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Supplementary table and movie captions:

Table S1. The changes of water contact angle (WCA) at different plasma treatment time (the first 

plasma treatment).

Table S2. The changes of water contact angle (WCA) after the second plasma treatment.

Table S3. The changes of water contact angle (WCA) after the third plasma treatment.

Table S4. The changes of water contact angle (WCA) at different silane reagents concentration and 

solvents.

Table S5. Comparison of various superabsorbents.

Movie S1. The dynamic measurements of water adhesion on the sample surface.

Movie S2. The dynamic measurements of oil permeation on the sample surface.

Movie S3. The selective oil absorption process of superhydrophobic cellulose aerogel in the soybean 

oil-water mixture (the oil was colored with orange).

Movie S4. The selective oil absorption process of superhydrophobic cellulose aerogel in the 

chloroform-water mixture (the chloroform layer was colored with blue).

Movie S5. The abrasion test of the as-prepared superhydrophobic surface (the aluminium oxide 

sandpaper of 600 mesh as an abrasion surface).



The OTMS concentration, the activation time of cellulose hydroxyl and the plasma radiation time 

were all tested during the experiment process and shown in Tables S1-S4.

In order to make the cellulose hydroxyl activated, the as-prepared cellulose aerogel was firstly 

placed into the plasma treatment system (KSUN, 50kw) for treating a certain time under the argon 

atmosphere. The changes of water contact angle (WCA) at different plasma treatment time were 

tested and listed in Table S1. All the CA values were obtained by measuring five different positions 

for each sample.

Table S1 The changes of water contact angle (WCA) at different plasma treatment time (the first plasma treatment).

Function Samples Plasma treatment time /min CA(°)
1 5 123.6 ± 7.5
2 15 132 ± 0.95
3 25 138.9 ± 0.36
4 30 148.8 ± 0.11
5 40 141.1 ± 0.12

activation of cellulose hydroxyl

6 60 140.9 ± 0.06

Note: Silane modifier concentration: 0.5% (v/v) OTMS dissolved in n-hexane.

It can be seen from Table S1, the CA values increased gradually with the increase of activation 

time from 5min to 30min. However, when the activation time was more than 30 minutes, the CA 

values have a slight decline. The possible reasons can be explained as follows: with the extension of 

the plasma processing time, the hydroxyl groups on the fiber surface were activated and exposed 

gradually. The hydrolyzed –Si–OH of silane was very reactive toward the activated hydroxyl groups 

(C–OH). After modified by the silane reagent (OTMS), the hydrophobic property of the sample was 

greatly improved. However, when the radiation time exceeds a certain value, the increase of the 

activated hydroxyl number does not improve the hydrophobicity of sample, contrary, too much 

plasma radiation may also destroy the fiber surface structure, resulting in a decline of the CA values. 

Thus, 30min was chosen as the optimal activation time for the cellulose aerogel.

After the cellulose hydroxyl activated, the sample was placed into 0.5% (v/v) OTMS for 



modification. Thereafter, the sample was etched by plasma for another 5 min (the second plasma 

treatment) in order to keep the sample surface a certain roughness. The changes of water contact 

angle (WCA) at the second plasma treatment were listed in Table S2.

Table S2 The changes of water contact angle (WCA) after the second plasma treatment.

Function Samples
Plasma treatment time 

/min
CA(°)

1 5 133.8 ± 0.29
2 5 137.6 ± 0.11
3 5 142.9 ± 0.36
4 5 152.4 ± 0.13
5 5 148.6 ± 0.13

keep the surface a certain 
roughness

6 5 142.3 ± 0.36

Note: Silane modifier concentration: 0.5% (v/v) OTMS dissolved in n-hexane.

It can be seen from Table S2, the CA values of samples were all increased when etched by plasma 

for another 5 min. When the samples were firstly activated for 30 minutes and secondly etched by 

plasma for another 5 minutes, the superhydrophobic state could be achieved, for example, the CA 

value of sample 4 increased from 148.8°to 152.4°.

In order to study the strengthen effect of the plasma, the samples were continued to be etched by 

plasma for another 5 minutes (the third plasma treatment) after modification by silane modifier. The 

changes of water contact angle (WCA) after the third plasma treatment were also listed in Table S3.

Table S3 The changes of water contact angle (WCA) after the third plasma treatment.

Function Samples
Plasma treatment time 

/min
CA(°)

1 5 141.7 ± 0.05
2 5 144.5 ± 0.06
3 5 150.9 ± 0.11
4 5 156.8 ± 0.06
5 5 149.5 ± 0.12

keep the surface a certain 
roughness

6 5 144.3 ± 0.16

Note: Silane modifier concentration: 0.5% (v/v) OTMS dissolved in n-hexane.

It can be seen from Table S3, the hydrophobility of the samples were increased greatly and the CA 

values of samples were all greater than 140°. Among which, the sample 3, 4 and 5 have reached the 



superhydrophobic state (WCA>150°), indicating the positive strengthen effect of the plasma 

treatment. The reason can be explained as follows: after the plasma etching for a short time, the 

surface of the samples became coarser, forming many micro/nano-structures. Due to the rough 

nanostructures, the water droplets have no direct contact with the wall surface, resulting in the 

formation of Cassie impregnating wetting area. Therefore, the water droplets exhibited the 

superhydrophobic state and the hydrophobility could be strengthened by plasma etching for several 

times.

The changes of CA values with the OTMS concentration were also tested in this study and listed 

in Table S4. It can be seen from Table S4, the water contact angle reached its maximum value when 

the concentration of OTMS was 0.5% and the plasma treatment time was 30min. However, with the 

concentration of OTMS increased from 0.5% to 2.5%, the CA values have a slight decline from 

148.8° to 116.3°. This phenomenon may be associated with the hydrolysis and condensation 

reactions rate of silane reagents. When increased the concentration of OTMS, the hydrolysis rate 

increased rapidly. Its own polymerization reaction was mainly occurred on the hydrolyzed –Si–OH 

of silane, reducing its combined rate with the cellulose hydroxyl group. Therefore, the water contact 

angle will decrease.

Table S4 The changes of water contact angle (CA) at different silane reagents concentration and solvents.

Samples OTMS 
concentration

Solvent
Plasma treatment time 

/min
CA(°)

1 0.5% n-hexane 30 148.8 ± 0.11

2 1% n-hexane 30 119.2 ± 0.11

3 1% n-hexane — 98.9 ± 1.17

4 2.5% n-hexane 30 116.3 ± 0.93

 



Table S5 Comparison of various superabsorbents.

Noting: “Moil/org” mass-based adsorption capacity, “Voil/org” volume-based absorption capacity

“----” unmentioned in the reference.

Oil absorbents
Density 

(mg/cm3)

Moil/org

(g/g)

Voil/org

(cm3/cm3)
Oil recovery method Ref.

PDMS sponge 180 4~11 0.89~1.34 squeezing 12

Swellable porous PDMS 180 18~22 3.9~5.3
solvent extraction or  
squeezing

13

PU-based graphene foam --- 9~27 0.7~0.96 solvent extraction 15

PU sponges

functionalized graphene 
aerogel

---

14.4

13~26

 30~112

---

---

squeezing

drying

44,45

7

Silylated nanocellulose 
sponge

17.3  49~102 --- solvent extraction 23

Superabsorbent from 
microfibrillated cellulose 
fibers

2.4  88~228 --- squeezing 4

cotton towel 240 5 1.43 squeezing 11

cellulose aerogel from waste 
paper fibers

40 18~20 --- squeezing 17

cellulose based aerogel 34 19~42 0.72~0.99
solvent extraction or 
burning

this 
work

organic nanocomposites --- 2~14 --- --- 41,42

3D macroporous Fe/C --- 4~10 --- solvent extraction 43

nanocellulose/TiO2 aerogel 30 27 0.88 solvent extraction 22

graphene/α-FeOOH aerogel --- 12~27 --- burning 46


