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Abstract 29 

 30 
The neutral model of cultural evolution, which assumes that copying is unbiased, pro- 31 
vides precise predictions regarding frequency distributions of traits and the turnover 32 

within a popularity-ranked list. Here we study turnover in ranked lists, and identify 33 
where the turnover departs from neutral model predictions to detect transmission 34 

biases in three different domains: color terms usage in English language 20th century 35 
books, popularity of early (1880-1930) and recent (1960-2010) USA baby names, 36 
and musical preferences of users of the website Last.fm. To help characterize the 37 
type of transmission bias, we modify the neutral model to include a content-based 38 
bias and two context-based biases (conformity and anti-conformity). How these 39 
modified models match real data helps us to infer, from population scale 40 

observations, when cultural transmission is biased, and, to some extent, what kind of 41 
biases are operating at individual level. 42 
 43 

1. Introduction 44 
 45 
The cultural evolution research program (Boyd & Richerson, 1988; Mesoudi, 2011) 46 

has focused on the fact that humans (and, partly, other animals) use various 47 
heuristics, referred to as social learning strategies (Laland, 2004; Rendell et al., 48 
2011) or transmission biases (Boyd & Richerson, 1988), to choose when, what, or 49 
from whom, to copy. Henrich & McElreath (2003) distinguished between content-50 
based biases, where inherent features of the cultural traits at stake determine the 51 

choice, and context-based biases, where the choice relates instead on features 52 

extracted from the social context. For example, Morin (2013) explained the success 53 
of direct-gaze portraits over indirect-gaze ones, in painting traditions where both 54 

forms are present, with a content-based bias, namely that direct eye-gaze is more 55 
cognitive appealing (more attractive, attention-catching, etc.) that indirect eye-gaze. 56 
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In the case of context-based biases, instead, the choice is not directly determined by 57 

the features of the traits, but, for example, by their commonality (conformist bias, 58 
Henrich & Boyd, 1998), or by the fact that they are possessed by individuals 59 
perceived as more successful or knowledgeable (prestige bias, Henrich & Gil-White, 60 

2001). 61 
 62 

The adaptive value of different cultural transmission biases has been 63 
elucidated trough theoretical models (see examples in Rendell et al., 2011) and 64 
laboratory experiments support in general models’ predictions (see examples in 65 
Mesoudi, 2009). However, we still miss a full understanding of the impact of 66 
transmission biases in real life cultural dynamics (Henrich & Broesch, 2011). In 67 
particular, it would be desirable to develop methodologies that allow inferring biases 68 

operating at individual level from observed, population scale, frequency patterns 69 
(Kandler & Shennan, 2013; Mesoudi & Lycett, 2009; Shennan, 2011). On the one 70 
hand, these patterns are the only available information on past cultural traditions, so 71 

they are especially relevant for anthropologists and archaeologists (Kempe et al., 72 
2012; Lycett, 2008; Rogers et al., 2009; Shennan, 2011). On the other hand, these 73 
kinds of information are today ubiquitously accessible in form of digitized data, 74 

offering an unprecedented opportunity for testing cultural evolutionary hypothesis 75 
(Acerbi et al., 2013). 76 

 77 

In order to identify individual level biases from aggregate, population scale, 78 
data, we follow previous works that studied departures from the predictions of 79 
models of cultural evolution that assume that social learning is completely unbiased, 80 

that is, individuals choose at random from whom to copy (Acerbi et al., 2012; Kandler 81 
& Shennan, 2013; Mesoudi & Lycett, 2009; Shennan, 2011). This class of models — 82 

known as “neutral” or “random copying” models (Bentley et al., 2004; Lieberman et 83 
al., 2005; Neiman, 1995) — provide detailed predictions on the expected outcomes 84 
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of the cultural evolutionary process, and have been shown able to account for 85 

empirical regularities observed in cultural domains as diverse as decoration patterns 86 
in Neolithic pottery (Neiman, 1995), popularity of first names (Hahn & Bentley, 2003) 87 
or dog breeds (Herzog et al., 2004, see also Ghirlanda et al., 2013), and usage of 88 

keywords in academic publications (Bentley, 2008). 89 
 90 

 Mesoudi & Lycett (2009) added biases to the neutral model and examined 91 
through computer simulations how they may impact the frequency distribution of 92 
cultural traits. The neutral model produces characteristic right-skewed distributions, 93 
where very few traits are very popular, and the vast majority of traits remain rare. 94 
Conformity, Mesoudi & Lycett (2009) showed, produces “winner-take-all” 95 
distributions, which are even more skewed than the ones produced by neutral 96 

models, since popular traits are proportionally more advantaged. Anti-conformity, or 97 
negative frequency-dependent copying (a bias against popular traits), produces 98 
instead distributions where the majority of traits result at intermediate frequencies. 99 

 100 
Others concentrated on the change through time of frequencies, comparing 101 

empirical data with model results. Kandler & Shennan (2013) used the probability of 102 

the observed number of cultural variants present in a population as another 103 
diagnostic prediction of the neutral model that could be readily compared to real 104 
data, and they showed that discrepancies with neutral model predictions suggested 105 

the presence of context-based, frequency-dependent biases in decoration of pottery 106 
in early Neolithic Europe. Steele et al. (2010) did not find significant differences 107 
between neutral model predictions and data regarding frequency distributions, but 108 

they showed the existence of a correlation between functional characteristic of the 109 
traits studied (Bronze Age vessels) and their abundance, which may be a signature 110 

of a content-based bias. 111 
  112 
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 In this paper, we focus on departures from a different set of predictions of the 113 

neutral model, namely predictions on the turnover of cultural traits. Popular examples 114 
of turnover are widespread information on “new entries” in various top charts (Top 5, 115 
Top 40, etc.), a ubiquitous feature in contemporary culture. However, it is possible to 116 

calculate the turnover for any cultural domain — examples include frequency of 117 
pottery designs (Bentley et al., 2004), word usage (Bentley, 2008), or bird song 118 

elements (Byers et al., 2010) — knowing the frequencies through time of different 119 
cultural traits.  120 
 121 
We define turnover, for a list of cultural traits ranked in order of abundance of size y, 122 
the number z of new traits that enter in that list at each time step considered. For 123 

example, the turnover of recent females baby names in USA is around 1 for a top list 124 

of size 10 (Bentley et al., 2007), meaning that, every year, on average, one new 125 
name enters in the Top 10. Measuring turnover for different sizes of top lists 126 
indicates where exactly change happens. For example, If turnover is rapid for large 127 

top lists (e.g. Top 100 or Top 1,000) and this contrasts with comparatively slow 128 
turnover for small list sizes (e.g. Top 5), this may indicate a bias toward popular 129 
traits. 130 

 131 
Although it may appear simple, turnover in top lists in neutral evolution is a 132 

highly challenging analytical problem (Eriksson et al., 2010). In order to make 133 

meaningful interpretations from turnover, we use the neutral model as our null model. 134 
Using simulations, Bentley et al. (2007) found that the turnover yielded by the neutral 135 
model was close to data from various cultural domains, such as Top-100 record 136 

charts, first names, and popularity through time of dog breeds in USA, and proposed 137 

a simple rule of thumb, by which ! " #√%, where z is the average turnover of variants 138 

in the top list of size y, and µ is the innovation rate. We will refer to the function that 139 

transform the ranked list’s size y in the turnover z as ‘turnover profile’. 140 
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 141 

Subsequently, Evans & Giometto (2011) extended and improved the 142 
conjecture of Bentley et al. (2007), confirming that the turnover profile for the neutral 143 
model may be indeed considered approximately linear. However, they showed that, 144 

in general, turnover can be more precisely described by: 145 

! " & ∙ %( ∙ #) ∙ *+           (1) 146 
where N is the population size, and d, a, b, c vary for different parameter 147 

combinations. Simplifying Evans & Giometto (2011) formula, it is possible to describe 148 

the turnover profile for a large area of the parameter space with a generic function: 149 

! " , ∙ #)          (2) 150 
with a encompassing all the other variables in the full equation of Evans & Giometto 151 
(2011), and, in the case of neutral model, b = 0.86. Importantly, the value of b 152 

determines the shape of the function that describes the turnover profile, with b ≈ 1 153 
describing a linear relation between z and y (as in the rule of thumb conjectured by 154 

Bentley et al., 2007). 155 

 156 
Here we use this formula to describe the turnover profile of three cultural 157 

domains, namely color terms usage in English language 20th century books, 158 

popularity of early (1880-1930) and recent (1960-2010) USA baby names, and 159 
musical preferences of users of the website Last.fm, showing when the turnover 160 
profile differs from neutral model predictions. 161 

 162 
Then, we follow previous work (Mesoudi & Lycett, 2009) in introducing, with 163 

small modifications, three transmission biases to the neutral model, and observing 164 
turnover in the resulting simulated popularity distributions. In the first model 165 
(“Attraction model”), transmission is content-biased, i.e. some traits are favored in 166 

respect to others since they are more “attractive” because of their intrinsic features 167 
(Claidière & Sperber, 2007; Morin, 2013). The second and the third are context-168 
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based biases: conformity, where transmission is positively frequency-biased (i.e. the 169 

popular traits are preferred in respect to the unpopular ones), and anti-conformity, 170 
where transmission is negatively frequency-biased (i.e. the unpopular traits are 171 
preferred in respect to the popular).  172 

The turnovers yielded by these models differ from neutral model predictions 173 
in a consistent way. Content bias and conformist bias produce ‘convex’ turnover 174 

profiles, indicating that popular traits change slower than what would be expected 175 
under neutral model assumptions. On the contrary, an anti-conformist bias in cultural 176 
transmission produces a ‘concave’ turnover, where popular traits change faster than 177 
what would be expected. The models’ turnovers reproduce the profiles found in the 178 
cultural domains examined, allowing us to infer, from population level data, when 179 
cultural transmission is biased, and, to some extent, what kind of biases are 180 

operating. 181 
 182 
2. Turnover in empirical data 183 

 184 
2.1 Methods 185 
 186 

2.1.1 Color terms 187 
Universals in color naming have a long history in anthropology and linguistic. Berlin & 188 
Kay (1969) proposed that the basic color terms of a language could be predicted if 189 

one knows how many color terms are present in that language. For example, if a 190 
language has two color terms, they will be approximately indicating ‘dark/cool’ and 191 
‘light/warm’ (somewhat analogous, but wider, than English language ‘black’ and 192 

‘white’); if a languages has three terms, ‘red’ will be added, and so on. Recent 193 
researches have shown through computational models (Baronchelli et al., 2012; 194 

Loreto et al., 2012), or iterated learning experiments (Xu et al., 2013), that weak 195 
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cognitive constraints, coupled with cultural transmission process, can indeed produce 196 

a hierarchically structured, and regular, color taxonomy. 197 
 198 

Taking advantage of a possible cultural universal, we are interested to check 199 

if this might reflect in the usage of color terms in books (see also Dehaene & Mehler, 200 
1992) and has an effect on their turnover. We looked for the number of time color 201 

terms are used in the Google Books Ngram corpus (Michel et al., 2011), which, in the 202 
latest available version (July 2012), contains over 8 millions books (Lin et al., 2012). 203 
We consider only English language books (the language with the biggest sample 204 
size) from 1900 to 2000, for a total of 2,980,271 volumes. The Ngram database gives 205 
information on how many times, in a given year, an 1-gram or an n-gram is used, 206 
where a 1-gram is a string of characters uninterrupted by space (generally a word, 207 
but also numbers, typos, etc.) and an n-gram is a sequence of n 1-grams. 208 
 209 

Basic color terms were retrieved from the “Simple English” version of 210 

Wikipedia (from http://simple.wikipedia.org/wiki/List of colors). Bi-grams (e.g. ‘Electric 211 
blue’) and terms which main referent was likely not to be the color (e.g. ‘Chocolate’, 212 
‘Gold’) were excluded, leaving a total of 61 1-grams. For each 1-gram we collected 213 

the yearly occurrences (case insensitive). Since the number of books varies 214 
considerably through years, we normalized the count of 1-grams using the yearly 215 
occurrences of the word ‘the’ (as in Acerbi et al., 2013, notice however that 216 

normalization does not affect the turnover but it is used only for visualizing the trends 217 
through time). For each year we ranked the color terms according to their popularity, 218 
and calculated the average turnover profile on 100 years for the most popular 30 219 

elements. The data were then fitted with the generic function for the turnover profile 220 
(equation 2), and with the same function, but assuming unbiased copying (b = 0.86): 221 

! " , ∙ #-./0          (3) 222 

 223 
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2.1.2 Baby names 224 

Bentley et al. (2007) found that USA baby names exhibited an approximately linear 225 
turnover profile that was consistent with their neutral model predictions. However, 226 
they also found a difference between female and male baby names, namely that the 227 

slope of turnover of female names was higher, corresponding to the well-known 228 
finding that there is more innovation in naming girls than boys (Lieberson, 2000; 229 

Hahn & Bentley, 2003; Bentley et al., 2007; Gureckis & Goldstone, 2009). Another 230 
interesting trend in baby names popularity is that preferences, over time, shifted 231 
toward more novel names, becoming less uniform (Lieberson, 2000). In 1950, for 232 
example, the 76% of newborn males were given one of the 100 most popular names, 233 
while today the percentage fell down to 43%. 234 

Taking into account these facts, we divided the data collected from the Social 235 

Security Administration of the USA (from http://www.ssa.gov/OACT/babynames/) in 236 
early (first 50 years of records: 1880 to 1930) and recent (last 50 years of records: 237 
1960 to 2010) periods, and also separated male and female names. For each 238 

dataset, we ranked the names according to their yearly popularity, and we calculated 239 
the average turnover on 50 years for the most popular 30 elements, analogously to 240 
the color terms data. As described above, we then fitted the turnover profile of the 241 

four datasets (early males, recent males, early females, recent females) with the 242 
generic function (equation 2) and with the unbiased-copying function (equation 3). 243 

 244 
2.1.3 Musical preferences 245 

Last.fm (http://www.last.fm) is a music website that offers several social networking 246 
functionalities. Last.fm builds a profile of registered users (while there is not an 247 

official statistics, the count of users is estimated to be around 40 million), integrating 248 
information provided by the users with data about the songs that they listen to in their 249 

devices, on various internet-radios, or on the Last.fm own radio. An interesting 250 
feature of the website is that users can create and join “groups” related to various 251 
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common interests. Groups may be linked to particular countries (‘Nederlanders!’), 252 

musical tastes (‘Female fronted Metal’), artists (‘Queen’), or more generic labels 253 
(‘Addicted to Last.fm’). 254 

We used Last.fm official APIs (http://www.last.fm/api) to track the ‘weekly 255 

artist chart’ (i.e. the 100 most listened artists in a group) for 52 consecutive weeks 256 
(starting from 14 September 2012) for a sample of 30 groups defined by specific 257 

musical genres (e.g. ‘Acid Jazz’, ‘BLUES!’, ‘80s Gothic Metal’), and for a sample of 258 
30 “generalist” groups (groups related to countries or generic labels, e.g. ‘Indonesia’, 259 
‘Music Is My Girlfriend’, ‘I Hate Music Snobs’). We choose groups with more than N = 260 
3,000 members (for “genre-based” groups: average N = 7,195. For “generalist” 261 
groups: average N = 8,998) that were present in the ‘Recently Active Groups’ page 262 

(http://www.last.fm/community/groups/active) when starting the data collection. In 263 

Electronic Supplementary Materials, we provide the complete list of the groups we 264 
used in the analysis, and their size. We finally calculated the average turnover profile 265 
on 52 weeks for the most popular 30 elements in each group. 266 

In this domain, we were interested to compare how the turnover profiles 267 
varied between the two different samples, expecting members of “genre-based” 268 
groups, differently from members of “generalists” groups, to be biased toward a 269 

subset of artists. We thus fitted the 60 turnover profiles with the generic function 270 
(equation 2) to find their b values, and measured the dissimilarity between the two 271 

samples. 272 

 273 
2.2 Results 274 

 275 
2.2.1 Color terms 276 
Figure 1 shows the frequency, normalized with the yearly count of occurrences of the 277 

word ‘the’, through the 20th century, of the most used 8 color terms: ‘white’, ‘black’, 278 
‘red’, ‘green’, ‘blue’, ‘brown’, ‘yellow’, and ‘gray’ (as it is spelled in Wikipedia). First, it 279 
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is interesting to point out the resemblance with the original taxonomy proposed by 280 

Berlin & Kay (1969), with the only main difference that the color term ‘yellow’ is less 281 
frequent than what would be expected. Second, it is worth to notice that the term 282 
‘black’ roughly double the frequency from 1960 to 2000, in concert with Civil Rights 283 

Movement (Smith, 1992). 284 
From Fig. 1 one can infer that color terms show a consistent stability in their 285 

usage in books through time. We used Akaike’s Information Criterion (AIC) to 286 
compare the relative likelihood of the two functions to describe turnover profile 287 
(Fig.2). The generic function (equation 2) has a lower AIC, and its Akaike’s weight 288 
(i.e. the relative probability of being correct, in respect to the alternative function that 289 
assumes unbiased copying - Burnham & Anderson, 2002) is ω = 0.999. The best 290 
fitting of the generic function has an exponent of b = 1.88. This suggests that the 291 

cultural dynamics underlying the usage of color terms in English 20th century books 292 
might not be best described as an unbiased copy process. 293 

 294 
2.2.3 Baby names 295 

In three out of the four cases we took in consideration, early male names, and recent 296 
male and female names, the generic function fits better the data than the alternative 297 

unbiased- copying function (Fig. 3). In detail, the generic function’s fit of the turnover 298 
profile of USA male baby names from 1880 to 1930 has an Akaike’s weight of ω = 299 

0.999 and an exponent of b = 1.69, while, from 1960 to 2010, these values are ω = 300 
0.999 and b = 0.51. For female names, the fit of early (1880 to 1930) names turnover 301 
results in ω = 0.485 and b = 0.81, while for recent (1960 to 2010) female names the 302 

values are ω = 0.999 and b = 0.56. 303 

 304 
The turnover profile of early male baby names (Fig. 3 Top-left), analogously 305 

to the above reported turnover of color terms in English books (Fig. 2), has an 306 
exponent b > 0.86, which indicates that popular items change (relatively) slower than 307 
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less popular items. On the contrary, the turnovers of recent baby names (both 308 
females and males, Fig. 3 Right panels) have an exponent b < 0.86, meaning that 309 

popular names change relatively faster than less popular names. In the case of early 310 
female baby names (Fig.3 Bottom-left), the fit of the turnover profile does not allow to 311 

distinguish between the two alternative functions. 312 
 313 

2.2.3 Musical preferences 314 
Values of b obtained for “genre-based” groups (1.06 ± 0.23, N = 30) were 315 
significantly higher (two samples t test, t56 = 3.64, P < 0.001) than the values for 316 
“generalist” groups (0.85 ± 0.19, N = 30), indicating that popular artists tend to be 317 

more stable in the top positions of “genre-based” groups’ charts than in “generalist” 318 
groups’ charts (Fig.4). Interestingly, the average value of b for “generalist” groups is 319 

almost exactly the value predicted by the neutral model turnover profile. In Electronic 320 
Supplementary Materials, we provide the data of the values of b for all 60 groups 321 
considered. 322 

 323 
3. Models 324 
 325 
3.1. Methods 326 
 327 

3.1.1 Neutral model 328 

We first reproduced the neutral model of cultural evolution described in Bentley et al. 329 
(2004). We consider a population of N individuals, each with a single cultural trait. At 330 

the beginning, each individual has a different cultural trait. The model runs in discrete 331 

time steps. At each time step, all individuals are simultaneously assigned a new 332 
cultural trait. With a small probability µ, an individual will introduce a new cultural trait. 333 

The remaining individuals (1−µ) copy the cultural trait from a randomly selected 334 

individual of the previous generation. 335 
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 336 
We run the model until reaching a steady state (for τ = 4µ−1 time steps) and 337 

after that we calculate the turnover, averaging it on T = 50 + µ−1 time steps (values 338 
for τ and T are extracted from Evans & Giometto, 2011). We study the turnover for 339 
top list sizes (y) from 10 to 100 (with a step of y = 1) and for population from 200 to 340 
10,000 individuals (with a step of N = 200). Finally, for all parameters, we consider 341 

three values of the probability of innovation (µ): 0.005; 0.01; 0.02. 342 

 343 
3.1.2 Attraction model 344 
In the neutral model, transmission is unbiased: the (1 − µ) proportion of individuals 345 

who copy choose randomly from whom to copy, and copy independently of any 346 
consideration on the cultural trait they possess. We implemented content-biased 347 
transmission by assigning to each cultural trait i a value αi (attractiveness), randomly 348 

extracted from a standard normal distribution (i.e. with mean 0 and standard 349 
deviation 1), meaning that the majority of traits will have intermediate values of α ≈ 0, 350 

while few traits will be particularly attractive, and few will be particularly unattractive. 351 
 352 
As in the neutral model, the (1−µ) individuals who copy pick up randomly an 353 

individual from the previous time step, but their decision whether to copy or not may 354 
depend on the attractiveness of their traits. A parameter C determines, for each 355 

copying event, the probability that transmission will be content-biased. At each time 356 
step, a fraction of C(1−µ) individuals (on average) only copy if their own trait “is not 357 

attractive enough”. This is implemented by having individuals compare the 358 
attractiveness of the trait i they already bear with the attractiveness of a trait j 359 

randomly extracted in the population, such that an individual copies another 360 
individual’s trait only if αj.  > αi. The remaining fraction of individuals (1 − C)(1 − µ) 361 

copy unconditionally as in the standard neutral model. 362 
 363 
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Simulations are run in the same conditions described above for the neutral 364 
model, and three values of the parameter C are tested: 0.1; 0.5; 0.9. 365 

 366 
3.1.3 Conformist model 367 

We implement frequency–dependent biases by giving to individuals information on 368 
which traits are present in a “top list” of size 10 (following Mesoudi & Lycett, 2009, 369 

where conformist individuals adopt the top 1 trait in the population). Analogously to 370 
the attraction model, in the conformist model the parameter C determines the 371 

probability of a copying event being biased. In the conformist (positive frequency- 372 
dependent) model, a fraction of C(1 − µ) individuals “know” whether or not the trait 373 

they bear is one of the 10 most popular traits in the population. If it is, they do not 374 
copy, while if not in the top 10, then they go ahead and copies another individual’s 375 
variant. In other words, the C(1 − µ) conformist individuals copy only if the trait they 376 
bear is not popular. Simulations are run as described above, with the same C values 377 
reported for the attraction model (0.1; 0.5; 0.9). 378 

 379 
3.1.4 Anti-conformist model 380 
As above, a fraction of C(1 − µ) individuals has an information on whether or not the 381 

trait they bear is one of the most 10 popular traits in the population. In the anti-382 
conformist (negative frequency-dependent) model, however, they copy only if the 383 
trait they bear is among the 10 most popular traits in the population, i.e. they will get 384 

rid of their traits if they are popular. Simulations are run as described above. 385 
A Matlab code to reproduce all the models is provided in Electronic Supplementary 386 
Materials. 387 

 388 
3.2 Results 389 

 390 
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The neutral model reproduces the results reported in Bentley et al. (2007) and Evans 391 

& Giometto (2011). While the turnover profile appears approximately linear (see 392 
example in Fig. 5 Top-left, N = 5,000; µ = 0.01), the extended analysis of different 393 
parameters (following Evans & Giometto, 2011), suggests indeed that in a wide area 394 

of the parameter space the turnover yielded by the neutral model is better described 395 
by an exponential function. We fitted the turnover of the simulated data with the 396 
generic function (equation 2) and we found that, in most cases, the exponent b is 397 

lower than 1 (Fig. 6 Top-left). This result is consistent with the results of Evans & 398 
Giometto (2011), that, as discussed above, found an overall best fit of b = 0.86 in 399 

their simulations. In Figure 1 ESM (Electronic Supplementary Materials) we 400 
additionally show that indeed the generic function (equation 2, with b free to vary) 401 

does not fit the simulated data better than the neutral model theoretical expectations 402 
(equation 3, b = 0.86), confirming that simulated turnover profiles are consistent with 403 

random copying. 404 
 405 

 In Fig. 6, the white space represents an area of the parameter space where 406 
the total number of traits in the population (S), at equilibrium, is lower than the size of 407 
the top list on which the turnover is calculated (y), so that is not possible to calculate 408 

the turnover. In the case of the neutral model, this corresponds to the limit found by 409 
Evans & Giometto (2011) of Nµ < 0.15y. 410 

 411 

Both the attraction and the conformist model yield instead a ‘convex’ turnover 412 
(see example in Fig. 5 Top-right and Bottom-left, N = 5,000; µ = 0.01; C = 0.5), where 413 

popular traits change relatively slower than unpopular ones. The extended analysis 414 
of the parameter space (Fig.6 Top-right and Bottom-left) confirms that b is 415 
consistently higher than 0.86. Content-biased copying and, especially, positive 416 

frequency-dependent biased copying also produce a lower number of traits at 417 
equilibrium in respect to the neutral model, which results in a wider area of the 418 
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parameter space where is not possible to calculate the turnover (i.e. the white space 419 

in Fig. 6). This is due to the fact that, in both cases, a subset of few traits is favored 420 
in respect to the others (in the attraction model because they are ‘intrinsically’ better, 421 
and in the case of the conformist model because, for random reasons, they became 422 

more popular). 423 
 424 

Finally, an anti-conformist bias produces a ‘concave’ turnover (see example 425 
in Fig. 5 Bottom-right, N = 5,000; µ = 0.01; C = 0.5), where popular traits change 426 

more rapidly than what would be expected under the hypothesis of unbiased 427 
copying. Again, extending the analysis to different population sizes and various sizes 428 
of the top lists (Fig.6 Bottom-right) confirms that, in all parameter space, the fitted 429 
exponent b is constantly lower than 0.86. The space in which was not possible to 430 

calculate the turnover (S < y, i.e. the white space in Fig. 6) is here more limited in 431 

respect to the neutral case, because a negative frequency-dependent bias tends to 432 
favor proportionally low-frequency traits, increasing the total number of cultural traits 433 
S in the population.  434 

Results with higher (µ = 0.02) and lower (µ = 0.005) innovation rates are 435 

consistent with this general picture for the four models, and they are not reported 436 

here.   437 
 438 

4. Discussion 439 

 440 
 Using a simple formula to describe the turnover profile of a given cultural 441 
domain, we have shown that the turnover of color terms in English books of the 20th 442 

century, early and recent male names, recent female names, and artists success in 443 
“genre-based” Last.fm users groups deviates from neutral model predictions, 444 

suggesting the presence of some form of cultural selection. On the contrary, the 445 
turnover of early female names and popularity of artists in “generalist” Last.fm users 446 
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groups cannot be distinguished by the one produced by an unbiased-copying 447 

process. 448 
 449 
Modifications of the neutral model show that, by introducing biases in cultural 450 

transmission, it is possible to reproduce the diagnostic features of the turnover 451 
profiles we studied in empirical data. In particular, we focused on the shape of the 452 
turnover profile (determined by the value of the exponent b in equation 2). The main 453 

result is that biases that select popular traits produce ‘convex’ turnover profiles, 454 
where b is consistently higher than neutral model predictions (b = 0.86), while biases 455 
that favor unpopular traits produce ‘concave’ turnover profile, and an exponent b 456 

consistently lower then the one produced by unbiased copying. 457 
 458 

Comparing empirical data with models outcomes, for color terms in English 459 
books of the 20th century, the turnover is described by a convex function, that 460 
indicates that positive selection acts on the most popular traits, and is then relaxed 461 

for less popular, reflecting the existence of individual level biases towards a subset of 462 
colors. In the case of baby names, we can distinguish the case of early boys names, 463 
where we find again a convex function; early girls names, where the turnover profile 464 

is undistinguishable from neutral model; and recent names, where for both males 465 
and females the function is concave. This corresponds to the well-known facts that 466 
name popularity became less uniform over time and that there is more innovation in 467 

girls names than in boys names. The turnover of recent names indicates indeed that 468 
popular names are negatively selected, i.e. they change more than what would be 469 
expected, both for males and females. Negative selection is relaxed, for girl names, 470 

in early years, while for boy names there is an opposite effect, with popular name 471 
positively selected. Finally, in the case of musical preferences, we have shown that it 472 

is possible to identify users groups that are more or less biased towards a subset of 473 
specific artists by comparing the values of b that better describe their turnover profile, 474 
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with higher values of b indicating that the preference for some artists is stable in 475 

certain users groups (as it happens in the case of the “genre-based” groups that we 476 
analyzed). 477 

 478 

While recent names turnover is an example of anti-conformism, or negative 479 
frequency dependent bias, we cannot distinguish, with this results, between cultural 480 

attraction and conformist bias in the other cases, because they all produce the same 481 
effect of increased selection of popular traits. It reasonable however to assume that, 482 
for the empirical case we examined, the ‘convex’ turnover of color terms popularity is 483 
a result of content bias, while for early boys names and musical preferences in 484 
Last.fm “genre-based” groups a conformist bias is likely to act. The dynamics and the 485 
conditions where one would expect context or content biases being predominant in 486 

cultural evolution have received some attention (Claidière & Sperber, 2007; Henrich 487 
& Boyd, 2002; Morin, 2011, Walters & Kendal 2013) but we still need more research 488 
in order to be able to understand, starting from population level data, the exact 489 

biases involved in cultural change. 490 
 491 
Although different implementations of the models can change the details of 492 

the results (for example different proportion of attractive versus non-attractive traits, 493 
or different copying mechanisms, e.g. individuals evaluating explicitly the observed 494 
traits instead of their own), the general relation between the shape of the turnover 495 

profile and the underlying transmission bias is likely to be independent from these 496 
differences. Also, our implementation of the frequency-dependent biases (both 497 
conformist and anti-conformist bias), based on individuals having information on a 498 

“top list” of cultural items, may seem at odds with the more common strategy used in 499 
the cultural evolution literature. In general (see for example Henrich & Boyd, 1998), 500 

conformist bias is modeled by having individuals copying common traits with a 501 
probability higher than traits’ frequency. As a variation on standard conventions in 502 
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modeling conformist bias, our “top list” implementation seems an appropriate 503 

assumption about individuals’ knowledge of popularity levels in a population  (see 504 
Eriksson et al., 2007 for discussion). Additionally, it is a computationally efficient 505 
means to model conformity, consistent with prior models, as an extension of 506 

assumptions that individuals copy the most popular trait (Mesoudi & Lycett, 2009). In 507 
any case, different implementations (a more standard — explicitly frequency-508 
dependent — bias, or different values of N in the top N) may again change the 509 
details of our results (e.g. the bend in the turnover profile will occur at rank N) but not 510 

the general conclusion. Regarding this last point, frequency-dependent biases 511 
produce, in fact, in our model, a turnover profile possibly described by two distinct 512 
linear functions (see examples in Fig. 5 Bottom). However, we decided to focus on 513 
the more general ‘concavity’ or ‘convexity’ of the profile to compare with the empirical 514 

data, as we believe that such a strong effect might be obscured by other factors in 515 
real cultural dynamics. On the other side, an interesting possibility would be to check 516 
on which degree empirical turnover profiles could be described by two linear 517 

functions, as a sign of a possible effect on cultural evolution of the ubiquitous 518 
presence of public “top N” lists. 519 

 520 

Another promising extension of our model would be to analyze outcomes for 521 
more realistic conditions involving bigger population sizes, or, possibly, for population 522 
sizes changing in time. Simulating larger population (N > 10,000) is however 523 

computationally demanding. Evans and Giometto (2011) showed that, in any case, 524 
the dependence of the turnover profile on N is not strong. They found for equation (1) 525 

a value of the exponent c = 0.09, meaning that, for example, a tenfold increase in N 526 
should increase the turnover z only by a factor of about 1.2.  527 

 Similarly, we assumed that individuals could copy cultural traits only from the 528 

previous generation, while in reality – say, in the first names case – one is free to 529 
pick up traits from virtually all past generations, as long as the information is 530 
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preserved. Bentley et al. (2011) explored this possibility by introducing a “memory 531 

parameter” in the neutral model, allowing individuals to look at more than one 532 
previous generation. They showed, in respect to the turnover profile, that increasing 533 
memory reduces the effect of the innovation rate, but further studies are needed to 534 

understand how memory could impact on the “shape” of the turnover profile, as the 535 
introduction of specific transmission biases does. 536 

 537 
Many recent works analyzed departures from neutral model (a review is 538 

Shennan, 2011), however this work is to our knowledge the first analysis showing 539 
that popularity turnover may be a strong indicator of the presence of cultural 540 
selection. Of course, we deliberately choose cultural domains where we suspected 541 
the presence of transmission biases, but similar analyses can be used in general on 542 

population level data, and being especially meaningful where one does not know 543 
whether forms of cultural selection are acting. 544 

 545 

This seems especially important today, since a new level of accessibility as 546 
well as volume of data concerning human behavior might transform the study of 547 
cultural evolution. Most of those data, however, are more easily tractable, or even 548 

only accessible, in the form of aggregate, population-level, information. Methods 549 
allowing inferring individual behaviors from aggregate data and, particularly, to 550 
connect this massive amount of information to well established theories can be a 551 

valuable contribution to the study of cultural evolution.  552 
 553 
We also believe that out “top list”-based implementation of frequency-554 

dependent biases could be seen as computationally equivalent to the mechanism 555 
embedded within demographic models of cumulative knowledge, in which each 556 

individual effectively learns from the most skilled individual (prestige bias), even 557 
among a population of thousands (Henrich 2004, 2006; Powell et al. 2009). In taking 558 



 21

this forward, we might also hypothesize that this cognitive bias towards copying the 559 

"best" – most popular or most skilled – is exploited and distorted in the modern era, 560 
when digital technology actually makes it possible to copy using information at global 561 
level, no matter how large the population size. 562 
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Figure legends 699 

 700 
Figure 1. Color terms usage frequencies in 20th century English books. Line 701 
colors represent the actual color terms. Values are smoothed using Friedmans ’super 702 

smoother’ through R function supsmu(). 703 
 704 

Figure 2. Turnover in popularity usage of color terms in 20th century English 705 
books. The continuous and dotted lines represent respectively the best fit according 706 
to the generic function (equation 2) and a fit assuming unbiased copying (b = 0.86). 707 

 708 
Figure 3. Turnover in popularity of USA baby names. The continuous and dotted 709 
lines represent respectively the best fit according to the generic function (equation 2) 710 
and a fit assuming unbiased copying (b = 0.86). Top-left: male baby names from 711 

1880 to 1930. Top-right: male baby names from 1960 to 2010. Bottom-left: female 712 
baby names from 1880 to 1930. Bottom-right: female baby names from 1960 to 713 

2010. 714 
 715 
Figure 4. Values of the exponent b of the turnover profile in the artists weekly 716 

chart for 30 “generalists” and 30 “genre-based” groups of Last.fm users. Boxes 717 
represent the interquartile range of the data. The horizontal lines inside the boxes 718 
indicate the mean values. The horizontal lines outside the boxes indicate the 719 

minimum and maximum values. The dotted line is the prediction assuming unbiased 720 
copying. 721 
 722 

Figure 5. Examples of turnover in simulated data. Top-left: neutral model. Top-723 
right: attraction model. Bottom-left: conformist model (positive frequency-dependent). 724 
Bottom- right: anti-conformist model (negative frequency-dependent). N (population 725 
size) = 5,000, µ (innovation rate) = 0.01. For the biased transmission models, C = 726 
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0.5. All data are averaged on 100 simulation runs.  727 

 728 
Figure 6. Values of the exponent b of the turnover fit in simulated data. Top-left: 729 
neutral model. Top-right: attraction model. Bottom-left: conformist model (positive 730 

frequency- dependent). Bottom-right: anti-conformist model (negative frequency-731 
dependent). In all cases, µ (innovation rate) = 0.01. For the biased transmission 732 

models, C = 0.5. The white area in the plots represents the area of the parameter 733 

space where the total number of traits at steady state was minor than the size of the 734 
top list on which turnover was calculated (S < y). Notice that, for the conformist and 735 
anti-conformist model, y (the size of the top list on which the turnover was calculated) 736 

starts at 20, since for lower values some fits were ill conditioned. All data are 737 
averaged on 100 simulation runs.  738 
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