
A knowledge discovery framework to predict the N
2
O 

emissions in the wastewater sector

Abstract

Data Analytics is being deployed to predict the dissolved nitrous oxide (N
2
O) concentration in a 

full-scale sidestream sequence batch reactor (SBR) treating the anaerobic supernatant. On average, 

the N
2
O emissions are equal to 7.6% of the NH

4
–N load and can contribute up to 97% to the 

operational carbon footprint of the studied nitritation-denitritation and via-nitrite enhanced 

biological phosphorus removal process (S.C.E.N.A). The analysis showed that average aerobic 

dissolved N
2
O concentration could significantly vary under similar influent loads, dissolved 

oxygen (DO), pH and removal efficiencies. A combination of density-based clustering, support 

vector machine (SVM), and support vector regression (SVR) models were deployed to estimate the 

dissolved N
2
O concentration and behaviour in the different phases of the SBR system.The results 

of the study reveal that the aerobic dissolved N
2
O concentration is correlated with the drop of 

average aerobic conductivity rate (spearman correlation coefficient equal to 0.7), the DO (spearman 

correlation coefficient equal to −0.7) and the changes of conductivity between sequential cycles. 

Additionally, operational conditions resulting in low aerobic N
2
O accumulation (<0.6 mg/L) were 

identified; step-feeding, control of initial NH
4

+
 concentrations and aeration duration can mitigate 

the N
2
O peaks observed in the system. The N

2
O emissions during aeration shows correlation with 

the stripping of accumulated N
2
O from the previous anoxic cycle. The analysis shows that N

2
O is 

always consumed after the depletion of NO
2

−
 during denitritation (after the “nitrite knee”). Based 

on these findings SVM classifiers were constructed to predict whether dissolved N
2
O will be 
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consumed during the anoxic and anaerobic phases and SVR models were trained to predict the N
2
O 

concentration at the end of the anaerobic phase and the average dissolved N
2
O concentration 

during aeration. The proposed approach accurately predicts the N
2
O emissions as a latent 

parameter from other low-cost sensors that are traditionally deployed in biological batch processes.

Keywords: Short-cut enhanced nutrients abatement - SCENA; Long-term dissolved N
2
O and Energy 

consumption monitoring, knowledge discovery and data mining

1 Introduction

In recent years the sustainability and operational efficiency of wastewater treatment plants (WWTPs) have 

come to the fore (Liu et al., 2018). Several biological technologies such as partial-nitritation – anammox 

(anaerobic ammonium oxidation) have emerged, towards the efficient, low-cost treatment of high-strength 

municipal wastewater streams (Lackner et al., 2014; Zhou et al., 2018). The anaerobic supernatant is a by-

product of dewatering of the anaerobic digestion effluent and represents less than 1–2% of the total influent 

flow in the WWTP. It contains 10–30% of the N load and 20–30% of the P load (Janus and van der Roest, 

1997; van Loosdrecht and Salem, 2006). Sidestream treatment of the anaerobic supernatant can contribute to 

the reduction of energy consumption for N-removal, decrease of nitrogen loads in the secondary treatment, and 

the minimisation of risks related to exceeding effluent regulatory requirements of nitrogen concentrations in 

the water line of WWTPs (Eskicioglu et al., 2018). However, the performance and environmental evaluation of 

different sidestream technologies is still under investigation (Eskicioglu et al., 2018; Rodriguez-Garcia et al., 

2014).

SCENA (Short-Cut Enhanced Nutrient Abatement) is a new sidestream process, that combines the conversion 

of NH
4

+
 to NO

2

−
 under aerobic conditions (nitritation) with the subsequent reduction of NO

2

−
 to nitrogen 

gas and enhanced biological phosphorus uptake by polyphosphate-accumulating organisms (DPAOs) in a 

sequencing batch reactor (SBR) (Frison et al., 2015). External volatile fatty acids (VFAs), are produced via 

acidogenic fermentation of the primary and secondary sludge on-site and dosed into the SBR. In a recent study, 

Longo et al. (2016), quantified the environmental and cost benefits and impacts of the integration of the 

SCENA process in a full-scale WWTP. They reported major energy savings for aeration after the integration of 

sidestream SCENA process. The direct N
2
O emissions were equal to 1.42% of the influent N-load. Short-term 

monitoring campaigns were implemented, while the effect of operational conditions on N
2
O generation was 

not investigated.

N
2
O is a potent cause of global warming, its global warming potential is 265–298 times more than that of CO

2
 

(IPCC, 2013). The emission of N
2
O in full-scale sidestream partial-nitritation/partial-nitritation–anammox or 

nitrification-denitrification systems range from 0.17% to 5.1% of the influent N-load (average equal to ~2.1% 

of the N-load is emitted (Vasilaki et al., 2019). Schaubroeck et al. (2015) showed that N
2
O emissions from a 

full-scale sidestream DEMON process in Austria were significantly higher than the direct N
2
O emissions from 

the mainstream treatment in a full-scale WWTP. On average, 0.256 g N
2
O were emitted compared to 0.005 g 

emitted in the secondary treatment per m
3
 treated wastewater. The increased direct N

2
O emissions can be 



mainly attributed to low DO concentrations, higher ammonia oxidation rates (AOR) and NO
2

−
 build-up (

Desloover et al., 2011; Kampschreur et al., 2008); conditions that also prevail in the SCENA process. The 

variability of EF reported in sidestream technologies can be partially attributed to both complex relationships 

between emitted N
2
O and operational conditions and different configurations (i.e. SBR, continuous systems), 

loads (i.e. NH
4

+
 concentrations), feeding strategies and operational control (i.e. DO set-points). Additionally, 

different interactions between operational variables trigger a different response of N
2
O generation. For 

instance, in a recent modelling study of a granular one-stage partial-nitritation-anammox reactor, Wan et al. 

(2019) showed that higher temperatures resulted in increased N
2
O emissions in the presence of COD 

(chemical oxygen demand) and in decreased N
2
O emissions in the absence of COD (due to increased 

anammox activity and reduction of NO
2

−
 accumulation in higher temperature). Additionally, the long-term 

temporal variations of direct N
2
O emissions were not adequately assessed in sidestream technologies; the 

majority of the monitoring campaigns in sidestream reactors lasted less than 5 days (Vasilaki et al., 2019).

The digitalisation of water services and the data-driven knowledge discovery from wastewater treatment plant 

may increase the resilience of water utilities under climate change and other water-related challenges (Sarni et 

al., 2019). Recent studies have provided extensive overviews of the use of data-driven techniques in the 

wastewater sector for different applications including the development of soft-sensors, fault prediction and 

multi-objective optimisation of control of water utilities (Corominas et al., 2018; Haimi et al., 2013; Newhart 

et al., 2019). Data-mining and extraction of the information hidden in the raw sensor signals can facilitate the 

identification of patterns and hidden structures and reveal significant information on the behaviour of N
2
O 

emissions in continuous wastewater treatment processes (Vasilaki et al., 2018). The SBR in the SCENA 

process is multiphase (i.e. anaerobic, aerobic, anoxic conditions) applying different operational variables 

(unsynchronised data), non-linear and subject to different disturbances, such as influent compositions and 

fermentation liquid characteristics. Moreover, SBR process data are based on a 3d-structure that consists of the 

number of i) cycles, ii) variables and iii) sampling points within each cycle. Therefore, the identification of 

process abnormalities and patterns can be complicated. N
2
O emissions could be affected by both within-cycle 

and between-cycle batch dynamics.

In this study, sensor and laboratory analyses data from a full-scale SCENA SBR were analysed to provide 

insights on the N
2
O emissions behaviour and generation. A structured approach was followed for knowledge 

discovery from the available dataset using a combination of abnormal events detection, classification and 

regression techniques. The objectives of the study were to i) investigate whether the sensors integrated in the 

system (i.e. conductivity, pH) can provide actionable information on the dynamics of N
2
O emissions, ii) detect 

hotspots for the accumulation and emission of N
2
O and iii) develop data-driven regression and classification 

models to predict the dissolved N
2
O behaviour and concentration for the different phases (anaerobic, aerobic, 

anoxic) of the SBR.

2 Materials and methods

2.1 Process description and data origin



The Carbonera plant is designed to treat domestic wastewater of a population equivalent of 40,000 (dry 

weather flow equal to 10,000 m3
/d). After screening and degritting and primary sedimentation, the effluent 

from the primary clarifier is sent to a Schreiber reactor (single basin – working volume 4671 m3
). Schreiber 

reactor effluent is pumped to two secondary clarifiers (2260  m
3
 each) and subsequently to the tertiary 

treatment unit for disinfection and filtration before final discharge in the Melma River.

Waste activated sludge (WAS) generated by the biological treatment is recycled to the primary sedimentation 

unit and mixed with primary sludge. The final concentration of the thickened mixed sludge is around 5% total 

solids (TS). About 90% of the mixed thickened sludge is fed to an anaerobic digestion unit (1800 m3
 working 

volume). Digestate is dewatered by a centrifuge with the addition of polyelectrolyte; the solid fraction is 

mechanically composted and used as agricultural fertilizer. The anaerobic supernatant is sent to the 

equalization tank (of 90 m3
) in the SCENA system for the biological N and P removal.

The remaining portion of mixed sludge (10%) is fed to a sequencing batch fermentation reactor (SBFR) with 

hydraulic retention time (HRT) equal to 5 days. The SBFR is operated under mesophilic condition (37 °C) for 

the alkaline fermentation of thickened sewage sludge and the on-site production of carbon source enriched of 

VFAs (mainly acetic and propionic acids). Daily, 10 m3
 of fermentation sludge are extracted and replaced with 

fresh thickened sludge. The solid/liquid separation of the fermented sewage sludge is carried out by a screw-

press (SCAE), generating ~2–4 m3
/h of fermentation liquid rich of VFAs (in total, ~10.5 m3

/d). The latter is 

collected in a storage tank of 20 m3
 and automatically dosed during the anaerobic and anoxic phases of a 

short-cut sequencing batch reactor (SBR) based on pH and conductivity sensors. The solid fermented fraction 

(13–15% TS based) is mixed with the thickened mixed sludge and fed to the anaerobic digestor.

The anaerobic supernatant is treated in an SBR with a maximal working volume of 70 m3
 (3–4 cycles daily). 

The SBR is fed with ~10–15 m3
 of anaerobic supernatant in each cycle that is treated via nitrite enhanced 

phosphorus removal associated with nitritation-denitritation (S.C.E.N.A process). The typical SBR (Fig. 1) 

cycle consists of feeding (6–8 min), anaerobic conditions (30 min), aerobic conditions (200–240 min), anoxic 

(~60–140 min), settling (30  min) and discharge (8  min). The sensors integrated in the SBR include: pH, 

Dissolved Oxygen (DO), conductivity, Oxidation Reduction Potential (ORP), mixed liquor suspended Solids 

(MLSS) and temperature. Conductivity and pH are used to control the length of the aerobic and anoxic phases 

and the carbon source dosage. Additionally, variable frequency driver is used to control the air flow-rate of the 

blowers, maintaining the dissolved oxygen during aerobic phase in the range of 1.0–1.5 mg/L. The aeration 

system consists of volumetric blowers (nominal power 11  kW) and n80 diffusers (INVENT), providing 

~500 m3
/h of compressed air at 400 mbar of pressure. The treated supernatant is recirculated back to the 

WWTP headworks.

alt-text: Fig. 1

Fig. 1



A monitoring campaign was conducted in the sidestream line at Carbonera WWTP treatment plant for 

approximately 4 months (January 2019–April 2019). Dissolved N
2
O concentrations were measured using a 

polarographic Clark-type electrode (Unisense, Aarhus, Denmark). To supplement the long-term monitoring 

campaign with Unisense probes, N
2
O emissions in the headspace of the SBR reactor, were also continuously 

monitored with MIR9000CLD analyser (Environment Italia S.p.A.) during March–April 2019. Details of the 

monitoring campaign, N
2
O emissions’ calculation and laboratory analyses are provided in the supplementary 

material (S1–S3).

2.2 Data analysis

2.2.1 Methodological framework

Fig. 2  summarises the methodological framework of the study. Phase one includes preliminary analysis of the 

collected data. Features extraction and density-based clustering was applied ( Ester et al., 1996 ), to isolate 

abnormal cycles. The methodology and results of abnormal cycles’ isolation are given in the supplementary 

material (section S4). In phase two, the behaviour of N
2
O emissions and dissolved N

2
O concentration during 

normal operation was investigated; efforts were focused to identify dependencies with the operational dataset 

and laboratory analyses. Finally, in phase three, classification and regression models were trained to predict the 

behaviour of aerobic dissolved N
2
O concentration in the different cycles. A support vector machine 

classification (SVM) and regression (SVR) models were constructed ( Cortes and Vapnik, 1995 ).

Schematic representation of a complete cycle in the S.C.E.N.A process and datasets used in the analysis.

alt-text: Fig. 2

Fig. 2



The first step for the prediction of the average aerobic dissolved N
2
O concentration included the training of an 

SVM classifier (ANOXSVM) to predict whether dissolved N
2
O will be consumed during the anoxic phase. 

This was significant, given that accumulated dissolved N
2
O in the beginning of the aerobic phase, will be 

stripped during aeration. All cycles were divided in two classes: class anoxA (dissolved N
2
O < 0.6 mg/L) and 

class anoxB (dissolved N
2
O  >  0.6  mg/L). The dissolved N

2
O concentration threshold was set equal to 

0.6 mg/L, since in ~88% of these cases, N
2
O was consumed by the end of subsequent anaerobic phase. In 

cycles belonging to class anoxA, no N
2
O carryover was assumed. It is important to note that the term 

anaerobic phase, is used to describe the first operational phase of the SBR ( Fig. 1 ) within each cycle and is not 

necessarily representative of the actual conditions in the reactor.

Subsequently, an SVM classifier (ANSVM) was trained to predict if dissolved N
2
O will be consumed in the 

subsequent anaerobic phase. The threshold of N
2
O at the end of the anaerobic phase was set equal to 2.6 mg/L 

(sensor calibration limit). Therefore, anaerobic phases with accumulated N
2
O were classified in two groups: 

class anaerA (N
2
O concentration < 2.6 mg/L) and anaerB (N

2
O concentration > 2.6 mg/L). Cycles belonging 

to anaerA class, were used to train an SVR model (ANSVR) to predict the dissolved N
2
O concentration at the 

end of the anaerobic phase.

Finally, an SVR model was trained to predict the average N
2
O concentration during the aerobic phase 

(AERSVR), utilizing the ANSVR model predictions for cycles with initial aerobic N
2
O less than 2.6 mg/L. 

Finally, the aerobic SVR model was also tested to cycles belonging in class anaerB (N
2
O 

concentration > 2.6 mg/L). In anaerB cycles, initial aerobic N
2
O accumulation exceeds the calibration limit of 

the sensor. Additionally, aerobic N
2
O accumulation starts before completion of the stripping of pre-existing 

dissolved N
2
O. In these cases, the average dissolved N

2
O concentration of the cycle, was calculated 

Methodological Framework followed in the study.



considering the period from the first minimum of dissolved N
2
O concentration until the end of aeration (or 

after 30 min if a local minimum did not exist). Additionally, initial N
2
O accumulation was assumed to be 

equal to 0.6 mg/L (average minimum after initial N
2
O stripping observed in these cycles).

In practice, the methodology followed was not linear as it is illustrated in Fig. 2; it involves several backward 

and forward loops between the different steps. The feedback loops were necessary to leverage the knowledge 

discovered and adjust the data-preparation (i.e. new features extraction, different pre-processing) and mining 

phases.

2.2.2 Support vector machines classification and support vector regression

Support vector machines (SVMs) are a range of supervised non-parametric classification and regression 

algorithms that have various applications in several fields including hydrology (Raghavendra and Deka, 2014), 

bioinformatics (Byvatov and Schneider, 2003) and wastewater (Corominas et al., 2018). For instance, in 

wastewater, support vector regression (SVR) has been successfully applied to data generated from mechanistic 

modelling of biological processes (Fang et al., 2011) or to experimental data (Seshan et al., 2014) to predict 

reactors’ performance.

SVM classification and SVR models were constructed to predict the behaviour of dissolved N
2
O 

production/consumption in different phases of the SBR operation (Fig. 2). SVM aims to define an optimum 

separating hyperplane in the feature space that maximizes the margin between two different classes. Classes 

with large margins are clearly separable and provide a ‘safety’ for the generalisation of the algorithm when 

applied to new points. In practical applications, the overlapping of a number of data belonging to the two 

classes, is common. Therefore, soft margins are introduced to allow a number of misclassifications to identify 

feasible solutions when the training dataset is not strictly linearly separable. Similarly, in the SVR case, the 

aim of the method is to identify the hyperplane that has the minimum distance to all data points. A complete 

description of the SVM and SVR algorithms is provided in the supplementary material. Radial basis function 

(RBF) was selected to construct the models in this study. The ‘kernel trick’ and enables SVMs to operate even 

in infinite feature space (where data are mapped), without in practice executing calculations there (Luts et al., 

2010).

The algorithms were implemented with the kernlab package (Karatzoglou et al., 2004) in R software. Repeated 

10-fold cross validation (3 repetitions) was applied to select the cost and gamma ( ) regularization parameters 

over a grid-search with the caret package (Kuhn, 2008). The cost determines the penalty of misclassified 

instances or instances violating the maximal margin whereas  determines the amplitude of the kernel. The 

dataset was randomly divided into test and train, with 70% of the available data used for training the SVM 

model and 30% used for testing.

In the classification case, over-sampling was applied for the minority classes within the 10-fold cross 

validation loop (before training). Local models were developed based on observations from each phase of the 

SBR reactor instead of the dataset from the duration of the whole cycle. The underlying characteristics and 

dependencies of the operational variables vary between anoxic, aerobic and anaerobic conditions. Additionally, 

the performance of the system under different phases within the cycle can also vary. There are significant 



benefits in the development of local phase-based models. The behaviour of dissolved N
2
O and triggering 

operational conditions vary between the different phases; local models enable to investigate the phase-based 

dependency structures that would not be possible using the whole cycle dataset. The performance of the 

classification SVM models were evaluated based on accuracy and kappa and from the sensitivity and 

specificity as described in the supplementary material (S3.1). Similarly, the regression models were evaluated 

considering the root mean squared error (RMSE) and R-squared (R
2
) (S3.1).

3 Results and discussion

3.1 SCENA performance

The SBR treats up to 43 kg of N/day of anaerobic supernatant, which results in a volumetric nitrogen loading 

rate up to 0.78 kgN/m
3
 day. The performance of the SBR reactor in terms of NH

4
–N removal, was stable 

during the monitoring campaign. During system's normal operation (January 2019–April 2019), the average 

removal efficiency of NH
4
–N, TN and PO

4
–P was 78%, ~77% and 84% respectively. Influent and effluent 

concentrations of the SCENA system for the duration of the monitoring campaign are provided in Table 1. A 

detailed description of the abnormal cycles isolated is provided in the supplementary material.

alt-text: Table 1

Table 1

Influent and effluent concentrations of the SCENA system.

Parameter unit mean Sd

SBR Influent

NH4–N mg/L 992.5 90

PO4–P mg/L 30.8 6.9

pH  8.2 0.2

sCOD mg/L 1111.7 562

Flow-rate m
3

/d 30 (8.4 per cycle) 2.2

Gas flow-rate m
3

/h 450 (170–520) 78

Dimensions mxmxm 8 x 3.5 x 2.5  

SBR Effluent NH4–N mg/L 214.7 80.93

NO2–N mg/L 3.23 9.7

NO3–N mg/L 0.28 0.34

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



3.2 N2O emission factor

N
2
O emissions were measured using a gas analyser (March–April 2019); on average ~0.8 kg of N

2
O–N was 

emitted in each cycle, equivalent to 7.6% of the NH
4
–N load in the SBRR. In terms of the NH

4
–N removed 

the N
2
O EF was equal to 11% (±4). The emissions during the aerobic phase were considered. N

2
O emissions 

exhibited significant variability ranging from 0.14 kg N
2
O–N/cycle (1.3% of NH

4
–N load) to ~2 kg N

2
O–

N/cycle (19% of NH
4
–N load) as shown in  Fig. 3 (a) . Emission peaks higher than 1.5 kg N

2
O–N/cycle and the 

increasing trend observed close to the end of the monitoring campaign coincide with peaks in the conductivity 

change in the aerobic phase of the cycles ( Fig. 3 (b)). Laboratory analyses performed approximately four times 

per week, did not demonstrate any significant changes in the influent COD, NH
4
–N loads and removal 

efficiencies linked with the increasing trend of the emissions observed in  Fig. 3 (a) . Given the wide range of 

the N
2
O emissions observed in the system, in the following sections, efforts were focused to identify 

triggering operational conditions.

PO4–P mg/L 6.78 2.22

pH  8.04 0.3

SBR Reactor

MLSS g/L 5.05 0.87

HRT d
−1

1.05  

SRT d
−1

15  

pH  7.7 0.5

T °C 30.02 1.56

Fermentation Unit

NH4–N mg/L 715 72.6

PO4–P mg/L 86 12

pH  5.6 0.6

T °C 36 5.1

sCOD mg/L 13082 2228

ferm_Hac mg/L 3250 546

ferm_HPr mg/L 2281 588

ferm_Hbut mg/L 1347 196

Flow-rate to SBR m
3

/cycle 7.45 (~2.41 per cycle) 3.0

alt-text: Fig. 3

Fig. 3



3.3 Energy consumption vs N2O emissions

The operational carbon footprint of the sidestream line was estimated using the direct GHG emissions (from 

N
2
O) and electricity consumption. The electricity consumption was relatively steady over the monitoring 

period; on average ~5.4 kWh was consumed in the SBR for the removal of 1 kg of NH
4
–N from the anaerobic 

supernatant. The average energy consumption of the SBR represented ~77% of the total electricity 

consumption of the SCENA system. On average ~48.7 kg of CO
2eq

 are generated for the removal of 1 kg of 

NH
4
–N due to the direct N

2
O emissions and electricity consumption in the system. The contribution of the 

total N
2
O emissions to the operational carbon footprint of the S.C.E.N.A process ranged from 66.7% to 96.8% 

when all the equipment electricity consumption (i.e. fermenter, dynamic thickener) were considered. Given the 

variability of the N
2
O emissions observed in the system ( Fig. 3 ) the kg of CO

2eq
 emitted per kg of NH

4
–N 

removed ranged between 9.5 kg CO
2eq

 to 117.7 kg CO
2eq

.  Fig. 4 (a) , shows the average operational carbon 

footprint (considering direct N
2
O emissions and electricity consumption) of the SCENA system for two cases 

with different ranges of N
2
O emissions. In the first case (26/03), a considerable amount of N

2
O was emitted, 

equal to ~10.5% of the influent NH
4
–N load. In the second case, the emissions were significantly lower, equal 

to ~4% of the influent NH
4
–N load. Both cases are characterised by similar influent NH

4
–N concentrations, 

phase duration, temperature and ammonia removal efficiencies (~79%). The DO concentration is equal to 

~1 mg/L. In case 1, the operational carbon footprint of the process is ~136% higher compared to case 2. This 

example shows that under similar conditions (considering laboratory analyses, average pH and DO), dissolved 

N
2
O concentrations can vary significantly in the studied system. Investigation of the behaviour of conductivity 

during the two aerobic phases, showed higher conductivity and pH decrease in case one (~510 μS/cm and ~1 

respectively) compared to case two (~350 μS/cm and 0.7 respectively) ( Fig. 4 (b) and (c)). Additionally, the 

initial aerobic ORP in case 2, was higher (−43 mV) compared to case 1 (−274 mV) ( Fig. 4 (b) ). Therefore, 

efforts to understand the N
2
O triggering operational conditions and mitigate GHG emissions, should consider 

(a) N2O emissions and (b) aerobic phase conductivity decrease, during monitoring campaign (gas analyser, March–April).



the dynamic in-cycle behaviour of the variables monitored in the system. The relationship between the 

operational variables (i.e. DO, NH
4
–N concentration, ORP, conductivity) will be discussed in the following 

sections.

3.4 Variability of N2O emissions during normal operation

N
2
O was emitted during aeration phase in all cycles and correlated significantly with the dissolved N

2
O 

accumulation. One representative cycle profile for the dissolved N
2
O concentration and N

2
O emissions in 

cycles starting without dissolved N
2
O accumulation from the previous cycle is shown in  Fig. 5 , together with 

the DO, NH
4
–N, conductivity, ORP and pH.

alt-text: Fig. 4

Fig. 4

(a) Example of the effect of N2O emissions in the operational carbon footprint for two cases, (b) aerobic profiles of conductivity, 

ORP and (c) DO for the two cases shown in (a).



ORP at the beginning of the aerobic phase shows a correlation with the DO, whereas N
2
O accumulation is 

minimum. Dissolved N
2
O increases in the first 60–70 min of aeration (a small change in the pH slope can be 

seen coinciding with the peak of accumulated N
2
O) indicating that the generated N

2
O generation is higher 

than the stripped N
2
O. N

2
O accumulation shows a decreasing trend after ~90 min of aeration. Subsequently 

dissolved N
2
O concentration increases when aeration stops, and the anoxic phase starts. This shows that 

production of N
2
O continues under decreasing DO and until DO depletion. The calibration range of the 

dissolved N
2
O probe is between 0 and 2.6 mg/L. Therefore, the accumulation of dissolved N

2
O can be higher 

than the peak shown in  Fig. 5 . During the anoxic phase, pH increases rapidly during the dosage of 

alt-text: Fig. 5

Fig. 5

Representative cycle profile for the (a) dissolved N2O concentration, N2O emissions, conductivity, DO, (b) ORP and pH, and (c) 

NH4–N, NO2–N and PO4–P concentrations.



fermentation liquid, followed by a slow decrease upon the end of carbon dosage phase. A sudden change in the 

ORP signal slope (‘nitrite knee’) indicates the depletion of nitrite whereas TN still exists in the form of N
2
O. 

Accumulated N
2
O is subsequently depleted rapidly after NO

2

−
N depletion.

3.5 The pattern of N2O emissions

Offline data from laboratory studies and the ranges of the operational variables were analysed in order to 

investigate significant changes that contribute to high accumulation of dissolved N
2
O concentration and high 

N
2
O emissions.

Fig. 6 (a) shows the daily average dissolved N
2
O concentration (coloured points) during aerobic phase versus 

conductivity at the end of aerobic phase and the effluent NH
4
–N concentration. Conductivity is significantly 

related and can be linked with the NH
4
–N concentration in the reactor (spearman correlation coefficient equal 

to 0.97). High average aerobic dissolved N
2
O concentration (>1.5 mg/L) was mainly observed with NH

4
–N 

concentrations lower than 150 mg/L and higher than 300 mg/L in the effluent of the SBR. Additionally, the 

spearman correlation coefficient between dissolved N
2
O and average aerobic conductivity decrease rate 

(μS/cm/min) was equal to −0.7 and N
2
O concentration peaks were observed for conductivity decrease 

rate > 1.8 μS/cm/min. The latter indicates that higher emissions occur under high ammonia removal efficiency 

that can be linked with higher ammonia oxidation rates (AOR) (i.e. due to pH values observed ~8) triggering 

the NH
2
OH oxidation pathway or higher than average NO

2

−
N accumulation (triggering nitrifier 

denitrification pathway). Domingo-Félez et al. (2014) found that N
2
O production rates were positively 

correlated with the extant nitrification rate in a single-stage nitritation/Anammox reactor. Similarly, Law et al. 

(2011) identified a linear relationship between AOR and N
2
O emissions in a partial nitritation SBR reactor 

treating the reject water from anaerobic digestion. Law et al. (2011) suggested that is attributed to higher 

accumulation of the ammonium oxidation intermediates (hydroxylamine (NH
2
OH) and nitrosyl radical 

(NOH)) leading to faster N
2
O formation or to the increased use of electrons reducing nitrite to nitric oxide 

(nitrifier denitrification pathway) under low DO concentrations. High nitrite accumulation has been also linked 

with elevated N
2
O emissions and the nitrifier denitrification pathway, especially under low DO concentrations 

(Tallec et al., 2006; Kampschreur et al., 2008; Desloover et al., 2011; Peng et al., 2015; Massara et al., 2017; 

Law et al., 2012). For instance, Peng et al. (2017) and Kampschreur et al. (2009), in a nitritation-denitritation 

SBR and a full-scale single stage nitritation-Anammox reactor respectively, identified linear relationship 

between nitrite accumulation and N
2
O emissions at DO levels below 1.5 mg/L. Similarly, Tallec et al. (2006) 

in a nitrifying activated sludge observed eightfold increase of N
2
O emissions with the addition of nitrite pulses 

(10 mg/L) at DO equal to 1 mg/L. Therefore, both hydroxylamine oxidation and the nitrifier denitrification are 

possible during aeration in the investigated SBR.

alt-text: Fig. 6

Fig. 6



The average dissolved N
2
O concentration during the aerobic phase of different cycles varied significantly in 

relation to the average DO concentration.  Fig. 6 (b) , shows that the dissolved N
2
O concentration peaks 

coincided with average DO concentrations less than 0.9–1 mg/L. The spearman correlation coefficient between 

dissolved N
2
O and DO concentrations was equal to −0.7. The coloured points in the Figure, represent the 

ORP at the end of the aerobic phase; ORP is higher than 40 mV in the majority of the cycles with average 

aerobic dissolved N
2
O concentration less than 1 mg/L. Only cycles without dissolved N

2
O accumulation from 

the previous anoxic phase are shown in the graph.  Stenström et al. (2014)  showed decreasing DO 

concentrations lower than 1–1.5 mg/L are linked with higher nitrite accumulation and are positively correlated 

with N
2
O emissions during nitrification in a full-scale predenitrification-nitrification SBR treating anaerobic 

supernatant. Similarly,  Pijuan et al. (2014)  reported an increase of N
2
O emissions in a nitritation reactor with 

the reduction of DO from 4 to <1 mg/L. During the monitoring period, blowers operated at maximum flow-

rate. Therefore, the presence of residual biodegradable COD concentration in the aerobic, is expected to 

decrease DO concentration. Similarly, higher influent NH
4

+
 loads or higher ammonia oxidation rates (that can 

also result in increased NO
2

−
 accumulation) can impact the DO concentration in the system. The dissolved 

N
2
O concentration can be affected by a combination of variables; therefore, it cannot be deduced that the 

decreased DO is the sole contributing factor triggering the increased N
2
O generation observed.

3.6 Impact of accumulated N2O in the end of anoxic and anaerobic phase

Several parameters have been reported to affect the N
2
O accumulation under anoxic conditions, such as the 

inhibition of the nitrous oxide reductase (Nos) by free nitrous acid (FNA) or high accumulation of NO
2

−
, the 

electron competition between electro acceptors and the type of carbon source ( Itokawa et al., 2001 ;  Pan et al., 

(a) Daily average conductivity at the end of the aerobic phase versis effluent NH4–N concentration (coloured points: average 

dissolved N2O accumulated in the aerobic phase), (b) Aerobic average accumulated dissolved N2O in respect to DO 

concentration; only cycles without initial N2O accumulation from the previous anoxic cycle are shown (coloured points: ORP at 

the end of the aerobic phase).



2013; Zhou et al., 2008; Zhu and Chen, 2011). Additionally, low values of COD/N can result in incomplete 

denitritation and therefore, N
2
O accumulation via the heterotrophic denitrification pathway during the anoxic 

phase of the SBR. Accumulated N
2
O in the end of the anoxic phase is stripped in the subsequent cycle, 

increasing the N
2
O emissions. Caranto et al. (2016) have recently showed that N

2
O can be the main product 

of anaerobic NH
2
OH oxidation catalysed by the cytochrome P460 in N. europaea. The latter can be an 

evidence of the biological N
2
O generation under limited DO and high NH3 concentrations, both conditions 

occurring in the target system in the during the transition from aerobic to anoxic phases when N
2
O 

accumulation rapidly increases.

In this study, the average soluble COD concentration in the fermentation liquid was equal to 13082 mg COD/L 

over the monitoring period (Table 1). Overall, in >27% of the examined cycles the N
2
O was completely 

consumed by the end of the anoxic phase. Zhu and Chen (2011), showed that the use of sludge alkaline 

fermentation as carbon source in an anaerobic-aerobic system treating high-strength stream, can reduce the 

N
2
O production by up to 68.7% compared to alternative carbon sources (i.e. acetic acid). On the other hand, 

Li et al. (2013a) in a process utilizing PHA as internal carbon source, observed higher N
2
O production and 

reduction rates at higher influent COD concentrations linked with higher anaerobic PHA synthesis (ranging 

from 100 to 500 mg/L). The higher N
2
O production rates were attributed to the accumulated NO

2

−
 inhibiting 

the N
2
O reduction.

The dissolved N
2
O concentration in the anoxic phase exceeded the calibration limit of the sensors; only cycles 

in which “nitrite knee” was observed and N
2
O reduced to values lower than 2.6 mg/L could be investigated. 

Therefore, the effect on NO
2

−
 in anoxic N

2
O generation could not be studied. However, studies have shown 

that elevated NO
2

−
 concentrations during denitrification can reduce the denitrification rate and increase the 

N
2
O accumulation (Schulthess et al., 1995). The electron competition between nitrite reductase NIR, nitric 

oxide reductase (NOR) and nitrous oxide reductace (NOS) is intensified under high NO
2

−
 concentrations; 

NOS is less competitive under limitation of electron donor and this will result in N
2
O accumulation (Pan et al., 

2013; Ren et al., 2019).

Based on the profiles shown in Fig. 5, N
2
O was always consumed after the depletion of NO

2

−
 during 

denitritation; specifically, dissolved N
2
O concentration decreased after the “nitrite knee”. Gabarró et al. (2014)

, studied a partial-nitritation reactor treating landfill leachate, and operated under alternating aerobic/anoxic 

conditions to allow heterotrophic denitritation. The authors demonstrated that significant N
2
O accumulation 

was observed during anoxic periods. NO
2

−
 denitrification rate was higher under both biodegradable COD 

limiting conditions and after acetate addition compared to N
2
O reduction; N

2
O reduction rate was maximum 

after NO
2

−
 removal (similar to what was observed in this study). In denitrifying phosphorus removal 

processes, Li et al. (2013)a,b showed that the N
2
O accumulation can be higher compared to conventional 

denitrification; the authors suggested that in the electron competition between denitrifying enzymes and PHA, 

N
2
O reductase is less competitive. On the other hand, Ribera-Guardia et al. (2016) investigated the electron 

competition during denitrification (PHA as the sole carbon source) of enriched dPAO and dGAO biomass and 

found that higher N
2
O accumulation in the latter culture. Additionally, the last step of denitrification was 

inhibited in dGAO cultures (N
2
O accumulation up to ~84% of the N-reduced), under high levels of NO

2

−
 

(~15 mgN/gVSS) whereas N
2
O consumption in dPAO biomass was not affected. Wang et al. (2015) 



demonstrated that during denitrifying phosphorus removal, mitigation of NO
2

−
 accumulation is possible via 

continuous dosage of phosphate and nitrate. Wang et al. (2011), showed that optimisation of the synthesis of 

PHA during the anaerobic phase can mitigate the N
2
O production during the anoxic phase leading to complete 

denitrification.

In the system, N
2
O emissions and dissolved N

2
O concentration at the aerobic phase is strongly related with 

incomplete denitritation in the previous cycle. In ~26% of the cycles with incomplete denitritation, the N
2
O 

concentration did not decrease below ~2  mg/L in the anaerobic phase and therefore the stripping of 

accumulated N
2
O in the subsequent aerobic phase was substantial. Fig. 7 (a) shows representative profiles of 

the dissolved N
2
O concentration and the N

2
O emissions based on different initial concentrations of N

2
O in 

the beginning of the aerobic phase. The profiles of the ORP, DO and pH are comparable in the preseted cycles 

(Fig. 7 (b)). In cycle B ~0.56 kgN of N
2
O were emitted during the aerobic phase, wheareas in cycle A N

2
O 

emissions are equal to 0.33 kgN (given the duration of these cycles is not equal only 220  min were 

considered). The initial dissolved N
2
O concentration in cycles A and B is equal to 0.27 and >  2.6  mg/L 

respectively. The N
2
O emissions increased significantly due to the accumulated N

2
O at the beginning of the 

previous anoxic phase that was stripped at the beginning of aeration.

Overall, in ~72% of the cycles, the dissolved N
2
O concentration at the beginning of the anaerobic phase was 

higher than 0.3 mg/L. In cycles with dissolved N
2
O concentration higher than 0.3 mg/L at the beginning of the 

anaerobic phase, the change in dissolved N
2
O concentration during the anaerobic phase was highly correlated 

with the ORP at the beginning of the anaerobic phase. Additionally, the spearman correlation coefficient 

between the magnitude of the ORP reduction and magnitude of the dissolved N
2
O reduction was equal to 0.7.  

Fig. 8  shows the boxplots of dissolved N
2
O reduction in relation to initial anaerobic ORP and ORP change for 

two cases: i) negligible dissolved N
2
O change mainly due to influent dilution or anaerobic dissolved N2O 

concentration >2.6 mg/L, and ii) occasions with N
2
O reduction during the anaerobic phase. In  Fig. 8 (a)  only 

alt-text: Fig. 7

Fig. 7

(a) Representative profiles of dissolved N2O concentration based on different initial concentrations of N2O in the beginning of 

the aerobic phase and (b) ORP and DO profiles.



occassions with ORP decrease higher than −50 mV are shown. The presence of nitrites in the bulk liquid 

during the (anaerobic) phase affected the ORP. NO
2
–N depletion in the bulk liquid resulted in a sharp “nitrite 

knee” in the ORP profile (similar to the one observed during the anoxic phase. Therefore, higher ORP change 

was expected in cycles with NO
2
–N depletion and N

2
O consumption during the anaerobic phase.

Anaerobic phase term, is used to describe the first operational phase of the SBR ( Fig. 1 ) within each cycle and 

might not represent the actual conditions in the reactor. For instance, ORP ~ −80 mV in the anaerobic phase of 

the SBR indicates anoxic conditions, due to residual NO
2

−
N concentration from the previous anoxic phase of 

the reactor.

3.7 Prediction and control of N2O accumulation in the anoxic and anaerobic phases

As discussed in section , the behaviour of ORP was significantly related with the behaviour of NO
2

−
 and 

consequentially of the dissolved N
2
O concentration during the anaerobic phase. Therefore, in the ANSVM 

model, features related with the ORP profile were mainly used ( Table 2 ). Similarly, there was a strong link 

with the ORP behaviour and the nitrite “knee” with the N
2
O accumulation during the anoxic phase. The 

features considered in ANOXSVM model are shown in  Table 2 .

alt-text: Fig. 8

Fig. 8

Box-plots of the (a) initial anaerobic ORP and (b) the ORP change during the anaerobic phase for cycles with and without N2O 

consumption (Class 0: no significant N2O consumption or anaerobic N2O concentration > 2.6 mg/L; Class 2: significant N2O 

consumption).

3.6

alt-text: Table 2

Table 2

Features used in the classification algorithm to predict the accumulation of dissolved N2O at the end of the anoxic and anaerobic 

phases.

Anaerobic Anoxic Anaerobic regression

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



The classification matrices for train and test datasets of the ANSVM and ANOXSVM models are presented in  

Table 3 . The average classification accuracy for the ANOXSVM model, was equal to 99% and 97% for the 

test and validation datasets. Similar results were obtained for the anaerobic phase with 95% and 98% accuracy 

in the train and test datasets respectively.

ORP phase initial Last ORP value ORP phase initial

ORP change ORP change ORP change

First local maximum ORP first 

derivative

Mean pH  

Local minimum of ORP first 

derivative after first local maximum 

ORP first derivative

Difference between first local maximum (after 

carbon dosage) and subsequent local minimum 

of the ORP first derivative

pH phase initial

Duration between first local 

maximum and subsequent local 

minimum of the ORP first derivative

Duration of carbon dosage

Time of ORP first derivative 

minimum/duration of phase

pH phase initial

Duration between first local maximum (after 

carbon dosage) and subsequent local minimum 

of the ORP first derivative

Difference between first local 

maximum and subsequent local 

minimum of the ORP first derivative

Time local minimum ORP first 

derivative/Phase duration

Last ORP first derivate  

alt-text: Table 3

Table 3

SVM classification results anoxic and anaerobic phases.

Phase Dataset Misclassified Sensitivity Specificity
Accuracy 

(%)
Kappa Class

Anoxic phase 

cycle N

Train
anoxA: 1

anoxB: 0

1 0.99 99 0.97

anoxA: Final dissolved N2O 

concentration end of 

anoxic < 0.6 mg/L

anoxB: Final dissolved N2O 

concentration end of 

anoxic > 0.6 mg/L

Test

anoxA: 1

anoxB: 0
1 0.98 98 0.92

Anaerobic phase 

cycle N+1

Train anaerA:2 

anaerB: 1

0.98 0.97 97 0.94 anaerA: N2O end of 

anaerobic > 2.6 mg/L

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



Jaramillo et al. (2018)  developed an SVM classifier to estimate online the end of partial nitrification in a 

laboratory aerobic-anoxic SBR based on features extracted from pH and DO sensors over time-windows, 

resulting in 7.52% reduction in the operational time. In this study, the main focus was to estimate offline the 

behaviour of N
2
O emissions based on historical batch data. The results from this study indicate that ORP and 

pH sensor data can be used to detect the consumption of N
2
O during the nitritation/nitrification in SBR 

reactors. The results show that knowledge-based feature-extraction and SVM classification could help in 

explaining the behaviour of the system and potentially optimise the control to consider the consumption of 

accumulated N
2
O (i.e. in this system the denitritation can be stopped after the local maximum of the ORP rate 

after the nitrite “knee” in all the cycles investigated.)

Fig. 9 (a) and (b) illustrate the predicted and measured N
2
O concentration at the end of the anaerobic phase 

(ANSVR model). The SVR parameters were optimised based on the root mean square error using the train 

dataset. RMSE of the SVR model was equal to 0.11 and 0.1 mg N
2
O–N/L for the train and test datasets 

respectively (R-squared equal to 0.85 and 0.75 respectively). As shown in  Fig. 9 (b)  the simulation results 

follow the behaviour of the actual dissolved N
2
O concentrations observed. One of the major factors affecting 

the performance is the limited number of data points, but the prediction is still accurate.

3.8 Prediction of the N2O concentration in aerobic phase

The input features are shown in  Table 4  and were selected based on the identified influential variables. The 

N
2
O predicted values of the ANSVR model were used (anaerP). The procedure followed for the selection of 

model parameters was similar to the respective one followed for the anaerobic phase. Additionally, ANSVR 

test dataset cycles, were identified and used in AERSVR test dataset A. The model was also applied in anaerB 

cycles (test dataset B).

anaerB: N2O end of 

anaerobic < 2.6 mg/LTest

anaerA: 1

anaerB: 0
1 0.97 98 0.95

alt-text: Fig. 9

Fig. 9

(a) Predicted vs measured dissolved N2O concentration in the end of the anaerobic phase (ANSVR) for the test and train datasets 

and (b) comparison of predicted and measured dissolved N2O concentration for the test dataset.



Fig. 10 (a) , shows the predicted and measured average aerobic N
2
O concentration for the trained and test 

datasets. RMSE of the SVR model was equal to 0.06 and 0.11 mg N
2
O–N/L for the train dataset and test 

dataset A respectively, whereas the R-squared was equal to 0.94 and 0.82 ( Fig. 10 (a) and (b)).

alt-text: Table 4

Table 4

Features selected in the SVR model for the aerobic phase.

Aerobic Features

Average conductivity rate

ORP end of aeration

ORP increase during aeration

Conductivity at the beginning of aeration

Average DO

pH at the beginning of aeration

Conductivity increase (based on the conductivity at the end of the aerobic phase of the previous cycle)

pH change during aeration

Initial aerobicN2O concentration (based on ANSVR predictions)

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.

alt-text: Fig. 10

Fig. 10

(a) Predicted vs measured dissolved N2O concentration (AERSVR) in the aerobic phase for the train dataset, the test dataset A 

and the test dataset B and (b) comparison of predicted and measured dissolved N2O concentration for the test dataset B.



The RMSE of the predicted values for the test dataset B, was equal to 0.29 mg N
2
O–N/L and the R-squared 

was equal to 0.72 (Fig. 10 (a)). The AERSVR model underpredicted the average dissolved N
2
O concentration 

of test B dataset. This is expected given that in test B dataset cycles, the initial aerobic N
2
O accumulation 

exceeds the sensor calibration limit. Therefore, on many occasions the initial aerobic N2O accumulation was 

also underestimated (section  - anaerB cycles). An example is shown if Fig. 11. In cycle A, the average 

dissolved N
2
O concentration (calculated as discussed in section  for anaerB cycles) is equal to 1.33 mg/L. 

The AERSVR model predicted 0.87  mg/L underestimating the actual concentration (considering initial 

accumulation equal to 0.6  mg/L). In cycle B, the AERSVR model predicted N
2
O concentration equal to 

0.61 mg/L (considering initial accumulation equal to 0.6); the observed average dissolved N
2
O concentration 

(after the local minimum), was equal to 0.6 mg/L.

The results show that under the investigated operational conditions, the framework shown in  Fig. 2  can 

provide a good estimation of the real dissolved N
2
O behaviour and concentration observed during the different 

phases of SBR operation. Instabilities in the performance of machine learning models due to changes in the 

operational conditions in wastewater bioreactors have been reported in the literature ( Shi and Xu, 2018 ). 

Therefore, long-term datasets and investigation of different patterns and dependencies should be investigated 

before model construction.

3.9 Mitigation strategy

During aerobic phases, elevated average dissolved N
2
O concentration was linked with DO less than 1 mg/L 

and increased conductivity decrease rates (conductivity values represent NH
4
–N concentration values in the 

reactor). Therefore, cycles with increased conductivity decrease rate indicate higher NH
4
–N removal 

efficiency and NO
2

−
N accumulation. Dissolved N

2
O concentrations lower than 0.6 mg/L were identified in 

cycles with average DO concentration equal to ~1.36 mg/L, and conductivity decrease rate >1.8 μS/cm/min. 

2.2.1

2.2.1

alt-text: Fig. 11

Fig. 11

An example of dissolved N2O profiles for cycles belonging to anaerB cycles (test dataset B). The red points represent the first 

point considered for the calculation of the average aerobic N2O accumulation (as described in section ). Data points in the 

beginning of aeration exceeding sensor calibration limits are not shown. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the Web version of this article.)

2.2.1



Increasing the reactor DO concentration to values higher than 1.3 mg/L can result in decreased aerobic N
2
O 

generation (Law et al., 2012). However, with the current anaerobic supernatant feeding strategy, blowers 

operate at maximum flowrate, so it is not possible to increase the aeration in the system.

On the other hand, the implementation of a step-feeding strategy could foster the reduction of N
2
O emissions 

thanks to the lower NH
4
–N and free ammonia (FA) concentration at the beginning of the cycle, which has 

been recognized as a triggering factor for N
2
O production (Desloover et al., 2012). Conductivity at the end of 

the cycle can act as surrogate to estimate the effluent NH
4
–N concentration of the reactor and optimisze the 

anaerobic supernatant feeding load. Consequently, the aerobic initial NH
4
–N concentration could be controlled 

to avoid either FA accumulation or high AOR with subsequent N
2
O generation.

Additionally, frequent alternation of aerobic/anoxic phases can be introduced in order to avoid high nitrite 

accumulation. The impact of nitrite concentration on N
2
O production can be also minimized by ensuring 

adequate DO levels within the reactor to inhibit the nitrifiers denitrification pathway (Blum et al., 2018; Law 

et al., 2013). Rodriguez-Caballero et al. (2015) reported that in a full-scale SBR treating municipal wastewater, 

intermittent aeration (alternation between 20 and 30 min oxic and anoxic) led to a minimiszation of N
2
O 

compared to long oxic periods that enhanced N
2
O emission. The authors related this behaviour to the presence 

of shorter aeration times with subsequently lower nitrite accumulation and N
2
O production.

In addition, Su et al. (2019) reported that slightly acidic or neutral pH in nitritation reactors (at values that do 

not inhibit microbial activity) can decrease N
2
O generation by up to seven times. Based on the pH profiles 

observed in this study, regulation of aerobic (alkalinity consumption) phase duration can be also considered to 

control the pH at lower levels.

The developed models can be used to estimate rapidly and precisely the hard-to-measure N
2
O concentrations 

during aeration and detect N
2
O accumulation in non-aerated phases. Additionally, it can alert operators about 

cycles with anoxic and anaerobic N
2
O accumulation and elevated aerobic N

2
O concentrations, that require 

modifications to the system operation. The ANOXSVM model can predict if N
2
O is consumed in anoxic 

phases or if anoxic duration should be extended. Thus, additional provision of fermentation liquid can be 

performed to promote N
2
O consumption through denitritation, when after 70–90 min the anoxic SVM model 

still indicates incomplete denitritation.

This study provides evidence on the relationship of DO, ORP and conductivity and pH with the dissolved N
2
O 

concentration (in terms of correlation coefficients, behaviour and thresholds that indicate specific ranges of 

N
2
O accumulation). These findings together with the models developed in this study, can be the basis for the 

development of intelligent control algorithms to integrate emissions control in sidestream SBR reactors 

performing nitritation/partial nitritation or other systems similar to S.C.E.N.A. Moreover, features based on 

ORP, pH, DO and conductivity measurements in wastewater SBR processes, that can be used to predict 

dissolved N
2
O concentrations have been identified. The developed framework can be also tested in continuous 

processes for the data-driven prediction of N
2
O emissions.

4 Conclusions



Knowledge discovery and data-mining techniques were employed to extract useful information about the 

dynamic behaviour of N
2
O, and to predict the behaviour of dissolved N

2
O concentration in a full-scale SBR 

reactor treating the anaerobic supernatant. The main conclusions are summarized as follows:

• The N
2
O emissions in SCENA process varies from 1.3% to 19% of NH

4
–N load, therefore 

they can contribute considerably to the operational carbon footprint of the process (~90% on 

average).

• Average aerobic dissolved N
2
O concentration could significantly under similar influent loads, 

DO, pH and removal efficiencies. Extracting information from the dynamic in-cycle behaviour 

of the variables monitored in the system is a significant step towards understanding N
2
O 

behaviour.

• Aerobic dissolved N
2
O concentration peaks (>1 mg/L), were observed in cycles with average 

DO concentrations less than 0.9–1 mg/L and ORP concentration at the end of the aerobic phase 

less than 40 mV. Conductivity was correlated with the reactor NH
4
–N concentration (0.97). 

N
2
O peaks were also observed in cycles with elevated decrease of conductivity during aeration. 

Step-feeding, control of initial NH
4
–N concentrations and control of pH via the regulation of 

aerobic phase duration can mitigate the N
2
O peaks observed in this study.

• The accumulation of N
2
O at the end of the SBR anoxic phase was stripped in the subsequent 

aerobic phase and had a significant impact on the amount of N
2
O emitted. The accumulated 

N
2
O was consumed rapidly after nitrite ‘knee’ that was linked with the nitrite depletion. The 

ANOXSVM model can be used to detect if anoxic duration should be extended or additional 

fermentation liquid provided to enhance N
2
O consumption in anoxic phases.

• This study shows that low-cost sensors, conventionally used to monitor SBR systems (i.e. pH, 

DO, ORP), have good capabilities to predict the dissolved N
2
O behaviour and concentrations 

when couple with knowledge discovery techniques. The AERSVR model, showed reliable 

estimations of the aerobic N
2
O concentration and can provide guidance to WWTPs operators, 

on whether N
2
O levels are acceptable or mitigation actions are required.
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