Crank, J. and Crowley, A.B., 1979, Int. J. Heat Mass Transfer 22, 1331-1337.
Cryer, C.W., 1976, MRC report 1657, Mathematics Research Center,

University of Wisconsin.
Elliott, C., 1976, D.Phil, thesis, University of Oxford.
Furzeland, R.M., 1977, Technical Report TR76, Department of Mathematics,
Brunel University.
Furzeland, R.M. , 1979, Bull. Inst. Maths. Applics. 15, 172-176.
Polubarinova-Kochina, P.Ya. 1962, Theory of Ground Water Movement,

Princeton University Press



AN

Figure 1.

The dam problem.
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Figure 2.

Transformed plane.
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Interpolation for points at which x = x; ;.
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Selected values of 10*x from 18 x 18 mesh.
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All values of 10*x on section of 18 x 18 mesh. around

separation point.
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