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A C* Polygonal Surface Patch
by John A. Gregory and Jorg M. Hahn

Abstract A polygonal patch is defined to fill an n-sided hole within a

C? parametric continuous rectangular patch complex.
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1. Introduction

In this note a polygonal surface patch interpolant is presented which
will fill an n-sided hole within a C* parametric continuous rectangular
patch complex. The polygonal patch interpolant is based on a convex com-
bination construction, with appropriate choice of the boundary data to ensure
geometric continuity of order 2 with the adjoining rectangular patches (GC?).

A method for solving the general GCX problem is presented in [Gregory
and Hahn ‘87]. This method involves the ck reparameterization of the surface
around the hole so that it is defined on the exterior of a regular polygon.
The method for the particular C? case proposed here is different, however, in
that it involves the direct use of geometric GC* continuity conditions in the
development of the patch.

We will make use of geometric continuity conditions between patches in
the total derivative form given in [Gregory and Hahn ‘86]. The present paper
can be considered as a sequel to this earlier paper in that it provides a
solution to the polygonal patch problem posed there. We begin by briefly re-
viewing the conditions for geometric continuity between patches. Further
details can be found in the earlier paper or in [Hahn ‘87] of these proceedings,
where a full discussion of geometric continuity is given together with
appropriate references.

2. Conditions for Geometric Continuity between Patches

Let p:Qp—>]R3 and q:Qq—>]R3 be two parametric surface patches defined
on closed polygonal domains Qpc R? and Qqc RZ. (We are specifically concerned
with the case of Qg a rectangle and Qp an n-sided polygon.) Assume that p and
q are regular C> maps and let ep:[O,l]—>]R2 and eq:[O,l]—>]R2 be regular
parametric representations of boundary segments of Q, and Qg respectively.
Then the following proposition is based on Lemma 2.1 of [Gregory and Hahn ‘86],
where, for notational convenience, we have reversed the roles of p and q

from the earlier paper.
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Proposition 1. The patches p and q have a GC? join across their respective

boundary segments e, and e, if there exists a C* diffeomorphism ¢:R> >R?,

p q-

defined in a neighbourhood of e, which is such that:

p’

(1) (Domain continuation) eg=¢ o e, and interior points of Qg are mapped

from exterior points of Q.

(i1) (Patch continuity) Given any (non-zero) transversal vector field U(s)

defined on e, (s), then

o'p

e,(5) (Ui(s)) ~dl(qo ¢)‘ e (5) (Ul(s)), i=0,1,2, forall 0<s<1. 2.1)

Here, 8p|X is the first derivative linear map, 82p|X is the second derivative

summetric bilinear map at xeR? and U (s) denotes the i-tuple (U(s),...,U(s)).

Expanding the right hand sides of (2.1) using the chain and product rules,

and writing
V(=00 (5)(Us), W(S) =02 (5)(U(s), UGs)), (2.2)

leads to the following proposition, the sufficiency of which is proved in
[Gregory and Hahn 86], (see also [Hahn ‘87] for a weaker form of the

proposition).

Proposition 2. Let U:[0,]] >R* be a C*? (non-zero) vector field which is
transversal to e, in an inward direction. Then the patches p and q have a
GC’ join iff. there exist (i) a (non-zero) C' vector field V:[01]>R?,
transversal to e, in an outward direction, and (ii) a C’ vector field
W:[0,1]—>R*, which are such that

p(ep(s)) =aleq(s)), (2.3)

e, (s)(UG)) =0dle (s)(V(s)): (2.4)

82p

e, (5)(U(),U(s) =%

e, (5)(V©, V) + e, (5) (W) 2.5)

Our final proposition is concerned with geometric continuity between patches
p and q, when p is defined as a convex combination of two patches p, and p.,.
It was observed in [Gregory and Hahn ‘86] that GC? continuity between p, and q,

and between p, and q, is not sufficient to ensure GC> continuity between the

patches p and q. The following proposition, which gives a sufficient
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condition for a GC? join, will be used in the development of the polygonal
patch.

Proposition 3. Let pi:Qp—>]R3, i=1,2, have GC? joins with q:Qq—>]R3 in

the sense of Proposition 2. Thus

pi(ep(s) =qleq(s)) (2.6)
i e, ) (VSN =] (5) (Vi 5D @)
2%pile, () (UE),US) =0%d e_(5) (Vi (), Vi () + 0l c_(5) (Wi (5)) 2:8)

for appropriately defined vector fields U(s), V.(s), W.(s), i=1,2. Let
p:Q, »>R’ be defined by

P(x) = Wi(x)P1(x) + Wa(x)P2(x) (2.9)
where wi:Qp—>]R, i=12 are C? functions such that
(W] +W2) e (s) =1 and 8i(w1+w2)ep(s) —0, j=12. (2.10)
Then a sufficient condition that p and q have a GC’ join is that
Vi(s) = Va(s).

The proof of this proposition is straight forward since it is readily shown

that
p(ep(s)) = aleq (5)),
e, (5)(UE) =4, (5) (V)

021, (5) (UG USH =02d ¢ (5) (V(5),V(S)

+8de (5) (VIOWI(5) + W2 ()W ()

where wi(s):wi(eq(s)) and V(s)=Vj(s)=Va(s). The essential point to note
in Proposition 3 is that we have assumed the particular case where Vj(s)=V2(s)
and hence that p, and q, i=1,2, have identical GC' joins.

3. The Polygonal Patch Problem
Let q;, 1=0,...,n-1, form a C? parametric continuous rectangular patch

complex around an n-sided hole. More specifically, let q;:[0,2] x [0,1] SRS
be such that



o] .
50,j(li(5,1)1=$(h(5:t)|t=1: i=0,12, (3.1)

defines the boundary data along the i’th segment of the hole for 0<s<]I,
see Figure 1. (In practice, each q, may consist of a sub-complex of rectangular

patches but for descriptive purposes it is convenient to represent this as one
parametric surface.)

nY
-

[0,2] x [0,1]

Figure 1
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We assume that the patches q,, 1 = 0,..., n-1, form aC® parametrically

continuous patch complex in the sense that the composed map

1(2-t1+59), (s,t —1,0] x [0,2
5.0) - qi—1( )> (s,1) € [-1,0] x [0,2] (32)
qi (s, 1), (s,1) €[0,2] x [0,1]
is C? continuous (i.e. parametrically C?) for all i=0,...,n-1. In many practical

applications the composed map will also be C** continuous and, for simplicity,

we assume this case here. In particular, C** continuity of the composed

map at the corner (0,1) gives the "compatibility conditions"
0j,.j, 9 (OD=(=D% 85 j ai1 (LD, 0<jp,jz <2 (3.3)

2 . . . .
Let Q cR® be an n-sided polygon with sides of length unity, centre the
origin 0, vertices X,, 1=0,...,n-1 and edges E,, 1 =0,...,n-1, parameterized by
Ei(s)=(1-9)X; +sXj+1- (3.4)
Then, following the approach of [Charrot and Gregory '84], our polygonal

patch p:Q — R’ will take the form

n—1
p(x)= Y Wi(x)pj(x), x € Qp, (3.5)
i=0
where pi:Qp—ﬂR3 is a parametric surface patch interpolant which will be
constructed such that it has GC? joins with q,, along the edge E,, and q, along

the edge E;.

The weights w,:R*> - R’ are C? functions chosen such that

n-I
Zwi(x)zl,wi(x)zo, for xe Qp, (3.6)
1=0
and
oJwi|Ej =0,j=0,1,2, for k #i,i+1, k=0,.,n—1. (3.7)

Thus, to investigate the GC? join of p with q, along the edge E,, we may
write p in the form

p(xX)=w;(x)pj(X)+Wi+1(X)pj+1(X)+1i(X) (3.8)
where

oJ[E; =0, j=0,1,2. (3.9)



Now p, and p,, will each have GC’ joins with the patch q, along the edge E,

and if the GC' joins are chosen to be identical, then, by Proposition 3, the
convex combination patch p will have a GC? join with the rectangular patch
complex. We are thus concerned with constructing the component patches

pi:Q2, — R®to satisfy such special GC* conditions. This construction involves

the use of coordinate systems ("coordinate charts") (s;,t,), i=0,...,n-1,

1

defined in the following section.

4. Coordinate Charts for Interpolation
Let Z; be the point of intersection of the boundary segments E;_; and E; ;.
Then

dj (x) : =< Xj -x,Z; >/|Zj]| (4.1)
is the perpendicular distance of xeQ  from the side E;, where
<X,y> = X1y +X2Y2 (42)

is the Euclidean scalar product of x=(x,,x,)eR* and y=(y,,y,) € R.
Coordinate charts are then defined by

(4.3)

d. d.
0i(x) 1 = (51 (), £ (x)) : = [ i-1(%) i (%) )

dip () +di(x) " djp(x)+d;(x)

The coordinate chart ¢; corresponds to central projections from Z, and
Z_,. Thus E,(s;) is the point of intersection of the line from Z, to x
with the edge E, and E,_ (1-t,) is the intersection of the line from Z _, to x with
E,, see Figure 1. The interpolants pi:Qp—>IR3 will be constructed as

pi (X)=p; © ¢;(x)=p;(s;(x), t;(X)), X €Q, (4.4)

where p,:[0,]]> = R®is chosen to have GC? joins with g, on t,=0 and q,

on s,= 0. GC? continuity of p, with q, and q,, is then guaranteed, since p,

is related to p, through the coordinate chart diffeomorphism ¢, (see Proposition 1).
The explicit construction of p, (and hencep,) is given in the next section.

However, in order to make use of Proposition 3, we first relate the derivative

of p,=p, ¢, along the direction E,(s)—Z, with the appropriate derivative

of p, in the coordinate chart.



The chain rule gives
ﬁpi\ E. (s)(Ei(s) - Zi)zapi\(s,O) of \ E. (s)(Ei(®) = Zj) (4.5)
where

ik, 5) (B (5) ~ Z) =203 (4 (9) + (Ei ()~ Z3)] <o, (4.6)

After some calculation, which for brevity is omitted, we obtain

07 (B () + t(Ej (5)— Z; ) =(s, t [4c2s(t +1) +2¢]) 4.7)
where
¢ = cos(27/n). (4.8)
Hence
oni| B, ) (Ei (9 - Zi)=%api (5.0) (0.1, (4.9)
where
v(s)=4cZs + 2. (4.10)
Similarly
opi1[E; () Fi ) =%) :y(ll—s) api+1](0,5) (10). ¢ (4.11)

It should be noted that (4.9) and (4.11) describe the fact that differentiation
along the direction (0,1) in the coordinate chart ¢; corresponds, with appro-

priate scaling, to differentiation along (1,0) in the coordinate chart ¢j4.
It is this observation that allows us to make use of Proposition 3.

5. The Polygonal Patch Interpolant

We assume C>* parametric continuity of the rectangular patch complex
q,,i=0,...,n-1, (see Section 3) and define p,:[0,]]’ >R’ by the Boolean
sum Taylor interpolant

2
S
Pi(s, )=, —-BI (190, jai-1(1 - t.D)
=0’
2 i
+ 20 B (5900, jai (s.1)
=0 "
=2 2 iy 953,900 5.1)
s Ans o J10 )2
1,=05,=0
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Here, B is to be a strictly positive function chosen such that pj =pj ° ¢;
and p,, =p., o0, have identical GC' joins with q;. We first assume that

B(0)=1, B(0)=Pp(0) = 0, (5.2)

and then p, has the interpolation properties:
0;,00i (0,)=PBI ()30, jaj—1(1 - t.1), j=0,.2, (5.3)
80,ipi (5:0)=B) ()20, jai (s.1), j=0,1,2. (5:4)

The conditions (5.3) and (5.4) mean that p,=p,o¢, joins q, and q,,
with GC’continuity. We now show that B can be chosen so that the GC' joins

are identical and hence, by Proposition 3, p will have a GC? join with the rectangular
patch complex.

From (4.9), (4.11) and the interpolation properties (5.3), (5.4) we
Obtain

opi B (5) B: =20 B

/) 90,19i (s,1)

opi41[Ei(9F 720 LAY
v(1=s)

Thus, for an identical GC' join, we require that

0,14i (s;))

B(s)/y(s)=P(—s)/y(1-s), (5.5)
where
v(s) = 4025 + 2c. (5.6)
Hence
B(s) = v(s)/ aus) (5.7)

say, where from (5.2), (5.5), and (5.6), a(s) must be chosen such
that a(s) =a(l-s)and

a(0) = 2¢, & (0) = 4cZ, 6(0) = 0.

Quintic Hermite interpolation then provides the
definition

oc(s):4c2(s4 23 +sj + 2c, (5.8)

this being a positive concave function on 0<s<I1. This together with
(5.7) and (5.6) defines an appropriate function B(s).

We can now summarize the polygonal patch interpolant as



n-1
p(x)= D Wi (x)pi (5i (X), tj (5)),
i=0
where p, is defined by (5.1) and the coordinates (s;(x),t,(x)) are defined

by (4.3). An appropriate definition of the weighting functions is

n—1
wico= T[] d?/ S TI1 df]? .
JRLI+] k=0 j=k,k+1
6. Shape Control
Equations (5.7) and (5.8) provide one of infinitely many possible

definitions for the scaling function B(s)=v(s)/oa(s). Defining

Bi(5)=7(s)/ai(s),  where aj(s)=vis>(1-5)°,

(5.9)

(5.10)

(6.1)

provides a method of shape control across the boundaries E., for given real

parameters v;. The terms B(t)and B(s) in (5.1) must then be replaced by B, ,(t)

and [, (s) respectively.

Another possibility for shape control suggested in [Gregory and Hahn ‘87]

is to add a term of the form

n-1 3
r(x)Hdi
i=0

to the polygonal patch interpolant p. This term will not affect the GC’

(6.2)

continuity along the boundary and r(x) may thus be used to control the shape

of the polygonal patch interior.
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