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Abstract—Context: The vast majority of software engineering
research is independent of the application domain: techniques
and tools usage is reported without any domain context. This has
not always been the case - early in the computing era, there were
totally separate application domains (for example, scientific and
data processing) and the research focus was often application-
specific.

Objective: This paper claims that software systems should be
separated and analysed into domain clusters. We propose a code-
based approach to identify the application domain of a software
system, via its lexicon. We compare its precision with the plain
textual description attached to the same system.

Method: Using a sample of 50 Java projects, we obtained i)
the description of each project (e.g., its ReadMe file), ii) the
lexicon extracted from its source code, and iii) a list of its main
topics extracted with the LDA information retrieval technique.
We assigned a random subset of these data items to different
researchers (i.e., ‘experts’), and asked them to assign each item
to one (or more) application domain. We then evaluated the
precision and accuracy of the three techniques.

Results: Using the agreement levels between experts, We
observed that the ‘baseline’ dataset (i.e., the ReadMe files)
obtained the highest average in terms of agreement between
experts, but we also observed that the three techniques had the
same mode and median agreement levels. Additionally, in the
cases where no agreement was reached for the baseline dataset,
the two other techniques provided sufficient support.

Conclusions: We conclude that using the corpora or the topics
from source code can be an adequate substitution to plain
description when assigning a software system to an application
domain.

Index Terms—Application Domains, Source Code, Java, Latent
Dirichlet Allocation, Expert Judgement, Machine Learning

I. INTRODUCTION

Albeit the diversity and context of software systems have
received some attention in the past [26], [10], contemporary
research in the computing field is almost entirely application-
independent. This has not always been the case - early in the
computing era, there were totally separate application domains
(for example, scientific and data processing) and the research
focus was often application-specific [15].

In the context of empirical software engineering research,
while the main goal of empirical papers is to achieve the
generality of the results, the domain, context and uniqueness
of a software system have not been considered very often
by researchers. The most common rationale for doing so is
to analyze projects having different application domains to
decrease threats due to the generalizability of the results.

As in the example reported in [21], the extensive study of
all JSON parsers available would find similarities between
them or common patterns. That type of study would focus
on one particular language (JSON), one specific domain
(parsers) and inevitably draw limited conclusions. On the
other hand, considering the “parsers” domain (but without
focusing on one single language) would show the common
characteristics of developing that type of systems, irrespective
of their language. The thrust of this paper stems from the work
of several prominent researchers who called the empirical
software engineering community to ‘go deeper, not wider’ [24]
and ‘minding the mine, mining the mind’ [18]. As a matter
of fact, there is increasing evidence that empirical research
on software systems might yield domain-specific results, for
instance when clustering the studied systems by the domains
that they implement ([11], [27], [23]).

There are two main challenges to domain-based empirical
software engineering: first, there is currently no commonly
agreed taxonomy of application domains [15]. Several at-
tempts have been performed with varying success: past re-
search on domains has focused on creating a domain tax-
onomy in a top-down fashion [1], i.e., starting with a seed
taxonomy and refining it with various techniques (e.g., via
expert judgement) [12]. The second challenge is assigning a
software system to a domain: again, expert judgements have
been applied more often than automatic assignments in past
literature [4], but it has become clear that the chosen domains
were selected as either too fine-grained or too large, thus
defying the purpose of the categorisation.

In this paper, we argue that the extraction of topics that
emerge from the source code can help the assignment to
domains by experts, and instead of (or aside of) reading
the documentation that accompanies a software system [25].
Researchers and practitioners can assign a system to a domain
by only focusing on a limited number of core topics that
emerge more strongly (e.g., with larger weight) from the
lexicon of source code.

For this purpose we collected the description of 50 Java
software systems, alongside the lexicon of their source code
and a list of their most relevant topics. We asked 10 researchers
to assign a unique subset of these data files to the most
appropriate domain, and triangulated their expert opinions to
discuss the following research questions:

1) RQ1: is the lexicon an acceptable substitute for the
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description of a software system, for the purpose of
assigning it to a domain?

2) RQ2: similarly, are the topics (as extracted by LDA)
acceptable substitutes?

This paper is organised as follows: section II deals with
related work and illustrates how our paper advances the state
of the art. Section III describes the empirical approach that
we adopted to extract the data sources and to assign them
in subsets to researchers for expert judgement. Section IV
summarises the results of the expert judgement task, while
section V discusses the findings and their relevance for practi-
tioners. Section VI details the threats to valisity and section VII
finally concludes.

II. RELATED WORK

This work is an extension of a previously published pa-
per [6] where we posited that keywords, corpora and topics
could significantly help in establishing the provenance of
a software system, given a list of pre-defined application
domains. Now we plan to evaluate the plain description of
a system (e.g., in the form of a ReadMe file) against the
corpora and the topics extracted from the source code. The
current paper should therefore be considered as the enactment
of the future work proposed in [6]. Prior research has shown
that the number and size of open-source projects are growing
exponentially and open-source projects are becoming more
diverse by expanding into different domains [9], [17]. In
view of this and to reduce the effort required in manual
categorisation of software projects, Tian et al. [25] proposed
a new technique based on text mining to categorise software
projects irrespective of the programming language used in their
development. Their contribution is based on the analysis of the
documentation that accompanies the software project, rather
than the source code, as we propose in our paper.

In general, distinct results have been observed when more
attention is paid to the categorisation of analysed software
projects. For example, Wermelinger and Yu [27] suggest that
presenting two datasets from the same software domain (e.g.,
Eclipse and NetBeans) allows for future comparative studies
and facilitates the reuse of data extraction and processing
scripts. On increasing the external validity of empirical re-
sult findings, German et al. [13] have also highlighted the
need to investigate particular systems belonging to different
domains. Previous studies [22], [2], [5] revealed that projects
from different domains use exception handling differently
and that poor practice in writing exception handling code
is widespread. In a study on Java projects by Osman et
al. [23] the authors aimed to answer the following research
question: “Is there any difference in the evolution of exception
handling between projects belonging to different domains?”.
The researchers manually categorized 30 projects into 6 do-
mains, namely compilers, content management systems, edi-
tors/viewers, web frameworks, testing frameworks, and parser
libraries. Their observations showed significant distinctions in
the evolution of exception handling between these domains,
like the usage of java.lang.Exception and custom

exceptions in catch blocks. Concretely, content management
systems consistently have more exception handling code and
throw more custom exceptions, as opposed to editors/viewers,
which have less error handling code and mainly use standard
exceptions instead.

Fayad and Smidt [11] explored software frameworks and
classified frameworks based on related application domains,
e.g., operating system and communication frameworks and
user interface frameworks. The authors emphasised that in
contrast to earlier OO reuse techniques based on class libraries,
frameworks are targeted for particular business units (such as
data processing or cellular communications) and application
domains (such as user interfaces or real-time avionics). They
also highlight the fact that the next generation of OO applica-
tion frameworks target application domains but on the other
hand, application developers in more complex domains such
as telecommunications and distributed medical imaging have
traditionally lacked standard “off-the-shelf” frameworks; as a
result these developers in such domains largely implement, test
and maintain software systems from scratch. These findings
further show the need to treat project by domains for more
distinct empirical results or observations. The need for a means
of identifying which domain a project belongs to is also
highlighted as OSS developers for example can contribute
frameworks for projects in the telecommunications domain
upon identifying such projects and their required functionality.

In past research, software projects have been assigned to
application domains by glancing at the source code, or its
general description (e.g., the ReadMe file, or the project
documentation); creating categories and finally assigning a
project to a category. The research by Borges et al., [4]
follows that approach: the dataset contains 5,000 GitHub
project (including 520 Java projects). There are two main
issues with this approach: the first is that there is hardly any
consistency in how a project might get documented by its
developers, meaning that the approach in [4] becomes non-
reproducible. The second is that the categories are arbitrarily
decided by the authors, and become overpopulated with one
type of projects. As an example, the following break-down
shows the skewness of the dataset in the reported study:

• Application Software (30 projects in the sample)
• Documentation (48)
• Non Web Libraries And Frameworks (342)
• Software Tools (49)
• System Software (26)
• Web Libraries And Frameworks (25)

III. EMPIRICAL APPROACH

In this section, we discuss how we sampled the systems
to study and how the three data sources were extracted
from the software projects. Section III-A described how the
systems were sampled from the GitHub repository and how
the ReadMe was extracted from each system. Section III-B
shows how the lexicon was extracted from the Java classes in
the sample; section III-C shows how the LDA technique was
instrumented to extract weighted topics; while section III-E



illustrates how the expert judgement was gathered and trian-
gulated. The data and the scripts used in the analysis are made
available online at https://XXX.xxx (link removed for double
blind review), for inspection and potential further replication.

A. Sampling Software Systems and ReadMe Files

Leveraging the GitHub repository, we collected the project
IDs of the 50 most successful1 Java projects hosted on GitHub
as case studies. As such, our data set does not represent a
random sample, but a stratified sample based on one attribute
(i.e., success) that is related to usage by end users. As a
result of the sampling, our selection contains projects that are
larger in size than average: we provide the list of the analysed
projects in Appendix A.

The repository of each project was downloaded and stored,
and all the Java files identified for further parsing. From each
project’s folder we extracted the main ReadMe file, that is
typically assumed to be the first port of information for new
users (or developers) of a project.

B. Extracting the Lexical Content from Java classes

We extract the lexical content of a Java class in two ways:
1) by considering their class names; and
2) by parsing their code and considering all identifiers

including method and variable names, comments and
keywords.

The code of a Java class is converted into a text corpus
where each line contains elements of the implementation of a
class. The corpus in this case (“dictionary” of terms derived
from comments, keywords in source code) is built at the class
level of granularity [16]. The corpus includes the class name,
variable and method names and comments for each class. Pre-
processing of the system corpus is performed to eliminate Java
keywords2, stop words, split and to stem class names [20]. The
list of such terms is available in the replication package for
inspection.

The tool can be downloaded from Figshare3, and it uses
the ninka4 library to detect a source file’s license, that is not
considered relevant for a source file’s lexicon.

For the analyses performed in this paper, we extracted both
the complete and the unique corpus of each class. As an
example, Figure 1 shows a snippet of Java code, as extracted
from the UrSQL project5.

Parsing the lines of code shown in Figure 1 (the UrSQLEn-
try.java class from the UrSQL project), we derive the following
complete corpus using an information retrieval tool developed
in Perl (also available for inspection):

1As a measure of success, we used the number of stars that a project
received from other users: that implies appreciation for the quality of the
project itself.

2As shared on https://en.wikipedia.org/wiki/List of Java keywords
3https://XXX.xxx, link removed for double blind review
4Available at https://github.com/dmgerman/ninka, as presented in [14].
5https://github.com/duncangrubbs/urSQL

Fig. 1. UrSQLEntry.java source code snippet

Complete corpus (as extracted from Figure 1)

ur sql entri kei valu kei valu ur sql entiti entiti ur sql entri ur
sql entri queri split queri split ur sql control kei valu separ
kei split valu split kei kei valu valu.

To obtain the unique corpus, the list of keywords is later
pruned of duplicated terms, per class. Parsing the source code
from Figure 1, we derive the unique corpus as follows:

Unique corpus (as extracted from Figure 1)

control entiti entri kei queri separ split sql ur valu.

The complete and the unique corpora are obviously differ-
ent, the former being of size 35 and the latter of size 10 (in the
example above). As a summary, this data extraction produces,
for each analysed system, (i) the complete list of terms, and
(ii) the list of unique terms contained in its source code. These
terms form the complete and the unique corpus data: the latter
was distributed to the experts as-is; while the former was used
for the extraction of topics through the LDA technique (see
section III-C).

The size of the complete (ALL) and unique (UNIQ) corpora
of the sample of projects is displayed as two boxplots in
Figure 2. The decision of using the unique corpora as unit
of category assignment is due to readability and ease of use.
Considering a set of 22,000 terms (as a median, see Figure 2
above) would be impractical for the purpose of assigning
categories. Therefore, we circulated the unique corpora for
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assessment and category assignment, as their size is more
manageable (median 1,800 terms, in our sample).

Fig. 2. Boxplots of complete and unique corpora sizes in the sample

C. Domain Modeling with LDA

For each system, all the Java classes were reduced to
the complete corpus of terms. All these terms were then
considered to create a model implementing the Latent Dirichlet
Allocation (LDA) algorithm. Python was the language used to
program the models, and the gensim NLP package helped in
the machine learning side of it. Through the LDA we extracted
the main topics emerging from the corpus of a software
project, using a Natural Language Processing approach termed
the Term-frequency-inverse document frequency (TF-IDF). In
NLP, TF-IDF is another way to judge the topic of a text (in our
case, the source code of a class) by the words it contains. With
TF-IDF, words are given weight, because TF-IDF measures
relevance, not frequency. This is a good representation of the
source code contained in the Java classes, where the same
terms can appear multiple times (as shown in the list of
complete corpus of the code snippet above).

As an example, we extracted the topics for the okhttp
project6. The LDA model was instrumented to generate 5
topics, as shown in the box below. The key terms, and their
weights, are assigned to each of the extracted topics. In the
case of the okhttp project, the topics are strongly related to
the Networking category.

Topics extracted with the LDA approach

Topic 0: 0.003*”stream” + 0.003*”bodi” + 0.003*”header” + 0.003*”content” + 0.003*”id” + 0.002*”benchmark”
+ 0.002*”type” + 0.002*”ssl” + 0.002*”socket” + 0.002*”stori”

Topic 1: 0.002*”entiti” + 0.002*”url” + 0.002*”proxi” + 0.002*”slack” + 0.002*”event” + 0.001*”frame” +
0.001*”filter” + 0.001*”client” + 0.001*”equal” + 0.001*”session”

Topic 2: 0.005*”cooki” + 0.004*”header” + 0.004*”interceptor” + 0.003*”chain” + 0.003*”url” + 0.002*”bodi” +
0.002*”certif” + 0.002*”content” + 0.002*”client” + 0.002*”timeout”

Topic 3: 0.005*”cach” + 0.004*”socket” + 0.004*”connect” + 0.004*”bodi” + 0.003*”rout” + 0.003*”server” +
0.003*”web” + 0.003*”header” + 0.003*”client” + 0.003*”url”

Topic 4: 0.006*”event” + 0.006*”socket” + 0.005*”certif” + 0.005*”address” + 0.005*”cach” + 0.004*”file” +
0.003*”deleg” + 0.003*”connect” + 0.003*”server” + 0.003*”inet”

D. Data Sources and Unique ID

As per the methodology above, we extracted three data sets
for each of the 50 systems analysed:

• the corpus of unique terms;
• the list of topics as extracted by the steps provided

in III-C; and
• the ReadMe file that accompanies the project once is

distributed onto GitHub.

6https://github.com/square/okhttp

Each of these data sources was given an ID as shown in
the excerpt of Table I. Overall, we extracted 150 unique data
sources from the 50 analysed systems.

E. Assignment of Data Sources to Experts

We assigned these data files for categorisation to 10 aca-
demic staff from Brunel University London: 5 lecturers, 2
senior lecturers, 1 reader and 2 professors (all co-authors of
this paper) represent the experts whose opinion we mined
in this experiment. They all come from the department of

https://github.com/square/okhttp


TABLE I
CREATION OF DATA FILES, AND ASSIGNMENT OF A UNIQUE ID

Project name Corpus Topics ReadMe
android-gpuimage 1 51 101
ansj seg 2 52 102
arrow 3 53 103
atmosphere 4 54 104
... ... ... ...
wire 50 100 150

Computer Science and belong to either the BSEL7 or IDA8

research groups.
Each expert was provided with a set of 20 data files

containing ReadMe files; 20 data files containing the (unique)
corpora of systems, and 20 data files containing the topics. The
process of assignment of data files is summarised in Table II.
As highlighted in the table, each individual data source was
contained in 4 sets: this implies that each data source was
analysed by 4 different researchers.

Each researcher was supplied with a unique set of data files
and they were required to assign each data file to one (or more)
application domain. As the list of domains, we adopted what
has been historically used by the SourceForge.net repository
to classify the hosted projects:

1) Communications
2) Database
3) Desktop Environment
4) Education
5) Formats and Protocols
6) Games/ Entertainment
7) Internet
8) Mobile
9) Multimedia

10) Office/Business
11) Other/Nonlisted Topic
12) Printing
13) Religion and Philosophy
14) Scientific/ Engineering
15) Security
16) Social sciences
17) Software Development
18) System
19) Terminals
20) Text Editors

In cases where they could not be fitted to any category, an
acceptable option was to tick a ‘none/unidentified’ category.

IV. RESULTS

This section reports the results that we gathered from each
experts’ assignments. In order to summarise the results, we
defined the following four levels of agreement:

7Brunel Software Engineering Lab, http://www.brunel-sweng.org/
8Intelligent Data Analysis Brunel, https://ida-research.net/

• Perfect: 4 experts agreed on the application domain of a
particular data file;

• Strong: the agreement is between 3 experts;
• Standard: the agreement is between 2 experts
• Null: there is no agreement between experts.
It is important to note that the aim of this exercise is not to

precisely identify the correct application domain of a specific
system, but to detect whether there is agreement between
experts in the assignment of a data file to a pre-defined domain.
Table III illustrates the results that we gathered from the
experts. As a recap of the research questions:

1) RQ1: is the lexicon an acceptable substitute for the
description of a software system, for the purpose of
assigning it to a domain?

2) RQ2: similarly, are the topics (as extracted by LDA)
acceptable substitutes?

On average, we found that the ReadMe files showed the
better agreement between experts: on average, a minimum of
two experts agree on the application domain described in the
ReadMe files. Being the baseline technique, this was expected.
What also emerged is that the plain description of the ReadMe
allowed for more variance: for 37 of the selected systems, the
experts assigned more than one domain.

The LDA topics and the corpora scored less on average and
this is reflected by the number of times no expert agreement
was reached (the Null row in Table III). In these cases, we
observed less variance: for 23 and 24 systems, respectively,
the experts noted more more than one application domain.
What is interesting to note is that the median (i.e., the central
value of the distribution) and the mode (i.e., the most likely
value) are the same for all the techniques considered.

A. Intersection of No-Agreements

In Figure 3, we display the projects for which there was no
agreement: as mentioned in Table III, for 12 projects there was
no agreement using the corpora; for 14 projects, no agreement
using the topics; while for 6 projects there was no agreement
using the ReadMe files.

Considering the intersection of those sets, 4 projects showed
no agreement for either corpora or LDA topics, although
there was agreement when examining the ReadMe files. Two
projects in our sample there showed no agreement for either of
the three data sources. In all the other cases, at least one data
type per system saw an agreement on application domains.

B. Comparison with a Random Assignment

In order to test how our process differ from a random as-
signment of application domains, we automated the extraction
of 300,000 random domain assignments using the in-built R
random and replication features9.

We plotted the distribution of values obtained for the aver-
age agreement on domains (Figure 4): it shows that a random
allocation of domains is clearly worse than our approach.

9Using the R replicate function as in the following instruction:
data.frame(replicate(4,sample(1:20,50,rep=TRUE)))

SourceForge.net
http://www.brunel-sweng.org/
https://ida-research.net/


TABLE II
ASSIGNMENT OF DATA FILES TO INDIVIDUAL SETS (ONE SET PER EXPERT). HIGHLIGHTED THE SAME DATA FILE (4) ASSIGNED TO DIFFERENT EXPERTS.

Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10
1 1 1 1 2 2 2 2 3 3
3 3 4 4 4 4 5 5 5 5
6 6 6 6 7 7 7 7 8 8
... ... ... ... ... ... ... ... ... ...
148 148 149 149 149 149 150 150 150 150

TABLE III
RESULTS AND LEVELS OF AGREEMENT, PER TYPE OF DATA SOURCE

Agreement level Corpora Topics ReadMe
Perfect 1 4 6
Strong 3 7 13
Standard 34 25 25
Null 12 14 6
Average 1.62 1.74 2.26
Median 2 2 2
Mode 2 2 2

The vast majority of median and mode values are zero. We
conclude that our methodology achieved a better performance
than a random assignment process.

V. DISCUSSION

In this section we add further insights as part of our
discussion, dividing it in various themes.

A. Domains and structural characteristics

In a prior study [?], we collected empirical results showing
that projects from the same domain exhibit common structural
properties in terms of the C&K metrics [8]. For interested
stakeholders, this can imply that the structure of a software
system (and its development and future maintenance) depends
on domain-based factors common to projects in the same
domain. For example, projects from different domains making
use of exception handling differently [22], [5].

These findings make the identification and assignment to
domains an important step to provide tailored, specific evi-
dence to the evolution of a software system.

B. Precision vs Reliability

The purpose of this study was not to explore the precision
of the assignments, but the reliability (agreement) of expert
opinion: as such, the focus of this paper was not aimed at
precisely identifying the application domains of a group of
software systems. Instead, we tried to assess whether one tech-
nique is more likely to obtain an alignment in expert opinions.
This is because a precise description of each categories is
still missing from the literature, hence their boundaries are
not clearly defined.

C. Technology-specific key terms

It is also important to note that the presence of specific,
domain-based keywords was a key factor for the assignment
of data sources to categories. For example, the presence of
the JNI, SASL or postgreSQL as terms helped formulating
a category straight away. These keywords would obviously
require a domain expert to evaluate, and to correctly assign to
the right category.

D. Foreign language documentation

The presence of foreign languages (e.g., Chinese) is an
interesting scenario, and a further case in favour of extracting
topics from the source code, since programming standards
and syntax are typically based on the English language. As
an example, the ansj seg project has a ReadMe file written
in Chinese, therefore it was not possible to assign it to any
category (as none of the experts analysing that speak or read
Chinese). The corpora and the topics extracted from the source
code, on the other hand, allowed the experts to formulate an
opinion on its category.

The same situation happened with the java-learning, jeecg-
boot and weixin-java-tools projects: the experts could not
assign the ReadMe files to any category, but corpora and topics
allowed a categorisation.

E. Overfull and underfull categories

From the gathered results it is possible to notice that
some categories (e.g., Religion, Social Sciences, Formats and
Protocols) were never chosen by the experts, whereas other
categories (e.g., Software Development, Mobile) were selected
most often. This result demonstrates that top-down taxonomies
can over-represent some categories. It also clarifies the need of
a proper taxonomy, potentially from the bottom-up, and driven
by source code. Such a taxonomy would allow (i) comparisons
between projects and (ii) contained-in tests, in order to test
whether the corpus of a software system belongs to one or
another category.

VI. THREATS TO VALIDITY

In this section we present the threats to validity of this
study, dividing them in external, internal and construct threats.
Strategies to minimize the effect of each threat are outlined.



A. External validity

This paper presents the results of an empirical analysis that
should be applicable to all OSS projects. We cannot generalise
our findings on any other sample of OSS projects, or from
any other repository. This is especially true given that our
sample was obtained through a stratified sampling technique.
That had the effect to extract projects whose size is larger than
the average GitHub project.

Although we cannot claim the generalizability of our re-
sults, we believe that also smaller projects can benefit from
our approach: documentation for small-to-medium sized OSS
projects can be seriously lacking [7], [19], [3]. Using the
corpora (as extracted from the source code) can be benefi-
cial to inform the classification of software systems where
documentation is lacking.

B. Internal validity

Our implementation of the LDA algorithm has shown that
it is very consistent in helping to identify certain categories
(Software Development, System, Mobile, Internet). The topics
extracted are less sensible to smaller categories (Religion,
Social Sciences, Printing), that in general attract less projects.
Instead of tuning a stronger version of the LDA algorithm, we
believe that there should be a better attempt at taxonomies:
this would indicate that some categories (e.g., Printing) are
typically sub-categories within a larger category (e.g., System).
We expand this aspect in the Further Work section below.

C. Construct validity

While we asked the experts to provide a category for each
data source, we did not query their opinion on two important
aspects: (i) the ease of assigning each piece of data to one or
more categories; and the confidence in doing so. From informal
conversations with the researchers, we gathered that the topics

Fig. 3. Intersection of sets where no agreement was reached

were a simpler way to interact with the assignment exercise,
while the ReadMe files were the ones with more confidence.
This is in line with the levels of agreement that we observed
when gathering the results of the category selections.

The second threat to construct validity is based on our
implementation of the LDA algorithm. We tuned the algorithm
in order to get trained in a number of iterations, and extract
only a limited number of topics (4). As reported by one of the
experts: ‘I found the TOPICS part rather tricky. It contained
sparse data, hence although I have entered some domains, I
feel I based my decision only on intuition, and not data.’. As a
remedy to this threat, it’s important to notice that this number
could be easily increased, but it should be tailored to the data
source. We made the LDA script available for inspection and
comments.

VII. CONCLUSION AND FURTHER WORK

This paper was built on top of the assumption that the plain-
text description of a software system is the better way for
researchers and practitioners to assign a software system to a
category. We argued that, in case that description is unclear, or
unreadable, a machine learning approach could help extracting
the keywords, or the topics, from a system and apply to
categories. We extracted the plain description of a software
systems, alongside the keywords of its source code and the
topics emerging from these keywords. We asked 10 experts to
assign each of those data sources to an application domain,
and collected their agreements. We found that, on average,
the plain description has a better agreement level, but a larger
variance. We also found that the median and mode values
were similar across the three techniques used. These results
are encouraging: we showed that the keywords and the topics
are valuable substitutes to the plain descriptions, when trying
to agree on the application domain of a software system.

We believe that this work opens two important avenues of
further research: the first is the creation and the assessment
of a bottom-up, source-driven software taxonomy. This would
include branches of common sub-categories (e.g., the sub-
category Networking that applies both to Software Develop-
ment and System super-categories); as well as families of cat-
egories (e.g., the Mobile family) with parallel sub-categories.

The second avenue for further research is based on how soft-
ware systems differ, and based on their application domains.
We started gathering some initial evidence, that has pointed
to different structural characteristics, when grouping systems
based on their application domains [?]. This urges to further
consider application domains as units of shared development
practices, and similar characteristics, that would further boost
the establishment of a software taxonomy.
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APPENDIX A
LIST OF ANALYSED PROJECTS

Project URL
android-gpuimage https://github.com/cats-oss/android-gpuimage
ansj seg https://github.com/NLPchina/ansj seg
arrow https://github.com/apache/arrow
atmosphere https://github.com/Atmosphere/atmosphere
autorest https://github.com/Azure/autorest
blurkit-android https://github.com/CameraKit/blurkit-android
bytecode-viewer https://github.com/Konloch/bytecode-viewer
cglib https://github.com/cglib/cglib
dagger https://github.com/square/dagger
ExpectAnim https://github.com/florent37/ExpectAnim
graal https://github.com/oracle/graal
graphql-java https://github.com/graphql-java/graphql-java
halo https://github.com/halo-dev/halo
HikariCP https://github.com/brettwooldridge/HikariCP
http-request https://github.com/kevinsawicki/http-request
interviews https://github.com/kdn251/interviews
java-learning https://github.com/brianway/java-learning
Java-WebSocket https://github.com/TooTallNate/Java-WebSocket
jeecg-boot https://github.com/zhangdaiscott/jeecg-boot
jeesite https://github.com/thinkgem/jeesite
JFoenix https://github.com/jfoenixadmin/JFoenix
jna https://github.com/java-native-access/jna
joda-time https://github.com/JodaOrg/joda-time
jodd https://github.com/oblac/jodd
JsonPath https://github.com/json-path/JsonPath
junit4 https://github.com/junit-team/junit4
librec https://github.com/guoguibing/librec
light-task-scheduler https://github.com/ltsopensource/light-task-scheduler
mal https://github.com/kanaka/mal
mall https://github.com/macrozheng/mall
mosby https://github.com/sockeqwe/mosby
mybatis-plus https://github.com/baomidou/mybatis-plus
nanohttpd https://github.com/NanoHttpd/nanohttpd
NullAway https://github.com/uber/NullAway
parceler https://github.com/johncarl81/parceler
PermissionsDispatcher https://github.com/permissions-dispatcher/
Phoenix https://github.com/Yalantis/Phoenix
quasar https://github.com/puniverse/quasar
requery https://github.com/requery/requery
retrofit https://github.com/square/retrofit
retrolambda https://github.com/luontola/retrolambda
Sentinel https://github.com/alibaba/Sentinel
simplify https://github.com/CalebFenton/simplify
swagger-core https://github.com/swagger-api/swagger-core
tcc-transaction https://github.com/changmingxie/tcc-transaction
symphony https://github.com/b3log/symphony
testcontainers-java https://github.com/testcontainers/testcontainers-java
UltimateRecyclerView https://github.com/cymcsg/UltimateRecyclerView
weixin-java-tools https://github.com/chanjarster/weixin-java-tools
wire https://github.com/square/wire

https://github.com/cats-oss/android-gpuimage
https://github.com/NLPchina/ansj_seg
https://github.com/apache/arrow
https://github.com/Atmosphere/atmosphere
https://github.com/Azure/autorest
https://github.com/CameraKit/blurkit-android
https://github.com/Konloch/bytecode-viewer
https://github.com/cglib/cglib
https://github.com/square/dagger
https://github.com/florent37/ExpectAnim
https://github.com/oracle/graal
https://github.com/graphql-java/graphql-java
https://github.com/halo-dev/halo
https://github.com/brettwooldridge/HikariCP
https://github.com/kevinsawicki/http-request
https://github.com/kdn251/interviews
https://github.com/brianway/java-learning
https://github.com/TooTallNate/Java-WebSocket
https://github.com/zhangdaiscott/jeecg-boot
https://github.com/thinkgem/jeesite
https://github.com/jfoenixadmin/JFoenix
https://github.com/java-native-access/jna
https://github.com/JodaOrg/joda-time
https://github.com/oblac/jodd
https://github.com/json-path/JsonPath
https://github.com/junit-team/junit4
https://github.com/guoguibing/librec
https://github.com/ltsopensource/light-task-scheduler
https://github.com/kanaka/mal
https://github.com/macrozheng/mall
https://github.com/sockeqwe/mosby
https://github.com/baomidou/mybatis-plus
https://github.com/NanoHttpd/nanohttpd
https://github.com/uber/NullAway
https://github.com/johncarl81/parceler
https://github.com/permissions-dispatcher/
https://github.com/Yalantis/Phoenix
https://github.com/puniverse/quasar
https://github.com/requery/requery
https://github.com/square/retrofit
https://github.com/luontola/retrolambda
https://github.com/alibaba/Sentinel
https://github.com/CalebFenton/simplify
https://github.com/swagger-api/swagger-core
https://github.com/changmingxie/tcc-transaction
https://github.com/b3log/symphony
https://github.com/testcontainers/testcontainers-java
https://github.com/cymcsg/UltimateRecyclerView
https://github.com/chanjarster/weixin-java-tools
https://github.com/square/wire

	Introduction
	Related Work
	Empirical Approach
	Sampling Software Systems and ReadMe Files
	Extracting the Lexical Content from Java classes
	Domain Modeling with LDA
	Data Sources and Unique ID
	Assignment of Data Sources to Experts

	Results
	Intersection of No-Agreements
	Comparison with a Random Assignment

	Discussion
	Domains and structural characteristics
	Precision vs Reliability
	Technology-specific key terms
	Foreign language documentation
	Overfull and underfull categories

	Threats to validity
	External validity
	Internal validity
	Construct validity

	Conclusion and Further Work
	References
	Appendix A: List of analysed projects



