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 Abstract—This paper proposes a novel two-stage 

game-theoretic residential photovoltaic (PV) panels planning 

framework for distribution grids with potential PV prosumers. 

One innovative contribution is that a residential PV panels 

location-allocation model is integrated with the energy sharing 

mechanism to increase economic benefits to PV prosumers and 

meanwhile facilitate the reasonable installation of residential PV 

panels. The optimization of residential PV panels planning 

decisions is formulated as a two-stage model. In the first stage, we 

develop a Stackelberg game based stochastic bi-level energy 

sharing model to determine the optimal sizing of PV panels with 

uncertain PV energy output, load demand, and electricity price. 

Instead of directly solving the proposed bi-level energy sharing 

problem by using commercial solvers, we develop an efficient 

descend search algorithm-based solution method which can 

significantly improve the computation efficiency. In the second 

stage, we propose a stochastic programming based residential PV 

panels deployment model for all PV prosumers. This model is 

formulated as an optimal power flow (OPF) problem to minimize 

active power loss. Finally, simulations on an IEEE 33-node and 

123-node test systems demonstrate the effectiveness of the 

proposed method. 

 

 
Index Terms—Residential photovoltaic panels planning, energy 

sharing mechanism, Stackelberg game, descend search algorithm, 

optimal power flow problem 

NOMENCLATURE 

Indices and sets 

𝑗 Index of nodes/lines/agents 
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𝑘/𝑖 Index of prosumer agents/consumer agents 

𝑡 Index of time periods 

𝑤 Index of scenarios 

𝒩/ℒ/𝒯/𝒲 Set of nodes/lines/time periods/scenarios 

𝒞𝑗 Set of child nodes of node 𝑗 

𝒩𝑃𝑉/𝒩𝐶 Set of prosumer agents/consumer agents 

Variables 

𝑃𝑗𝑡𝑤/𝑄𝑗𝑡𝑤  Active/reactive power flow on distribution line 𝑗 at time 

𝑡 in scenario 𝑤 

𝑣𝑗𝑡𝑤 Squared voltage magnitude on node 𝑗 at 𝑡, 𝑤 

𝑙𝑗𝑡𝑤  Squared line current magnitude on line 𝑗 at 𝑡, 𝑤 

𝑝𝑗𝑡𝑤/𝑞𝑗𝑡𝑤  Active/reactive power injection on node 𝑗 at 𝑗, 𝑡, 𝑤 

𝑃𝑖𝑡𝑤
𝑃𝑉𝑐 PV electricity sold to the consumer agent 𝑖 at 𝑡, 𝑤 

𝑃𝑘𝑡𝑤
𝑃𝑉𝑔

 PV electricity sold by the prosumer agent 𝑘 at 𝑡, 𝑤 

𝑃𝑘𝑡𝑤
𝐶𝑢𝑟𝑡𝑎𝑖𝑙  PV energy curtailment on prosumer agent node 𝑘 at 𝑡, 𝑤 

𝑃𝑗𝑡𝑤
𝐺  Electricity purchased from the utility grid by agent 𝑗 at 

𝑡, 𝑤 

𝑐𝑡𝑤
𝑈  Uniform price applied to all consumer agents at 𝑡, 𝑤  

𝑢𝑘
𝑃𝑉 Number of PV panels purchased by prosumer agent 𝑘 

𝜙𝑃𝑉 Total installation number of PV panels 

𝜆𝑖𝑡𝑤
𝐿  Dual variable of supply-demand balance (6g) 

𝜇𝑖𝑡𝑤
𝑃𝑉𝑐/𝜇𝑖𝑡𝑤

𝐺  Dual variable of inequality constraint (6h)/(6i) 

𝑈𝑖𝑡𝑤
𝐶  The utility function of consumer agent 𝑖 at 𝑡, 𝑤 

𝑅𝑒𝑣𝐶 Revenue of the coalition formed by all prosumer agents 

Parameters 

𝑐𝑡𝑤
𝐺 /𝑐𝑡𝑤

𝑀𝐶𝑃 Electricity price /wholesale market clearing price at 𝑡, 𝑤 

𝑐𝑖𝑛𝑣
𝑃𝑉 /𝑐𝑜&𝑚

𝑃𝑉  Investment cost/operation & maintenance cost of each 

PV panel 

𝑐𝐸 Greenhouse gas emission cost 

𝑟𝐶 The proportion of the incomes of sharing PV electricity 

to consumer agents via the energy sharing platform 

𝑤𝑖
𝐸 Individual weight factor for greenhouse gas emissions 

reduction of consumer agent 𝑖 

𝑐𝑖𝑡𝑤
𝑊𝑇𝑃 Willingness-to-pay of consumer agent 𝑖 at 𝑡, 𝑤 

𝑝𝑤 Probability of uncertainty scenario 𝑤 

𝛾𝑡𝑤
𝑃𝑉/𝛾𝑡𝑤

𝐿  PV energy output factor/load factor at 𝑡, 𝑤 

𝑃𝑗𝑡𝑤
𝐿 /𝑄𝑗𝑡𝑤

𝐿  Active/reactive load on node 𝑗 at 𝑡, 𝑤 

𝐸𝑠𝑖𝑧𝑒
𝑃𝑉  Size of each PV panel 

𝐸𝑃𝑉𝑚𝑎𝑥  PV hosting capacity of the distribution grid 

𝑢𝑘
𝑃𝑉𝑚𝑎𝑥 Maximum allowable installation number of PV panels on 
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node prosumer agent node 𝑘 

𝑣𝑚𝑖𝑛/𝑣𝑚𝑎𝑥 Squared lower/upper bound of voltage magnitude 

𝑙𝑗
𝑚𝑎𝑥  Squared upper bound of current magnitude on 

distribution line 𝑗 

𝜂𝑃𝑉 Efficiency of PV panels output 

𝑟𝑗/𝑥𝑗 Resistance/reactance of distribution line 𝑗 

I. INTRODUCTION 

ESIDENTIAL photovoltaic (PV) panels based distributed 

renewable generation becomes a promising alternative 

power generation technology to reduce greenhouse gas 

emissions and promote a low-carbon lifestyle. Energy policies 

introduced by many countries encourage end-users to install 

self-consumed PV systems on their rooftops [1]. As a 

consequence, PV prosumers have emerged in large numbers 

[2], which are end-use consumers who can also act as energy 

providers if they install residential PV panels. In practice, PV 

prosumers can behave as sellers or buyers according to their net 

power profiles as well as electricity price when they participate 

in the energy sharing process. However, the proliferation of PV 

generators leads to the oversupply of PV energy in some areas, 

thus, PV curtailment may be needed when all consumers are 

fully supplied with local PV energy and meanwhile the 

wholesale market clearing prices are negative. For PV 

prosumers, they try to maximize the revenue from PV energy 

sharing to offset the investment, operation and maintenance 

cost of PV panels. As for the normal consumers without 

renewable sources, they are interested in reducing their 

electricity bills and some of them also concern the potential 

valuation of environmental benefits. Therefore, the energy 

sharing between PV prosumers and their nearby consumers 

becomes an effective approach to improve the local PV 

generation consumption and even reduce negative impacts 

caused by PV energy integration into the upstream electrical 

network. In this regard, from the perspective of the residential 

prosumers, this paper aims to optimally plan residential PV 

panels for maximizing the revenue of PV prosumers in a 

distribution grid via energy sharing. 

The idea of energy sharing has drawn attention recently. Ref. 

[3] proposes a two-stage peer-to-peer energy sharing model for 

an energy building cluster. In Ref. [4], a novel energy sharing 

strategy is presented for demand-side management in a 

neighborhood area network (NAN), which is comprised of 

energy providers, users, and an electricity retailer. Ref. [5] 

develops a risk aversion energy sharing model based on a 

devised local energy market for addressing the issues caused by 

uncertain renewable sources from the perspective of 

community prosumers. In Ref. [6], a hybrid energy sharing 

framework of multiple distribution grids is studied with 

consideration of combined heat and power and demand 

response. Ref. [7] proposes a building welfare maximization 

model as well as a game-theoretical energy sharing model to 

investigate the effect of sharing PV electricity in an apartment 

building. 

For optimal residential PV panels planning, Ref. [8] 

proposes a probabilistic dynamic allocation model to optimally 

determine the capacity of on-site PV generation for a residential 

energy hub, aiming to minimize the PV energy curtailment as 

well as consumer cost. In Ref. [9], a data-driven based method 

is proposed for the detection, verification, and estimation of 

residential PV system installations. Authors of Ref. [10] 

endeavor to find the optimal installation capacity of PV 

generation by splitting the budget between PV generation and 

energy storage for maximizing the revenue from participating 

in the electricity market. Ref. [11] determines the energy 

storage size and PV panels number for a commercial building 

considering heating ventilation and air conditioning systems. 

Ref. [12] proposes an optimal two-stage placement method for 

the heterogeneous distributed generators, including PV 

generators, in a grid-tied multi-energy microgrid with the 

consideration of the uncertainties from the renewable energy 

resources. In Ref. [13], based on a performance indicator and 

different parameters of the PV system, an economic study is 

addressed for residential PV panels installation in Santiago, 

Chile. Ref. [14] presents an expansion planning model of PV 

and battery systems for the smart house, which considers 

investment cost, selling price and purchasing price. However, 

these works only focus on energy sharing or residential PV 

panels planning. Up to now, the research on integrating energy 

sharing mechanisms with residential PV panels planning is still 

at a very early stage. 

This paper develops a novel two-stage game-theoretic 

framework for residential PV panels planning. In the first stage, 

Stackelberg game theory is used to model the stochastic 

bi-level energy sharing problem, which is solved by a proposed 

descend search algorithm. In the second stage, we develop a 

stochastic programming based optimal power flow (OPF) 

model to optimally allocate residential PV panels for all PV 

prosumers with minimum expected active power loss. The 

main contributions of this paper are threefold,  

1) Different from most works related to residential PV panels 

planning, we innovatively integrate a residential PV panels 

planning model with the energy sharing mechanism. To our 

best acknowledge, this has not been studied before. In this way, 

we can improve economic benefits to PV prosumers and 

meanwhile facilitate the installation of residential PV panels, 

which has practical significance. 

2) Instead of directly solving the proposed bi-level energy 

sharing problem by using commercial solvers with 

Mathematical Program with Equilibrium Constraints (MPEC), 

we develop an efficient descend search algorithm that can 

significantly enhance computation efficiency. Moreover, in our 

proposed solution method, the feasibility of voltage constraint 

and current constraint is checked to ensure the reliability and 

security of the distribution grid operation during the energy 

sharing process. Thus, the proposed solution method can 

address both economic and operating security concerns. 

3) To address the conflict of interests between PV prosumers 

and normal consumers, the leader-followers Stackelberg game 

theory is used to model a bi-level PV energy sharing problem. 

Besides, the uncertainties of PV energy output, load demand, as 

well as electricity price are simultaneously considered in this 

energy sharing model. 

R 
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The rest of this paper is organized as follows. In Section II, 

we introduce the system model, including the branch flow 

model, consumer agents and the coalition of PV prosumer 

agents. Section III describes a bi-level energy sharing problem 

and an efficient search algorithm-based solution method. 

Section IV presents the optimal PV panels allocation model 

with the goal of active power loss minimization. Numerical 

results are given in Section V. Finally, we conclude this paper 

in Section VI. 

II. SYSTEM MODELLING  

A. Network Branch Flow Model 

In this paper, the branch flow model (BFM) [15] is used to 

describe the complex power flow equations of the radial 

electrical network. Consider a radial distribution grid ℳ ≔
(𝒩, ℒ) , where 𝒩 ≔ {0, 1, … , 𝒩}  denotes the node set and 

ℒ ≔ {0, 1, … , ℒ} denotes the directed line set. Except for the 

substation node, each node 𝑗 has a unique ancestor node 𝑚 and 

a set of child nodes 𝒞𝑗. We assume the direction of the line 

connect node 𝑗 and its ancestor node 𝑚 is from 𝑚 to 𝑗. Note 

that the node 𝑛 is in the set of the child nodes 𝒞𝑗 of the node 𝑗. 

Therefore, the BFM is given as follows, 
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where the active and reactive power balances at each node are 

described by (1a) and (1b), respectively; 𝑃𝑚𝑗  and 𝑄𝑚𝑗 

represent the active and reactive power flows of line 𝑚𝑗 (from 

the ancestor node 𝑚 to the node  𝑗), respectively; 𝑝𝑗  and 𝑞𝑗 

denote the active and reactive power injection (+) or extraction 

(-) at the node j, respectively;  𝑟𝑚𝑗  and 𝑥𝑚𝑗  represent the 

resistance and reactance of line 𝑚𝑗 , respectively; 𝑙𝑚𝑗  is the 

squared line current magnitude on distribution line 𝑚𝑗. The 

voltage drop/rise on each line can be described by (1c). (1d) 

denotes the relationship between the power flow, squared bus 

voltage magnitude and squared line current magnitude, which 

is expressed by nonconvex. To convexify (1d), it is relaxed into 

an inequality as (2a) and then reformulated into a second-order 

cone constraint as (2b) by the second-order cone programming 

(SOCP) relaxation method [16]. 
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It has been proved in Ref. [17] that the relaxation is exact as 

long as the network is radial and the objective function of the 

OPF problem is strictly increasing in 𝑙𝑚𝑗. In our model, the 

equality in (2b) also holds since we take the network loss into 

account and it is a strictly increasing function of 𝑙𝑚𝑗. 

 
Fig. 1. The proposed energy sharing framework between the coalition and 

consumer agents 

B. Energy Sharing Agent Model 

This paper proposes a two-stage residential PV panels 

planning model, where the first stage is to determine the 

optimal sizing of PV panels by developing a Stackelberg 

game-based stochastic bi-level energy sharing model. The 

proposed energy sharing model is performed during the 

decision-making process of finding the total PV panel 

installation capacity. Besides, in the practical operation of the 

distribution system, our proposed bi-level energy sharing 

model can be used for trading energy among the coalition, 

consumers and the utility grid. 

For better energy sharing coordination, we introduce two 

kinds of agents, i.e., consumer agent and prosumer agent. 

Specifically, the consumer agent denotes the aggregation of 

customers on the same node and the prosumer agent represents 

the aggregation of PV prosumers (owners of PV panels) on the 

same node. On behalf of its local consumers/prosumers, each 

agent is allowed to participate in the energy sharing process.  

1) Revenue for the coalition of prosumer agents: In our 

proposed model, all prosumer agents form a coalition to 

maximize their common benefits by operating their residential 

PV panels. This assumption is based on the fact that most 

individual PV prosumers can only provide a small amount of 

PV energy, posing some challenges to energy management in 

power girds. Besides, due to the barriers to renewable energy 

integration [18-21], especially market entry [22], it is efficient 

and easy to manage the integrated PV energy. Note that the 

demands of the coalition are satisfied by the self-generated PV 

energy firstly, then the surplus PV energy is used for energy 

sharing with consumers. Therefore, before the coalition 

participates in the energy sharing process, PV energy trading 

among the prosumers in the coalition has been finished. 

The coalition can be a seller or a buyer according to its loads 

and PV generations. When the coalition becomes a seller, there 

is a competitive relationship between the coalition and the 

distribution system operator (DSO) because they both try to sell 

electricity to the local consumers. However, when the netload 

of the coalition is positive, there is a dependency relationship 

between the coalition and the DSO since the coalition needs to 

purchase electricity from the utility grid via the DSO. The 

coalition sells its surplus PV electricity differently to the 

consumer agents and the utility grid to maximize its revenue. 
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During the energy sharing with local consumer agents, the 

coalition needs to pay the bill to the energy sharing platform 

which acts as an intermediary agent to facilitate energy sharing. 

Therefore, the revenue of the coalition is defined as follows, 

&
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(3) 

where the first term represents the income of selling PV 

electricity 𝑃𝑖𝑡
𝑃𝑉𝑐 to the consumer agents with the uniform price 

𝑐𝑡
𝑈. Note that the energy sharing platform charges the coalition 

intermediary fee in terms of the proportion 𝑟𝐶  of this income. 

The second term is the gain of selling PV electricity 𝑃𝑖𝑡
𝑃𝑉𝑔

 to the 

utility grid with the wholesale market clearing price 𝑐𝑡
𝑀𝐶𝑃. The 

third term denotes that the coalition needs to buy electricity 

from the utility grid when its demand cannot be satisfied by its 

PV generation. Note that [∙]+ represents the projection operator 

onto the non-negative orthant, i.e., [𝑥]+ = max (𝑥, 0). The last 

term denotes the investment, operation and maintenance cost of 

residential PV panels. Note the daily capital recovery factor 

𝛼 =
𝑟𝑃𝑉(1+𝑟𝑃𝑉)𝑦

365((1+𝑟𝑃𝑉)
𝑦

−1)
 is to transform the investment cost 𝑐𝑖𝑛𝑣

𝑃𝑉  

from the planning horizon into the daily horizon, where 𝑟𝑃𝑉 is 

the interest rate and 𝑦 is the planning horizon. 

2) Consumer agent utility function: The utility function of 

each consumer agent 𝑖 is composed of three terms as follows, 
C U PVc G G E E G

i t it t it i it

t t t

U c P c P w c P
  

= − − −  
T T T

 (4) 

where the first term and second term represent the cost of 

electricity purchased from the coalition and the utility grid, 

respectively. Generally, the conventional consumer utility 

function only includes the cost of purchasing electricity. 

However, it is not rational enough since some consumers have 

environmental awareness so they are interested in reducing 

greenhouse gas emissions. Therefore, the third term in (4) is for 

emissions reduction with the individual weight factor 𝑤𝑖
𝐸 . The 

load demand 𝑃𝑖𝑡
𝐿  of each consumer agent 𝑖 can be satisfied by 

buying electricity from the coalition (𝑃𝑖𝑡
𝑃𝑉𝑐) and/or the utility 

grid (𝑃𝑖𝑡
𝐺), i.e., 𝑃𝑖𝑡

𝐿 = 𝑃𝑖𝑡
𝑃𝑉𝑐 + 𝑃𝑖𝑡

𝐺. Thus, by replacing 𝑃𝑖𝑡
𝐺 in (4) 

by 𝑃𝑖𝑡
𝐿 − 𝑃𝑖𝑡

𝑃𝑉𝑐 , the willingness-to-pay (WTP) 𝑐𝑖𝑡
𝑊𝑇𝑃  for 

purchasing local PV electricity of consumer agent 𝑖  can be 

characterized as follows, 

   ,WTP G E E C

it t ic c w c i t= +  N T  (5) 

Note that the individual weight factor 𝑤𝑖
𝐸  is introduced to 

express the preference for emissions reduction of consumer 

agent 𝑖: 1) 𝑤𝑖
𝐸 > 0 means that the consumer agent 𝑖 has strong 

environmental awareness so his WTP 𝑐𝑖𝑡
𝑊𝑇𝑃  is higher than the 

real-time electricity price 𝑐𝑡
𝐺 ; 2) 𝑤𝑖

𝐸 = 0 means that the WTP 

of the consumer agent 𝑖 equals to the real-time electricity price; 

3) 𝑤𝑖
𝐸 < 0  means that the environmental awareness of 

consumer agent 𝑖  is weak so his WTP is lower than the 

real-time electricity price.  

III. BI-LEVEL ENERGY SHARING MODEL FOR DETERMINING 

OPTIMAL PV PANELS INSTALLATION CAPACITY 

A. Uncertainty Characterization 

In this paper, we consider three sources of uncertainties in 

sizing the PV panels installation capacity, i.e., PV energy 

output, load demand, and electricity price. The stochastic 

programming-based approach is employed to deal with these 

three uncertainty sources, which are represented by a set of 

representative scenarios. We assume that local historical public 

data of the electricity prices, loads and PV generations can be 

collected by the collation and a well-established 

backward-reduction algorithm [23] can be used to select the 

representatives with probabilities, which can distinguish the 

importance of each scenario. Each representative scenario 𝑤 ∈
𝒲 consists of three vectors, given as, 

{ , , }   ,PV L G

tw tw tww c t w =  T W  

Besides, 𝑝𝑤  is defined as the occurrence probability of 

scenario 𝑤 , and the sum of probabilities of all considered 

representative scenarios equals to one, i.e., ∑ 𝑝𝑤𝑤∈𝒲 = 1. 

B. Stackelberg Game Model 

In a leader-follower structure, the Stackelberg game is 

suitable for studying the decision-making processes of 

followers in response to the decision taken by the leaders [24]. 

In this paper, we model the coalition as the leader which 

determines the uniform price of PV electricity and participating 

consumer agents act as followers to purchase electricity from 

different sources, e.g., utility grid and coalition, according to 

the time-varying price. Correspondingly, the Stackelberg game 

is defined as follows, 

{( ),{ },{ },{ },{ },{ }}C U PVc G C C

tw itw itw itwG Coalition  = N c P P Rev U  

where (𝐶𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 ∪ 𝒩𝐶) denote the player sets, the coalition 

acts as the leader and the consumer agents in the set 𝒩𝐶 take 

the roles of followers in response to the strategy of the 

coalition; {𝑪𝑡𝑤
𝑈 } is the strategy set of the coalition; {𝑷𝑖𝑡𝑤

𝑃𝑉𝑐} and 

{𝑷𝑖𝑡𝑤
𝐺 } are the strategy sets of consumer agents; {𝑹𝒆𝒗𝐶} and 

{𝑼𝑖𝑡𝑤
𝐶 }  are the revenue (3) of the coalition and the utility 

function (4) of the consumer agent, respectively. 

C. Bi-level Energy Sharing Model 

Stackelberg game theory is adopted to model the energy 

sharing negotiation [25]. Here, the coalition is the leader who 

sets the uniform prices for PV electricity and consumer agents 

are the followers who react to decisions taken by the leader. 

Thus, the stochastic programming-based bi-level energy 

sharing model is formulated as follows, 

&
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where the upper-level problem (6a)-(6h) is to maximize 

revenue over considered time periods in all scenarios. (6b) 

describes the dispatch of surplus PV electricity, which can be 

either fed into consumer agents (𝑃𝑖𝑡𝑤
𝑃𝑉𝑐), sold to the utility grid 

(𝑃𝑘𝑡𝑤

𝑃𝑉𝑔
), or curtailed (𝑃𝑘𝑡𝑤

𝐶𝑢𝑟𝑡𝑎𝑖𝑙). Note that the right side of (6b) 

can be defined as the surplus PV electricity that can be supplied 

to the energy sharing process. It should be noted that PV energy 

curtailment becomes an optimal option in some time periods 

where all consumer agents are fully provided with local PV 

generation and the wholesale market clearing prices are 

negative [26]. For security reasons, (6c) is added to ensure that 

total PV panels installation capacity cannot exceed the PV 

hosting capacity of the grid. (6d) guarantees that the 

upper-level variables are non-negative. 

The lower-level problem (6e)-(6h) aims to maximize the 

utility function of each consumer agent in each time period and 

scenario. (6f) balances the supply and demand for each 

consumer agent node. In (6g) and (6h), the decision variables of 

this lower-level problem are limited to positive values. Since 

the lower-level problem is linear and continuous, it can be 

substituted by Karush–Kuhn–Tucker (KKT) conditions [27]. 

To facilitate the understanding of readers, the proposed bi-level 

energy sharing model (6) can be written as follows, 

        
1

{ , , , }
min  ( , , , )

x y
f x y

 
   (7a) 

           s.t. 1( , , , ) 0h x y   =  (7b) 

                 2 ( , , , ) 0g x y     (7c) 

                
2

{ , , }
min  ( , )
y

f x y
 

 (7d) 

                  s.t. 2 ( , ) 0 :h x y =  (7e) 

                        2 ( , ) 0 :g x y   (7f) 

The KKT conditions of the lower-level problem (7d)-(7f) 

can be implemented in the upper-level problem (7a)-(7c), given 

as follows, 

        
1

{ , , , }
min  ( , , , )

x y
f x y

 
   (8a) 

           s.t. 1( , , , ) 0h x y   =  (8b) 

                2 ( , , , ) 0g x y     (8c) 

                
2 2 2 ( , ) ( , ) ( , ) 0y y yf x y h x y g x y  +  +  =  (8d) 

                2 ( , ) 0h x y =  (8e) 

                2 ( , ) 0 0g x y  ⊥   (8f) 

The Lagrangian is introduced as follows, 
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 (9) 

Therefore, the lower-level problem can be replaced by KKT 

conditions, described as follows, 
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Then the stochastic bi-level energy sharing model (6) can be 

formulated as mathematical programming with equilibrium 

constraints (MPEC) model [28], as follows, 
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 s.t.  (6b)-(6d), (10a)-(10e) (11b) 

D. Linearization of Bi-level Energy Sharing Model 

The MPEC model (11) contains two nonlinearities, 1) the 

nonlinear term 𝑐𝑡𝑤
𝑈 𝑃𝑖𝑡𝑤

𝑃𝑉𝑐 in the objective function (11a); 2) the 

complementarity constraints (10d) and (10e). This may make 

the problem unsolvable. Therefore, the original model (11) 

needs to be linearized.  Firstly, the strong duality condition can 

be used to obtain a linear expression for 𝑐𝑡𝑤
𝑈 𝑃𝑖𝑡𝑤

𝑃𝑉𝑐. As stated in 

the strong duality theorem [29], if a problem is convex, the 

objective functions of the primal and dual problems have the 

same value at the optimum. Therefore, the primary objective 

function (6e) of the lower-level problem is equal to its dual 

objective function, as follows, 
U PVc WTP G L L L

tw itw tw itw itw tw ic P c P P + =  (12) 

Then we can obtain the following expression for the 

nonlinear term 𝑐𝑡𝑤
𝑈 𝑃𝑖𝑡𝑤

𝑃𝑉𝑐, 
U PVc L L L WTP G

tw itw itw tw i tw itwc P P c P = −  (13) 

Secondly, the complementarity constraints (10d) and (10e) 

can be linearized using linear expressions proposed in Ref. 

[30], so the following constraints should be added, 
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 (14a) 
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 (14b) 
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Finally, the linearized MPEC model can be written as 

follows, 
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s.t.  (6b)-(6h), (10a)-(10c), (14a)-(14g) (15b) 

E. Descend Search based Solution Algorithm 

Although the linearized MPEC model (15) can be directly 

solved by cutting-edge solvers, such as CLPEX [31] and 

Gurobi [32], its computation burden may be quite heavy due to 

a very large number of scenarios and mixed-integer variables. 

In this regard, this paper develops an efficient solution 

algorithm for solving the linearized MPEC model. 

As the leader in the Stackelberg game, the coalition sets the 

uniform price for its PV electricity sold to the consumer agent. 

According to the definition stated in Ref. [25], the bi-level 

energy sharing model (6) reaches the Stackelberg Equilibrium 

(SE) when all players acquire the optimal solutions. Therefore, 

our proposed game-theoretic framework reaches a SE as long 

as the coalition finds the optimal uniform price and meanwhile 

all consumer agents choose their electricity consumption. In 

this paper, it is assumed the coalition knows the load curves of 

all the consumer agents in the paper. This assumption is 

reasonable in practice since the coalition can acquire the load 

information of each consumer agent by the long-term 

observation via the nonintrusive load monitoring [33]. Besides, 

the consumer agent is on behalf of all consumers connected to 

the same node, so the exact load demand of each consumer 

cannot be obtained by the coalition. In this regard, the privacy 

of individual consumers can be protected. Therefore, the 

optimal uniform price set by the coalition is equal to the WTP 

offered by the consumer agents. Thus, the coalition prefers to 

sell its surplus PV electricity to the consumer agent with the 

highest WTP, followed by the consumer agent with the 

second-highest WTP, etc. Thus, the surplus PV electricity will 

be dispatched in the descending order by the WTP of consumer 

agents. Besides, because the wholesale market clearing price is 

always lower than the WTP, so the coalition prefers to sell its 

PV electricity firstly to the consumer agents and the second to 

the utility grid. Note that for the extreme situation where the 

uniform price equals the electricity price, we assume that the 

local consumers prefer to purchase the electricity from the 

collation firstly due to their environmental awareness.  This can 

facilitate the utilization of local PV energy and reduce the 

negative impacts on the utility grid caused by PV energy 

integration. 

In this regard, we develop a descend search algorithm to 

calculate the uniform price, as shown in Algorithm 2. The idea   

Algorithm 1: Solution algorithm for solving the proposed 

bi-level energy sharing problem 
1. Initialize the revenue 𝑅𝑒𝑣𝐶  and residential PV panels installation number 

𝜙𝑃𝑉.  Initialize the iteration index 𝜎 = 0 and set the step size 𝜙𝑆𝑡𝑒𝑝
𝑃𝑉 . 

2. Repeat: 

3.      𝜎 = 𝜎 + 1; 

4.      𝜙𝑃𝑉(𝜎)=𝜙𝑃𝑉(𝜎−1) + 𝜙𝑆𝑡𝑒𝑝
𝑃𝑉 ; 

5.      For the coalition do  

6            Execute Algorithm 2; 

6.      End 

7.      Receive 𝑅𝑒𝑣𝐶(𝜎) from executing Algorithm 2; 

8.      If 𝑅𝑒𝑣𝐶(𝜎) > 𝑅𝑒𝑣𝐶(𝜎−1) then 

9.           𝑅𝑒𝑣𝑂𝑝𝑡
𝐶 = 𝑅𝑒𝑣𝐶(𝜎); 

10.         𝜙𝑂𝑝𝑡
𝑃𝑉 = 𝛷𝑃𝑉(𝜎); 

11.         Else 𝑅𝑒𝑣𝑂𝑝𝑡
𝐶 = 𝑅𝑒𝑣𝐶(𝜎−1); 

12.                 𝜙𝑂𝑝𝑡
𝑃𝑉 = 𝛷𝑃𝑉(𝜎−1); 

13.    End 

14. Until 𝜙𝑃𝑉𝐸𝑝𝑒𝑟
𝑃𝑉 ≥ 𝐸𝑃𝑉𝑚𝑎𝑥; 

15. Return 𝑅𝑒𝑣𝑂𝑝𝑡
𝐶 , 𝜙𝑂𝑝𝑡

𝑃𝑉 ; 

16. End procedure 

 

Algorithm 2: Descend search algorithm for seeking the 

optimal internal uniform price 

1. Receive 𝛷𝑃𝑉(𝜎) from Algorithm 1; 

2. For all 𝑤 ∈ 𝒲 do 

3.     For all 𝑡 ∈ 𝒯 do 

4.        For all 𝑖 ∈ 𝒩𝐶  do                         ⊳ Sorted descending by WTP 𝑐𝑖𝑡𝑤
𝑤𝑡𝑝

 

5.            𝒩∗(𝜎) ← 𝒩∗(𝜎) ∪ {𝑖}; 

6.            If 𝑐𝑖𝑡𝑤
𝑤𝑡𝑝 > 𝑐𝑡𝑤

𝑀𝐶𝑃 then continue 

7.            Else go back to step 3 

8.            End 

9.            𝑐𝑡𝑤
𝑈(𝜎)

← 𝑐𝑖𝑡𝑤
𝑤𝑡𝑝

; 

10.          𝑃𝑡𝑤
𝑃𝑉𝑔(𝜎)

← (𝜂𝑃𝑉𝛾𝑡𝑤
𝑃𝑉𝛷𝑃𝑉(𝜎)𝐸𝑝𝑒𝑟

𝑃𝑉 − ∑ 𝛾𝑡𝑤
𝐿 𝑃𝑘

𝐿)𝑘∈𝒩𝑃𝑉  

                                 − ∑ 𝛾𝑡𝑤
𝐿 𝑃𝑖

𝐿
𝑖∈𝒩∗(𝜎) ; 

11.          If  𝑃𝑡𝑤
𝑃𝑉𝑔(𝜎)

≥ 0 then 

12.                𝑅𝑒𝑣𝑡𝑤
𝐶(𝜎)

← ∑ (1 − 𝑟𝐶)𝑐𝑡𝑤
𝑈(𝜎)

𝛾𝑡𝑤
𝐿 𝑃𝑖

𝐿
𝑖∈𝒩∗(𝜎) + [𝑐𝑡𝑤

𝑀𝐶𝑃]+ 𝑃𝑡𝑤
𝑃𝑉𝑔(𝜎)

 

                                       −(𝛼𝐶𝑖𝑛𝑣
𝑃𝑉 + 𝑐𝑜&𝑚

𝑃𝑉 )𝛷𝑃𝑉(𝜎);                                             

13.            Else  

14.            If (𝜂𝑃𝑉𝛾𝑡𝑤
𝑃𝑉𝛷𝑃𝑉(𝜎)𝐸𝑝𝑒𝑟

𝑃𝑉 − ∑ 𝛾𝑡𝑤
𝐿 𝑃𝑘

𝐿)𝑘∈𝒩𝑃𝑉 ≥ 0 

15.                𝑅𝑒𝑣𝑡𝑤
𝐶(𝜎)

← (1 − 𝑟𝐶)𝑐𝑡𝑤
𝑈(𝜎)

(𝜂𝑃𝑉𝛾𝑡𝑤
𝑃𝑉𝛷𝑃𝑉(𝜎)𝐸𝑝𝑒𝑟

𝑃𝑉  

                                        − ∑ 𝛾𝑡𝑤
𝐿 𝑃𝑘

𝐿)𝑘∈𝒩𝑃𝑉 − (𝛼𝐶𝑖𝑛𝑣
𝑃𝑉 + 𝑐𝑜&𝑚

𝑃𝑉 )𝛷𝑃𝑉(𝜎); 

16.                Else 𝑅𝑒𝑣𝑡𝑤
𝐶(𝜎)

← 𝑐𝑡𝑤
𝐺 (∑ 𝛾𝑡𝑤

𝐿 𝑃𝑘
𝐿

𝑘∈𝒩𝑃𝑉 − 𝜂𝑃𝑉𝛾𝑡𝑤
𝑃𝑉𝛷𝑃𝑉(𝜎)𝐸𝑝𝑒𝑟

𝑃𝑉 ) 

                                                −(𝛼𝐶𝑖𝑛𝑣
𝑃𝑉 + 𝑐𝑜&𝑚

𝑃𝑉 )𝛷𝑃𝑉(𝜎); 

17.             End 

18.          End 

19.       End 

20.       Check power flow by using BFM (1) 

21.       If 𝑙𝑖𝑡𝑤 ≤ 𝑙𝑖
𝑚𝑎𝑥 && 𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖𝑡𝑤 ≤ 𝑣𝑚𝑎𝑥 then continue 

22.       Else go back to step 4 

23.       End 

24.    End 

25. End 

26. 𝑏 ← argmax(𝑅𝑒𝑣𝑡𝑤
𝐶(𝜎)

);                                     ⊳ Find the optimal result 

27. 𝑐𝑡𝑤
𝑈(𝜎)

← 𝑐𝑏𝑡𝑤
𝑤𝑡𝑝

; 

28. 𝑅𝑒𝑣𝐶(𝜎) ← (∑ 𝑝𝑤 ∑ 𝑅𝑒𝑣𝑡𝑤
𝐶(𝜎)

𝑡∈𝒯𝑤∈𝒲 ); 

29. Return 𝑅𝑒𝑣𝑡𝑤
𝐶 , 𝑐𝑡𝑤

𝑈(𝜎)
; 

30. End procedure 

 

of this search algorithm is to iteratively update the revenue 

from selling surplus PV electricity to consumer agents, 

whereby the consumer agents are ranked in descending order 

by their WTP. Finally, the uniform price that brings about the 

highest revenue to the coalition will be returned. Therefore, the 

optimal uniform price can be found by using Algorithm 2   
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Fig. 2. Flowchart of our proposed two-stage game-theoretic residential PV 

panels planning framework 

 

instead of directly solving the problem (8). Moreover, to ensure 

the reliability and security of the distribution grid during the 

energy sharing process, the feasibility voltage constraint and 

current constraint are checked by using the BFM. Our proposed 

descend search algorithm-based solution method is given as 

Algorithm 1. Besides, Fig. 2. is plotted to depict the flowchart 

of our proposed two-stage game-theoretic residential PV panels 

planning framework. 

IV. STOCHASTIC OPTIMAL PV PANELS ALLOCATION IN THE 

COALITION OF PROSUMER AGENTS 

After the first stage, the optimal installation capacity of 

residential PV panels for the coalition can be obtained. Then the 

second stage of our proposed two-stage planning framework 

concerns the optimal residential PV panels allocation among 

the prosumer agents of the collation. At this stage, the power 

loss becomes the most important variable since it changes in 

terms of the allocation result of PV panels. The primary goal of 

the second-stage model is to minimize active power loss so that 

economic loss can be reduced. The stochastic optimal 

residential PV panels allocation model is as follows, 

min  w mj mjtw

w t j

p r l
  

  
T NW

 (16a) 

over 

, , , ,
{ , , , , , , } PV C

PV

mktw mktw mitw mitw jtw mjtw k k i t w j
P Q P Q v l u

    N N T NW
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k

PV PV PV PV L L

mktw mk mktw tw k size tw k kntw

n

P r l u E P P  


− + − = 
C

 

, ,PVk t w  N T W  (16b) 
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i

PV L C
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n

P r l P P i t w
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C
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(16c) 

   , ,
k

L L PV

mktw mk mktw tw k kntw

n

Q x l Q Q k t w


− − =    N T
C

W  

(16d) 

   , ,
i

L L C
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n

Q x l Q Q i t w
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C
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(16e) 
2 22( ) ( )
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jtw mtw mj mjtw mj mjtw mj mj mjtwv v r P x Q r x l

j t w

− = + − +

  N T W
 

(16f) 
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j t w
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(16g) 

   , ,min max

jtwv v v j t w    TN W  (16h) 

0    , ,max

mjtw mjl l j t w    N T W  (16i) 
PV PVmax PV

k ku u    k  N  (16j) 

,
PV

PV PV PV

k k

k

u u Z +



= 
N

 (16k) 

where the objective function (16a) is to minimize the expected 

active power loss of all considered uncertainty scenarios. (16b) 

and (16c) describe the active power balance on the node with 

the prosumer agent and consumer agent, respectively. (16d) 

and (16e) describe the reactive power balance on each node. 

(16f) and (16f) are derived from (1c) and (2), respectively. (16h) 

is the voltage constraint and (16i) is the current constraint. (16j) 

guarantees that the residential PV panels installation number at 

each prosumer agent node cannot exceed its maximum 

allowable installation number, which is determined by the 

installation conditions. (16k) ensures that the total installation 

number of residential PV panels equals the optimal value 

obtained from the first stage. 

V. NUMERICAL RESULTS 

A. Implementation on IEEE 33-node Distribution System 
 

1 2

6

754

3

8 15 16 18179 10 141312110

22212019

252423

26 27 28 29 33323130

Candidate nodes for PV panels installation
 

Fig. 3. IEEE 33-node distribution grid with candidate nodes for PV panels 

installation 

 

In this section, we employ the modified IEEE 33-node 

distribution grid to test our proposed residential PV panels 

planning model. Detailed information on this test system can be 

referred to [34]. Fig. 4 depicts 125 (5*5*5) uncertainty 

scenarios, consisting of five load scenarios, five PV output 

scenarios and five electricity price scenarios. For the sake of 

simplicity, the electricity price 𝑐𝑡𝑤
𝐺  is assumed to be equal for 

all agents in the test system and it consists of the market 

clearing price 𝑐𝑡𝑤
𝑀𝐶𝑃 , generation markup (0.013 $/kWh) and 

delivery charge (0.036 $/kWh) [35], i.e., 𝑐𝑡𝑤
𝐺 = 𝑐𝑡𝑤

𝑀𝐶𝑃 +
0.013 + 0.036 $/kWh. (Source: Power Smart Pricing). Due to 

the characteristic of residential PV panels output, the length of 

the entire time period 𝒯 is thirteen hours (6:00-18:00) and the 

duration of each time period is one hour. We randomly assume 
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the following weight factors to describe different consumer 

agent preferences on WTP: 𝑤𝑖
𝐸  = [6.3, 8.2, -7.5, 8.3, 2.6, -8, 

-4.4, 0.9, 9.2, 9.3, -6.8, 9.4, 9.1, -0.3, 6, -7.2, -1.6, 8.3, 5.8, 9.2, 

3.1, -9.3, 7] for consumer agents 1, 4, 5, 7, 8, 10, 12, 13, 15, 16, 

17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32 and 33, 

respectively. Note that these weight factors have significant 

effects on optimal residential PV panels planning results and in 

practice, they can be adjustable depending on the preferences of 

consumer agents on a case by case basis. Other parameters 

including greenhouse gas emission price, per residential PV 

panel size, and residential PV panel investment, maintenance 

and operation cost are summarized in Table I. Table II lists the 

optimal residential PV panels allocation result of our proposed 

two-stage game-theoretic model. All case studies are 

implemented by using MATLAB on a computer with an Intel 

Core i7 of 2.4 GHz and 12GB memory. 
 

 
a) 

 
b) 

 
c) 

Fig. 4. Uncertainty scenarios of a) load factor 𝛾𝑡𝑤
𝐿 , b) PV output factor 𝛾𝑡𝑤

𝑃𝑉, and 

c) electricity price 𝑐𝑡𝑤
𝐺  

 

TABLE I 

RELATED PARAMETERS IN THE 33-NODE CASE 

Parameter name Parameter value 

Greenhouse gas emission price 0.0125 $/kWh [36] 

Per residential PV panel size 200 kVA [37] 

Residential PV panel planning cost 3.05 $/W [37] 

Residential PV panel output efficiency 95% [37] 

Planning horizon 20 years 

Depreciation rate of PV panels 5% 

 

TABLE II 

OPTIMAL RESIDENTIAL PV PANELS PLANNING RESULT IN 33-NODE SYSTEM 

Candidate locations (nodes) PV panels capacity (kVA) 

2 148.4 
3 129 

6 259 

9 269 

11 63.2 

14 165.6 
20 151.8 

24 218.6 

28 240 

30 255.4 

 

1) From the Perspective of the Coalition 

 

TABLE III 

RESIDENTIAL PV PANELS PLANNING SIZE AND COST AND DAILY REVENUE 

WITH AND WITHOUT ENERGY SHARING IN 33-NODE TEST SYSTEM 

Energy sharing mechanism No Yes 

Residential PV panels planning size 6.4*102 kVA 1.9*103 kVA 

Residential PV panels planning cost 1.45*106 $ 4.3*106 $ 

Daily revenue 32.45 $ 110.27 $ 

 

In this subsection, we demonstrate the results from the 

perspective of the coalition. Table III lists comparisons on the 

PV panels planning size and cost as well as the daily revenue 

with and without energy sharing. We can see from this table 

that the PV panels installation capacity with energy sharing is 

more than that without consideration of energy sharing, so its 

corresponding PV panels planning cost is higher. This is 

because local consumer agents with good environmental 

awareness would like to purchase PV electricity from the 

coalition, so more PV panels will be invested. Besides, it also 

can be observed that daily revenue improves significantly after 

energy sharing between the coalition and consumer agents, 

which can bring approximately 77.8 $ revenue improvement 

each day.  

Fig. 5 illustrates the hourly revenue of the coalition in 

representative scenario 6 and scenario 12. As shown in this 

figure, hourly revenue is negative in the morning and becomes 

positive from noon. The main reason is that the residential PV 

panels only can provide a small amount of PV electricity in the 

morning, but the PV production is sufficient at midday. Fig. 6 

depicts the dispatch of PV electricity provided by the coalition 

in representative scenario 4. It can be seen that the coalition 

sells more PV electricity to the consumer agents in each time 

period. The coalition allocates the PV electricity in a way to 

maximize its revenue, so it sells PV electricity differently to the 

utility grid and the consumer agents in each time period. 

According to the WTP equation (5), we can know that the 

wholesale market clearing price 𝑐𝑡𝑤
𝑀𝐶𝑃 is always lower than the 

WTP 𝑐𝑖𝑡𝑤
𝑊𝑇𝑃, so the coalition prefers to sell its PV electricity 

firstly to the consumer agents and then to the utility grid. Fig. 7 

shows the hourly optimal uniform price in representative 

scenario 15. It can be observed from this figure that the uniform 

price is high in time periods of non-peak PV generation 

(6:00-10:00 and 16:00-18:00) and relatively low in time 

periods of peak PV generation (10:00-16:00). This is because 

the PV electricity can be consumed by local consumers during 
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the daytime, the coalition sets low uniform prices so its PV 

electricity can be dispatched to more consumer agents. While in 

the morning or early night, the coalition would like to choose a 

high uniform price to maximize its revenue with low PV 

production. 
 

 
                           a) scenario 6                                         b) scenario 12 

Fig. 5. Hourly revenue of the coalition in representative a) scenario 6 and b) 

scenario 12 

 

 
Fig. 6. PV generation sold to the consumer agents and sold to the utility grid in 

representative scenario 4 

 

 
Fig. 7. Optimal uniform price of each time period in representative scenario 15 
 

TABLE IV 

COMPUTATION PERFORMANCE ON SOLVING PROPOSED BI-LEVEL ENERGY 

SHARING PROBLEM BY DIFFERENT METHODS CONSIDERING DIFFERENT 

NUMBER OF OPERATION SCENARIOS 

No. of operation scenarios 
Computation time (sec) 

MILP method Proposed method 

1 (1*1*1) 2.91 4.38 

8 (2*2*2) 120.57 20.05 

27 (3*3*3) 3961.12 67.66 

64 (4*4*4) - 160.38 

125 (5*5*5) - 313.25 

 

To investigate the computation performance on our proposed 

solution method (see Algorithm 1 and Algorithm 2) for solving 

energy sharing problem (6), the conventional mixed-integer 

linear programming (MILP) method for solving our formulated 

MPEC problem (11) is used as the benchmark. Table IV lists 

the computation time of solving the proposed bi-level energy 

sharing problem by these two methods considering the different 

number of operation scenarios. As shown in this table, both two 

solution methods can be used to solve the proposed problem 

with low considered scenario numbers (e.g. 1, 8, 27) while our 

proposed method shows a clear advantage over the first 

method. With high scenarios numbers (e.g. 64, 125), a huge 

computation burden may be involved so the commercial solver 

cannot handle the original problem. By contrast, our solution 

algorithm can solve the same problem with acceptable 

computation time. Note that the solution obtained by these two 

methods satisfies all conditions in each considered scenario, so 

the solution becomes more robust with the consideration of 

more operation scenarios [38]. In this regard, the robustness 

and reliability of the solution obtained by our proposed solution 

method can be more guaranteed since this method can take a 

large number of uncertainty scenarios into account. 

2) The Tradeoff between Total Residential PV Panels Size 

and the Daily Coalition Revenue 

In this subsection, a sensitivity analysis of the total 

residential PV panels size with the daily coalition revenue is 

performed. Fig. 8 depicts the tradeoff curve between the total 

residential PV panel size and the daily coalition revenue with 

and without energy sharing, respectively. With energy sharing, 

fast-growing daily revenue can be observed with increasing 

residential PV panels size until the investment capacity reaches 

about 1,900 kVA, then the daily revenue declines after more 

residential PV panels installation. While without energy 

sharing, the daily coalition revenue shows a rapid increase at 

first as increasing residential PV panels installation capacity, 

then it becomes fluctuant and finally performs a gradual 

decrease. This is because larger residential PV panels 

investment leads to high planning costs, which cannot be 

covered by the economic benefit of PV energy sharing. 
 

 
a) with energy sharing mechanism 

 
b) without energy sharing mechanism 

Fig. 8. Tradeoff curve between the total PV panel size and the daily coalition 

revenue a) with and b) without energy sharing mechanism in the 33-node 

system. 

B. Implementation on IEEE 123-node Distribution System 

The IEEE 123-node distribution grid [39] is adopted as the 

large-scale test system to verify the proposed planning model 
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and solution algorithm. In this case, uncertainty scenarios 

including load factor, PV energy output factor, and electricity 

price are the same as those in the 33-node case. Other 

parameters including greenhouse gas emission price, per 

residential PV panel size, and residential PV panel investment, 

maintenance and operation cost are also the same as those in the 

33-node case. 
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Fig. 9. IEEE 123-node distribution grid with candidate nodes for PV panels 

installation 

 

TABLE V 

OPTIMAL RESIDENTIAL PV PANELS PLANNING RESULT IN 123-NODE SYSTEM 

Locations 

(nodes) 

PV panels capacity 

(kVA) 

Locations 

(nodes) 

PV panels capacity 

(kVA) 

5 298.67 63 279.10 

14 97.37 75 64.01 

19 663.21 77 386.75 

26 394.31 84 241.06 

35 87.65 86 634.42 
38 222.52 93 444.33 

43 67.30 103 305.76 

47 96.56 112 70.35 

51 139.54 119 15.68 

55 1300.40 120 191.07 

 

 

Fig. 10. Tradeoff curve between the total PV panel size and the daily coalition 

revenue with energy sharing in the 123-node system. 

 

Fig. 9 depicts this modified test system by selecting twenty 

candidate nodes for PV panels installation, i.e., 5, 14, 19, 26, 

35, 38, 43, 47, 51, 55, 63, 75, 77, 84, 86, 93, 103, 112, 119 and 

120. Besides, random weight factors in the range of [-10,10] are 

assumed to define the consumer agent preferences on WTP. 

Residential PV panels planning result is listed in Table V. Fig. 

10 is plotted to demonstrate the tradeoff between the total 

residential PV panel size and the daily coalition revenue with 

the energy sharing mechanism. As shown in this figure, the 

daily revenue rises rapidly with the increase of the PV panel 

size. After the PV panel size reaches approximately 6,000 kVA, 

the daily revenue decreases with the increasing PV panel size. 

VI. CONCLUSION 

In this paper, we develop a novel two-stage game-theoretic 

framework of residential PV panels planning. In the first stage, 

Stackelberg game theory is used to model the stochastic 

bi-level energy sharing problem, which is solved by our 

proposed descend search algorithm-based solution method, so 

the optimal installation capacity of residential PV panels can be 

obtained. In the second stage, we develop a stochastic 

programming-based optimal OPF model to optimally allocate 

residential PV panels for all PV prosumers with minimum 

expected active power loss. Finally, the IEEE 33-node and 

123-node test systems are used to demonstrate the effectiveness 

of our proposed framework. As shown in numerical results, 

with the consideration of energy sharing mechanism during the 

PV panels planning stage, not only economic benefits to PV 

prosumers can be improved but also the residential PV panels 

installation is facilitated. 
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