LOCAL AND GLOBAL BIFURCATION PHENOMENA
IN PLANE STRAIN FINITE ELASTICITY by
R. W. OGDEN

Local and global bifurcation phenomena

 in plane strain finite elasticityBy R.W. OGDEN

Department of Mathematics and Statistics, Brunel University

Abstract

Bifurcation, global non-uniqueness and stability of solutions to the plane-strain problem of an incompressible isotropic elastic material subject to in-plane dead-load tractions are considered. In particular, for loading in equibiaxial tension, bifurcation from a configuration in which the in-plane principal stretches are equal is shown to occur at a certain critical value of the tension (which depends on the form of strain-energy function). Results concerning the global invertibility of the elastic stressdeformation relations are obtained and then used to derive an equation governing the deformation paths branching from this critical value. The stability of each branch is also examined. The analysis is carried through for a general form of strain-energy function and the results are then illustrated for a particular class of strain-energy functions.

1. Introduction. Non-uniqueness of solution to the problem of a cube of incompressible isotropic elastic material subject to three equal pairs of equal and opposite dead-load tractions acting normally to its faces has been examined by Rivlin ($8, \underset{\sim}{9}$) in respect of the neo-Hookean form of strainenergy function. Rivlin also determined the stability of the solutions; Hill (3) pointed out some deficiencies in Rivlin's ($8 \underset{\sim}{\text {) }}$) stability analysis which were subsequently corrected (9). Somewhat different aspects of the
same problem have been considered recently by Ball and Schaeffer (1); in particular, they have examined the branching of solutions from a configuration of pure dilatation as the applied load increases from zero and the stability of the branches. Their work made extensive use of the Mooney form of strain-energy function and they used singularity theory to examine the local aspects of bifurcation. The closely-related problem of non uniqueness and stability of a cube subject to two equal pairs of tractions differing from the third pair has been discussed by Sawyers (10) with attention restricted to the neo-Hookean strain-energy function.

In the present paper we consider a slightly different problem, namely the plane-strain bifurcation, non-uniqueness and stability of a body subject to in-plane equibiaxial dead-load tractions. The material is taken to be incompressible and isotropic, but no other restriction is placed on the form of elastic strain-energy function.

We begin by giving a brief general account of the governing equations and their application to the study of bifurcation and stability in order to place the problem under consideration within a broader framework.
2. The basic equations. Consider a material body which occupies the region B_{0} in some reference configuration, and suppose that the deformation $X: B_{0} \rightarrow B$ defines the region B occupied by the body in the current Configuration. Let $\underset{\sim}{X}$ denote a typical point of B_{0} and also its position vector relative to an arbitrary choice of origin. Similarly, let $\underset{\sim}{X}$ denote the position vector of X in B, so that

$$
\begin{equation*}
X=X(X) \quad X \in B_{0} . \tag{1}
\end{equation*}
$$

The deformation gradient tensor $\underset{\sim}{A}$ is defined by

$$
\begin{equation*}
\underset{\sim}{A}=\operatorname{Grad} \underset{\sim}{X}, \tag{2}
\end{equation*}
$$

where Grad denotes the gradient operator with respect to $\underset{\sim}{X}$. Use will be made of the polar decomposition

$$
\begin{equation*}
\underset{\approx}{\mathrm{A}}=\underset{\sim}{\mathrm{R}} \underset{\approx}{\mathrm{U}}, \tag{3}
\end{equation*}
$$

where $\underset{\sim}{R}$ is proper orthogonal and $\underset{\sim}{U}$ is the positive definite, symmetric right stretch tensor. In this paper attention is restricted to incompressible materials so that we have the constraint

$$
\begin{equation*}
\operatorname{det} \underset{\sim}{A}=\operatorname{det} \underset{\sim}{U}=1 \tag{4}
\end{equation*}
$$

For an (incompressible) elastic material the nominal stress tensor $\underset{\approx}{S}$ is given by

$$
\begin{equation*}
\underset{\approx}{\mathrm{S}}=\frac{\partial \mathrm{W}}{\partial \mathrm{~A}}-\mathrm{PA}_{\approx}^{-1}, \tag{5}
\end{equation*}
$$

where p is the arbitrary hydrostatic pressure (Lagrange multiplier) arising from the constraint (4) and $\mathrm{W}(\underset{\sim}{\mathrm{A}})$ is the elastic strain energy per unit volume.

The strain-energy is objective, i.e. unaffected by a superposed rigid-body rotation after deformation, and it therefore follows from (3) that W depends on $\underset{\sim}{\mathrm{A}}$ only through $\underset{\sim}{\mathrm{U}}$. Thus

$$
\begin{equation*}
\mathrm{W}(\underset{\approx}{\mathrm{~A}}) \equiv \mathrm{W}(\underset{\sim}{\mathrm{U}}) . \tag{6}
\end{equation*}
$$

This leads to an alternative and very useful form of stress-deformation relation, namely

$$
\begin{equation*}
{\underset{\approx}{\mathrm{T}}}^{(1)}=\frac{\partial \mathrm{W}}{\partial \underset{\sim}{\mathrm{U}}}-\mathrm{P}{\underset{\approx}{\mathrm{U}}}^{-1} \tag{7}
\end{equation*}
$$

where $\underset{\sim}{\mathrm{T}^{(1)}}$ is the symmetric Biot stress tensor ${ }^{\dagger}$.

[^0]For an isotropic material W depends on $\underset{\sim}{U}$ only through its principal values $\lambda_{1}, \lambda_{2}, \lambda_{3}$, the principal stretches. We write this dependence as $\mathrm{W}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ and note the symmetries

$$
\begin{equation*}
\mathrm{W}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\mathrm{W}\left(\lambda_{1}, \lambda_{3}, \lambda_{2}\right)=\mathrm{W}\left(\lambda_{3}, \lambda_{1}, \lambda_{2}\right), \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \lambda_{3}=1 \tag{9}
\end{equation*}
$$

following from (4).
If $t_{i}^{(1)}(i=1,2,3)$ denote the principal components of $\underset{\approx}{T}{ }^{(1)}$ then, for an sotropic material, (7) gives

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}^{(1)}=\frac{\partial \mathrm{W}}{\partial \lambda_{\mathrm{i}}}-\mathrm{P} \lambda_{\mathrm{i}}^{-1} \quad \mathrm{i}=1,2,3 . \tag{10}
\end{equation*}
$$

Also, for an isotropic material, we have the connection

$$
\frac{\partial \mathrm{W}}{\partial \underset{\sim}{\mathrm{~A}}}=\frac{\partial \mathrm{W}}{\partial \underset{\sim}{\mathrm{U}}} \underset{\approx}{\mathrm{R}^{\mathrm{T}}}
$$

(the proof of this is straightforward), and hence, by (3), (5) and (7),

$$
\begin{equation*}
\underset{\sim}{\mathrm{S}}={\underset{\sim}{T}}^{(1)}{\underset{\sim}{\mathrm{R}}}^{\mathrm{T}} . \tag{11}
\end{equation*}
$$

In terms of the principal components $t_{i}(i=1,2,3)$ of the Cauchy stress tensor $\underset{\sim}{T}=\underset{\approx}{A} \underset{\sim}{S}$ we have

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}^{(1)}=\lambda_{\mathrm{i}} \frac{\partial \mathrm{~W}}{\partial \lambda_{\mathrm{i}}}-\mathrm{P} \quad \mathrm{i}=1,2,3 \tag{12}
\end{equation*}
$$

Finally in this section we record that in the absence of body forces the equilibrium equation is simply

$$
\begin{equation*}
\operatorname{Div} \underset{\sim}{\underset{\sim}{S}}=\underset{\sim}{Q} \quad \text { in } B_{0}, \tag{13}
\end{equation*}
$$

where Div is the divergence operator with respect to $\underset{\sim}{X}$. Typical boundary conditions involve the specification of $\underset{\sim}{X}$ and the traction $\underset{\sim}{S}{ }^{T} N$ on complementary parts of the boundary $\partial \mathrm{B}_{0}$ of B_{0}, N , being the unit outward normal to $\partial \mathrm{B}_{0}$.
3. The incremental equations. Let \dot{X} denote an increment in X, i.e. a small deformation from the current configuration. Then, on taking the increment of (5), we obtain the incremental constitutive law

$$
\begin{equation*}
\underset{\approx}{\dot{S}}=\underset{\approx}{A^{1}} \underset{\approx}{\dot{A}} \quad-\dot{\mathrm{P}} \underset{\approx}{A}+\mathrm{PA}^{-1} \underset{\approx}{\dot{\sim}} \underset{\approx}{\dot{A}}{\underset{\approx}{-1}, ~}_{\text {A }} \tag{14}
\end{equation*}
$$

where $\underset{\sim}{\dot{A}}=$ Grad $\underset{\sim}{\dot{X}}, \underset{\sim}{\dot{S}}$ and $\dot{\mathrm{p}}$ denote increments in $\underset{\sim}{S}$ and p and

$$
\underset{\approx}{\mathrm{A}^{1}}=\frac{\partial^{2} \mathrm{~W}}{\partial \mathrm{~A}_{\approx}^{2}}
$$

is the (fourth-order) tensor of first-order elastic moduli associated with the conjugate pair ($\underset{\sim}{S}, \underset{\sim}{A}$)• The right-hand side of (14) is correct to the first order in incremental quantities.

It is convenient for our purposes to choose the reference configuration to coincide with the current configuration, in which case (14) becomes
where $\underset{\sim}{T}$ is the (second-order) identity tensor and the subscript zero signifies evaluation in the current configuration. The tensor $\underset{\approx}{\underset{\sim}{A}}{ }_{0}^{1}$ is called the tensor of first-order instantaneous moduli associated with ($\underset{\sim}{\mathrm{S}} \underset{\sim}{\mathrm{A}}$), while

$$
\begin{equation*}
\underset{\sim}{\underset{\sim}{*}}=\underset{\approx}{\underset{\sim}{A}}{\underset{\approx}{A}}^{-1}=\quad \operatorname{grad} \mathrm{V}, \tag{16}
\end{equation*}
$$

where $\underset{\sim}{V}(\underset{\sim}{X})$ is identified with $\underset{\sim}{\underset{\sim}{X}}(\underset{\sim}{X})$ through (1) and grad denotes the
gradient operator with respect to $\underset{\sim}{X}$.
Correct to the first order in incremental quantities the incremental form of the constraint (4) is

$$
\begin{equation*}
\operatorname{tr}(\underset{\sim}{\underset{\sim}{\dot{A}}}) \equiv \mathrm{div} \underset{\sim}{\mathrm{v}}=0, \tag{17}
\end{equation*}
$$

div representing the divergence with respect to $\underset{\sim}{X}$.
For an isotropic material we shall require the components of $\underset{\approx}{A_{0}^{1}}$ referred to the underlying principal axes (i.e. the principal axes of $\underset{\sim}{\mathrm{T}}$). These are given by

$$
\begin{align*}
& A_{0 i i j j}^{1}=\lambda_{i} \lambda_{j} \frac{\partial^{2} W}{\partial \lambda_{i} \partial \lambda_{j}}, \\
& A_{0 i j i j}^{1}\left\{\begin{array}{cl}
\left(t_{i}-t_{j}\right) \lambda_{1}^{2} /\left(\lambda_{1}^{2}-\lambda_{j}^{2}\right) & \lambda_{i} \neq \lambda_{j}, \\
i \neq j \\
\frac{1}{2}\left(A_{0 i i i i}^{1}-A_{0 i i j j}^{1}+\lambda_{i} \frac{\partial W}{\partial \lambda_{i}}\right) & \lambda_{i}=\lambda_{j}, \\
i \neq j,
\end{array}\right. \tag{18}\\
& A_{0 i j j i}^{1}=A_{0 j i i j}^{1}=A_{0 i j i j}^{1}-\lambda_{i} \frac{\partial W}{\partial \lambda_{i}} \quad i \neq j .
\end{align*}
$$

Derivations of these expressions are contained in (5) and fuller details in (7).

Referred to the current configuration the incremental counterpart of (13) is

$$
\begin{equation*}
\operatorname{Div}{\underset{\sim}{\mathrm{S}}}_{0}=\underset{\sim}{0} \quad \text { in } \mathrm{B}, \tag{19}
\end{equation*}
$$

and the boundary conditions may specify, for example, $\underset{\sim}{V}$ and the incremental traction $\dot{S}_{0}^{\mathrm{T}} \underset{\sim}{n}$ on complementary parts of $\partial \mathrm{B}$, where $\underset{\sim}{\mathfrak{n}}$ is the unit outward normal to $\partial \mathrm{B}$.
4. Incremental uniqueness and stability. Suppose that $\underset{\sim}{X}$ is a solution of the underlying problem and that the incremental problem has homogeneous boundary conditions. It follows that $\underset{\sim}{\dot{X}}=Q$ is a solution of the incremental problem. If $\underset{\sim}{X}=\underset{\sim}{V} \neq \underset{\sim}{0}$ is also a solution then, by use of (16), (19) and the divergence theorem, we obtain
where $d V$, dS denote volume and surface elements in B and ∂B respectively. Hence, incremental uniqueness (of both the problem with homogeneous data and that with inhomogeneous data) is guaranteed if

$$
\int_{B} \operatorname{tr}\left(\underset{\sim}{\dot{\sim}} \dot{S}_{0}{\underset{\sim}{\approx}}_{0}^{\dot{A}}\right) d V \neq 0
$$

for all (twice continuously differentiable) $\underset{\sim}{\text { v }}$ satisfying $\underset{\sim}{\mathrm{V}}=\underset{\sim}{0}$ on the appropriate part of ∂ B and (17) in B. We refer to such $\underset{\sim}{v}$ as admissible.

The configuration $\underset{\sim}{x}$ is said to be unstable if the above functional is negative for some admissible $\underset{\sim}{\mathrm{V}}$ and stable if

$$
\begin{equation*}
\int_{\mathrm{B}} \operatorname{tr}\left({\dot{\underset{S}{\approx}}}^{\dot{A}_{\approx}} \underset{\sim}{0}\right) \mathrm{dV} \geq 0 \tag{20}
\end{equation*}
$$

for all admissible $\underset{\sim}{v}$. If strict equality holds in (20) for some admissible $\underset{\sim}{V}$ with grad $\underset{\sim}{V} \neq \underset{\sim}{0}$ then $\underset{\sim}{X}$ is said to be neutrally stable. However, this description is valid only to the second order in incremental quantities and a neutrally stable configuration may, in fact, be unstable when assessed to higher order in $\underset{\sim}{\underset{\sim}{A}} \dot{\sim}_{0}$ (the left-hand side of (20), which represents twice the increase in total energy of the body under dead-loading conditions due to the increment $\underset{\sim}{\underset{\sim}{x}}$, must then include such higher-order terms). For full discussion of this we refer to ($\underset{\sim}{2}$), ($\underset{\sim}{4}$) and ($\underset{\sim}{7}$).

When (20) is strengthened to

$$
\begin{equation*}
\left.\int_{B} \operatorname{tr}\left(\dot{\sim} \dot{\sim}_{0}\right)_{0} \underset{\approx}{\dot{A}}\right) d v>0 \tag{21}
\end{equation*}
$$

for all admissible $\underset{\sim}{V}$ with $\underset{\sim}{\dot{A}} \neq 0$, the current configuration is stable and the incremental problem has a unique solution. Thus (21) excludes bifurcation and is therefore referred to as the exclusion condition (4).

Suppose henceforth that the material properties and the deformation $\underset{\sim}{x}$ are homogeneous. Suppose further that the body is subject to all-round dead load. Then (21) is equivalent to

$$
\begin{equation*}
\operatorname{tr}\left(\underset{\approx}{\dot{S}} \dot{\sim} \dot{A}_{\approx 0}\right)>0 \tag{22}
\end{equation*}
$$

for all $\underset{\approx 0}{\dot{\text { A }}}$ satisfying (17), or, from (15),

$$
\begin{equation*}
\left.\operatorname{tr}\left\{\left({\underset{\approx}{A}}_{1}^{1} 0 \underset{\approx}{\dot{A}}\right)\right) \stackrel{\dot{\approx}}{\dot{A}}+\mathrm{P} \underset{\approx 0}{\dot{A}_{2}^{2}}\right\}>0, \tag{23}
\end{equation*}
$$

independently of the geometry of the body. Along a deformation path on which (23) holds the exclusion condition first fails where
for all $\underset{\approx}{\dot{\text { A }}}$ satisfying (17) with equality holding for some $\underset{\approx}{\underset{\sim}{\dot{A}}} \underset{\sim}{\neq 0} \underset{\sim}{0}$.
Extremizing (24) shows that in a neutrally stable configuration
where p is the Lagrange multiplier introduced in respect of the constraint (17), i.e. the nominal stress is stationary with respect to incremental deformations which minimize the quadratic form (24).

For an isotropic material use of (17), (18), (12) and a little algebra shows that the exclusion condition (23) may be arranged in the form

$$
\begin{align*}
& \left\{\left(\lambda_{1} \frac{\partial}{\partial \lambda_{1}}-\lambda_{3} \frac{\partial}{\partial \lambda_{3}}\right)^{2} \mathrm{~W}-\mathrm{t}_{2}-\mathrm{t}_{3}\right\} \mathrm{V}_{11}^{2}+\left\{\left(\lambda_{2} \frac{\partial}{\partial \lambda_{2}}-\lambda_{3} \frac{\partial}{\partial \lambda_{3}}\right)^{2} \mathrm{~W}-\mathrm{t}_{2}-\mathrm{t}_{3}\right\} \mathrm{v}_{22}^{2} \\
& +\left\{\left(\lambda_{2} \frac{\partial}{\partial \lambda_{1}}-\lambda_{3} \frac{\partial}{\partial \lambda_{3}}\right)^{2} \mathrm{~W}+\left(\lambda_{2} \frac{\partial}{\partial \lambda_{2}}-\lambda_{3} \frac{\partial}{\partial \lambda_{3}}\right)^{2} \mathrm{~W}-\left(\lambda_{1} \frac{\partial}{\partial \lambda_{1}}-\lambda_{2} \frac{\partial}{\partial \lambda_{2}}\right)^{2} \mathrm{~W}-2 \mathrm{t}_{3}\right\} \mathrm{V}_{11} \mathrm{~V}_{22} \\
& +\frac{1}{2} \sum_{\mathrm{i}, \mathrm{j} \neq \mathrm{i} \in\{1,2,3\}}\left\{\left(\frac{\mathrm{t}_{\mathrm{i}-}-{ }_{j}}{\lambda_{\mathrm{i}}^{2}-\lambda_{\mathrm{j}}^{2}}\right)\left(\lambda_{\mathrm{i}}^{2} \mathrm{v}_{\mathrm{ji}}^{2}+\lambda_{\mathrm{j}}^{2} \mathrm{v}_{\mathrm{i} j}^{2}\right)+2\left(\frac{\mathrm{t}_{\mathrm{i}} \lambda_{\mathrm{j}}^{2}-\mathrm{t}_{\mathrm{j}} \lambda_{\mathrm{i}}^{2}}{\lambda_{\mathrm{i}}^{2}-\lambda_{\mathrm{j}}^{2}}\right) \mathrm{V}_{\mathrm{i} j} \mathrm{~V}_{\mathrm{ji}}\right\}>0, \tag{26}
\end{align*}
$$

where V_{ij}. are the components of grad v , on the principal axes of $\underset{\sim}{\mathrm{T}}$ It is an easy matter to obtain necessary and sufficient conditions for (26) to hold for all grad $\underset{\sim}{v} \neq 0$; for the plane strain specialization of (26) such conditions are given in the following section.

For an isotropic material, neutrally stable configurations can be found either by use of (25) or by direct extremization of (26). Henceforth we restrict attention to the plane strain problem for isotropic materials.
5. Plane strain bifurcation criteria. Suppose that the stretch λ_{3} is fixed and normal to the plane in question and that the material is subject to a pure homogeneous strain with in-plane principal stretches λ_{1} and λ_{2}. Let the principal axes of the strain define Cartesian axes with coordinates $\mathrm{x}, \mathrm{x}_{2}, \mathrm{x}_{3}$. We restrict the incremental deformation $\underset{\sim}{\mathrm{V}}$ so that $\mathrm{v}_{3}=0$ and $\mathrm{v}_{1}, \mathrm{v}_{2}$ are independent of x_{3}. Equation (17) reduces to

$$
\begin{equation*}
\mathrm{V}_{11}+\mathrm{v}_{22}=0 \tag{27}
\end{equation*}
$$

and the exclusion condition (26) to

$$
\begin{align*}
& \left\{\left(\lambda_{1} \frac{\partial}{\partial \lambda_{1}}-\lambda_{2} \frac{\partial}{\partial \lambda_{2}}\right)^{2} w-t_{1}-t_{2}\right\} v_{11}^{2}+ \\
+ & \left(\frac{t_{1}-t_{2}}{\lambda_{1}^{2}-\lambda_{2}^{2}}\right)\left(\lambda_{1}^{2} v_{21}^{2}+\lambda_{2}^{2} v_{12}^{2}\right)+2\left(\frac{t_{1} \lambda_{2}^{2}-t_{2} \lambda_{1}^{2}}{\lambda_{1}^{2}-\lambda_{2}^{2}}\right) \mathrm{v}_{12} \mathrm{v}_{21}>0 \tag{28}
\end{align*}
$$

Where $\mathrm{v}_{\mathrm{ij}}=\partial \mathrm{v}_{\mathrm{i}} / \partial \mathrm{x}_{\mathrm{j}}$.

Necessary and sufficient conditions for (28) to hold are, with the help of (12), easily seen to be

$$
\begin{gather*}
\left(\lambda_{1} \frac{\partial}{\partial \lambda_{1}}-\lambda_{2} \frac{\partial}{\partial \lambda_{2}}\right)^{2} \mathrm{~W}-\mathrm{t}_{1}-\mathrm{t}_{2}>0 \tag{29}\\
\mathrm{t}_{1}^{(1)}+\mathrm{t}_{2}^{(1)}>0 \tag{30}\\
\left.\left(\mathrm{t}_{1}^{(1)}\right)-\mathrm{t}_{2}^{(1)}\right) /\left(\lambda_{1}-\lambda_{2}\right)>0 \tag{31}
\end{gather*}
$$

jointly, and, by a limiting process, it can also be seen that (31) is equivalent to (29) when $\mathrm{X}=\mathrm{X}_{2}$. Corresponding inequalities for compressible materials are well known ($\underset{\sim}{4}$) but for incompressible materials (29) - (31) are apparently new although (30) and (31) are identical in form to their compressible counterparts.

Neutrally stable configurations are defined by values of λ_{1} and λ_{2} for which one or more of (29) -(31) just fails. Such values define bifurcation points in the $\left(\lambda_{1}, \lambda_{2}\right)$-plane. The bifurcation criterion

$$
\begin{equation*}
\left(\lambda_{1} \frac{\partial}{\partial \lambda_{1}}-\lambda_{2} \frac{\partial}{\partial \lambda_{2}}\right)^{2} \mathrm{~W}-\mathrm{t}_{1}-\mathrm{t}_{1}=0 \tag{32}
\end{equation*}
$$

is associated with a pure shear mode of incremental deformation ($\mathrm{v}_{22}=-\mathrm{v}_{11}$) coaxial with the underlying pure strain, while

$$
\mathrm{t}_{1}^{(1)}+\mathrm{t}_{2}^{(1)}=0
$$

and

$$
\begin{equation*}
\left(\mathrm{t}_{1}^{(1)}-\mathrm{t}_{2}^{(1)} /\left(\lambda_{1}-\lambda_{2}\right)=0\right. \tag{34}
\end{equation*}
$$

Permit in -plane shearing modes such that $\mathrm{v}_{21} / \mathrm{v}_{12}=-\lambda_{2} / \lambda_{1}$ and $\lambda_{2} / \lambda_{1}$

$$
\begin{equation*}
\left\{\frac{\partial^{2} \hat{\mathrm{w}}}{\partial \lambda}\left(1, \lambda_{\mathrm{a}}\right)-2 \mathrm{t}_{1}\right\}\left\{\mathrm{v}_{11}^{2}+\frac{1}{4}\left(\mathrm{~V}_{12}+\mathrm{V}_{21}\right)^{2}\right\}+\frac{1}{2} \mathrm{t}_{1}\left(\mathrm{v}_{12}-\mathrm{v}_{21}\right)^{2}>0 \tag{40}
\end{equation*}
$$

Necessary and sufficient conditions for (40) to hold for all v_{ij} with $\mathrm{v}_{\mathrm{ij}} \neq 0$ for some pair i, j are simply

$$
\begin{equation*}
0<\mathrm{t}_{1}<\frac{1}{2} \frac{\partial^{2} \hat{\mathrm{~W}}}{\partial \lambda^{2}}\left(1, \lambda_{3}\right) \tag{41}
\end{equation*}
$$

On a path of equibiaxial tensile loading with $\lambda=1$ bifurcation becomes
possible when t_{1} reaches the value

$$
\begin{equation*}
\mathrm{t}_{1}=\frac{1}{2} \frac{\partial^{2} \hat{\mathrm{~W}}}{\partial \lambda^{2}}\left(1, \lambda_{3}\right) \tag{42}
\end{equation*}
$$

and for larger values of t_{1} the deformation $\lambda=1$ is clearly unstable. From the results of Section 5 we deduce that a symmetry-breaking mode
of deformation appears at the value of t_{1} defined by (42). This deformation comprises a pure shear $v_{22}=-v_{11}$ coaxial with the chosen Cartesian axes and a shearing mode with $\mathrm{v}_{12}=\mathrm{v}_{21}$. The combination of these modes represents a pure shear deformation whose axes have orientation dependent on ${ }^{\mathrm{v}}{ }_{11} /{ }^{\mathrm{v}}{ }_{12}$ (which is arbitrary). This arbitrariness is a consequence of the fact that the orientation of the in-plane principal axes of $\underset{\sim}{T}{ }^{(1)}$ is arbitrary since $\mathrm{t}_{1}^{(1)}=\mathrm{t}_{2}^{(1)}$ in the considered configuration. This latter point also arises in connection with the global inversion of (5), as we see in the following section.
7. Global results. According to (11), for an isotropic material we may decompose the nominal stress as

$$
\begin{equation*}
\underset{\sim}{\mathrm{S}}={\underset{\sim}{\mathrm{T}}}^{(1)}{\underset{\sim}{\mathrm{R}}}^{\mathrm{T}} . \tag{43}
\end{equation*}
$$

However, for a given S this polar decomposition, unlike (3), is not unique since ${\underset{\sim}{~}}^{(1)}$ need not be positive (or negative) definite. When $\underset{\sim}{S} \underset{\sim}{S}{ }^{T}$ has distinct principal values it is known $(\underset{\sim}{6}, 7)$ that, for given
respectively. Equations (32) - (34) may be derived directly from (25), with (32) requiring elimination of \dot{P}.

The (nominal) stress-deformation relation is clearly locally invertible except in configurations such as those just described and, more generally, in configurations where (25) holds for $\underset{\approx}{\underset{\sim}{\dot{A}}} 0 \underset{\sim}{\neq 0}$. Given $\underset{\sim}{\dot{S}}$ in a configuration where the exclusion condition holds, $\underset{\approx}{\dot{A}}$ is uniquely defined by (15), pbeing fixed by the constraint $\operatorname{tr}(\underset{\sim}{\underset{\sim}{A}})=0$.
6. Application to the case of equibiaxial tension. At this point it is convenient to introduce the auxiliary variable λ defined by

$$
\begin{equation*}
\lambda_{1}=\lambda \lambda_{3}^{-\frac{1}{2}}, \quad \lambda_{2}=\lambda^{-1} \lambda_{3}^{-\frac{1}{2}} \tag{35}
\end{equation*}
$$

together with the notation

$$
\begin{equation*}
\hat{\mathrm{w}}\left(\lambda, \lambda_{3}\right)=\mathrm{w}\left(\lambda \lambda_{3}^{-\frac{1}{2}}, \lambda^{-1} \lambda_{3}^{-\frac{1}{2}}, \lambda_{3}\right) . \tag{36}
\end{equation*}
$$

From the symmetry (8) we deduce that

$$
\begin{equation*}
\hat{\mathrm{w}}\left(\lambda^{-1}, \lambda_{3}\right)=\hat{\mathrm{w}}\left(\lambda, \lambda_{3}\right), \tag{37}
\end{equation*}
$$

a result which will be required in Section 7 .
From (12) and (36) we obtain

$$
\begin{equation*}
\mathrm{t}_{1}-\mathrm{t}_{2}=\lambda \frac{\partial \hat{\mathrm{w}}}{\partial \lambda} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\lambda_{1} \frac{\partial}{\partial \lambda_{1}}-\lambda_{2} \frac{\partial}{\partial \lambda_{2}}\right)^{2} \mathrm{w}-\mathrm{t}_{1}-\mathrm{t}_{2}=\lambda^{2} \frac{\partial^{2} \hat{\mathrm{w}}}{\partial \lambda^{2}}-2 \mathrm{t}_{2} \tag{39}
\end{equation*}
$$

the latter expression occurring in (32).
Of particular interest is the deformation for which $\lambda_{1}=\lambda_{2}$,
i.e. $\lambda=1$ with $t_{1}=t_{2}$ correspondingly, when the exclusion condition (28) reduces to
$\underset{\sim}{S}$, there are just four distinct polar decompositions of the form (43) and, moreover, only one of these satisfies the stability requirements

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}^{(1)}+\mathrm{t}_{\mathrm{j}}^{(1)}>0 \quad \mathrm{i} \neq \mathrm{j} . \tag{44}
\end{equation*}
$$

By constrast, if two principal values of $\underset{\sim}{S}{\underset{\sim}{T}}^{T}$ are equal and nonzero, the principal values $\mathrm{t}_{\mathrm{i}}^{(1)}(\mathrm{i}=1,2,3)$ of $\underset{\approx}{\mathrm{T}^{(1)}}$ are again uniquely determined under the requirements (44), but the orientation of the principal axes of $\underset{\sim}{T^{(1)}}$ in the plane of the equal values is arbitrary ($\underset{\sim}{6}, 7$) . In particular, this is the case for the equibiaxial problem discussed in Section 6.

Once $\underset{\approx}{T^{(1)}}$, and hence $\underset{\sim}{R}$, has been obtained from (43) with (44) to within the arbitrariness just mentioned, the right stretch tensor $\underset{\sim}{\mathrm{Z}}$, and hence $\underset{\approx}{A}=\underset{\sim}{R} \underset{\sim}{U}$. is to be found by inverting (7) subject to (4). For the equibiaxial tension problem $\mathrm{t}_{1}^{(1)}=\mathrm{t}_{2}^{(1)}$ and the in-plane principal axes of $\underset{\sim}{T^{(1)}}$ and hence of $\underset{\sim}{U}$, have arbitrary orientation in the (1,2)plane. Since λ_{3} is fixed it therefore remains to find λ_{1} and λ_{2}, subject to (9), together with p, if required, in terms of $t_{1}^{(1)}$ from (10).

Elimination of p from (12) gives

$$
\begin{equation*}
\lambda_{1} \mathrm{t}_{1}^{(1)}-\lambda_{1} \frac{\partial \mathrm{w}}{\partial \lambda_{1}}=\lambda_{2} \mathrm{t}_{2}^{(1)}-\lambda_{2} \frac{\partial \mathrm{w}}{\partial \lambda_{2}}=\lambda_{3} \mathrm{t}_{3}^{(1)}-\lambda_{3} \frac{\partial \mathrm{~W}}{\partial \lambda_{3}} . \tag{45}
\end{equation*}
$$

The first equation in (45) serves to determine λ_{1} and λ_{2} for fixed λ_{3} and prescribed $t_{1}^{(1)}$ and $t_{2}^{(1)}$ while the second equation then determines $t_{3}^{(1)}$.

Now set $t_{1}^{(1)}=t_{2}^{(1)}$ and int roduce the notation

$$
\begin{equation*}
\mathrm{t}^{(1)}=\lambda_{3}^{-\frac{1}{2}} \mathrm{t}_{1}^{(1)} \tag{46}
\end{equation*}
$$

Clearly, the first equation in (45) is satisfied for all $t^{(1)}$ and λ_{3} when $\lambda_{1}=\lambda_{2} \quad(\lambda=1$ in the notation of (35)). On use of (35), (36) and
(46) we see that a solution with $\lambda \neq 1$ is governed by

$$
\begin{equation*}
\mathrm{t}^{(1)}=\lambda^{2} \frac{\partial \hat{\mathrm{w}}}{\partial \lambda} /\left(\lambda^{2}-1\right) \tag{47}
\end{equation*}
$$

and that in the limit $\lambda \rightarrow 1$ this becomes

$$
\begin{equation*}
\mathrm{t}^{(1)}=\mathrm{t}_{1}=\frac{1}{2} \frac{\partial \hat{\mathrm{w}}}{\partial \lambda^{2}}\left(1, \lambda_{3}\right) \equiv \mathrm{t}_{\mathrm{C}}^{(1)}, \tag{48}
\end{equation*}
$$

wherein the critical value $\mathrm{t}_{\mathrm{C}}^{(1)}$ is defined. Recalling (42) we note that this is precisely the critical value at which bifurcation can occur on the fundamental deformation path $\lambda=1$ as $t^{(1)}$ increases from zero. Thus, equation (47) governs the global path of deformation emanating from the point $\left(\mathrm{t}_{\mathrm{C}}^{(1)}, 1\right)$ in the $\left(\mathrm{t}^{(1)}, \lambda\right)$-plane.
As we indicated in Section 6 the fundamental path is unstable for values $t^{(1)}$ of greater than $t_{C}^{(1)}$. In order to assess the stability of the path described by (47) we note that the exclusion condition (28) simplifies to

$$
\begin{equation*}
\left(\lambda^{2} \frac{\partial \hat{\mathrm{~W}}}{\partial \lambda^{2}}-2 \mathrm{t}_{2}\right) \mathrm{v}_{11}^{2}+\mathrm{t}^{(1)}\left(\lambda_{1} \mathrm{v}_{21}-\lambda_{2} \mathrm{v}_{12}\right)^{2} /\left(\lambda_{1}+\lambda_{2}\right)>0 \tag{49}
\end{equation*}
$$

However, the left-hand side of (49) vanishes for shearing modes governed by $\lambda_{1} v_{21}=\lambda_{2} v_{12}$ if $v_{11}=0$ (recall that (34) holds). It follows that the deformation branch governed by (47) is (neutrally) stable provided

$$
0 \leq \mathrm{t}^{(1)} \leq \frac{1}{2} \lambda^{3} \frac{\partial^{2} \hat{\mathrm{~W}}}{\partial \lambda^{2}}
$$

or, equivalently,

$$
\begin{equation*}
\lambda^{2} \frac{\partial^{2} \hat{W}}{\partial \lambda^{2}} \geq 2 \lambda \frac{\partial \hat{W}}{\partial \lambda} /\left(\lambda^{2}-1\right) \geq 0 \tag{50}
\end{equation*}
$$

In order to illustrate the consequences of the inequality (50)
we consider the class of strain-energy functions defined by

$$
\mathrm{W}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\mu\left(\lambda_{1}^{\mathrm{m}}+\lambda_{2}^{\mathrm{m}}+\lambda_{3}^{\mathrm{m}}-3\right) / \mathrm{m}^{2},
$$

where $\mu>0$ is the shear modulus.
From (36) we obtain

$$
\begin{equation*}
\hat{\mathrm{W}}\left(\lambda, \lambda_{3}\right)=\mu\left(\lambda^{\mathrm{m}} \lambda_{3}^{-\frac{1}{2} \mathrm{~m}}+\lambda^{-\mathrm{m}} \lambda_{3}^{-\frac{1}{2} \mathrm{~m}}+\lambda_{3}^{\mathrm{m}}-3\right) / \mathrm{m}^{2} \tag{51}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left.\lambda \frac{\partial \hat{\mathrm{W}}}{\partial \lambda}=\mu\left(\lambda^{\mathrm{m}}-\lambda^{-\mathrm{m}}\right) \lambda^{-\mathrm{m}}\right) \lambda_{3}^{-\frac{1}{2} \mathrm{~m}} / \mathrm{m} \tag{52}
\end{equation*}
$$

so that the strict form of the right - hand inequality in (50) can be rearranged as

$$
\begin{equation*}
\mathrm{f}_{\mathrm{m}}(\lambda) \equiv\left\{(\mathrm{m}-1) \lambda^{\mathrm{m}+1}-(\mathrm{m}+1) \lambda^{\mathrm{m}-1}+(\mathrm{m}+1) \lambda^{-\mathrm{m}+1}-(\mathrm{m}-1) \lambda^{-\mathrm{m}-1}\right\} /\left(\lambda-\lambda^{-1}\right) \geq 0 . \tag{53}
\end{equation*}
$$

This is clearly symmetric with respect to interchange of λ and λ^{-1} and reduces to zero in the limit $\lambda \rightarrow 1$ for any m.

For $|\mathrm{m}|=1, \mathrm{f}_{\mathrm{m}}(\lambda)=0$ while

$$
\mathrm{f}_{\mathrm{m}}(\lambda)\left\{\begin{array}{lll}
\geq 0 & \text { for } & |\mathrm{m}|>1 \\
\leq 0 & \text { for } & |\mathrm{m}|<1
\end{array}\right.
$$

with equality if and only if $\lambda=1$. It follows that for strain-energy functions with $|m| \geq 1$ the deformation branch is (neutrally) stable, but for those with $|\mathrm{m}|<1$ it is unstable.

FIG. 1 ABOUT HERE

The branching of the deformation path is illustrated in Figure 1 where λ is plotted against $t^{(1)}$ for a typical value of $|m|$ in each of ranges $|\mathrm{m}|<1$ and $|\mathrm{m}|>1$ on the basis of (47) with (52). In each
case the curves above and below the line $\lambda=1$ are obtained one from the other by reversal of the roles of λ and λ^{-1}, i.e. of λ_{1} and λ_{2}. Thus, for a body of square cross section, for example, under biaxial deformation the curves represent geometrically equivalent deformations.

It is instructive to examine the behaviour of the branches in the neighbourhood of the bifurcation point and for this purpose we differentiate (47) with respect to λ and evaluate the result for $\lambda=1$. One differentiation yields

$$
\begin{equation*}
\frac{\partial \mathrm{t}^{(1)}}{\partial \lambda}=0 \quad \text { for } \quad \lambda=1 \tag{54}
\end{equation*}
$$

for arbitrary \hat{W} and λ_{3}. To obtain this result a limiting process must be used together with $\partial \hat{\mathrm{W}}\left(1, \lambda_{3}\right) / \partial \lambda=0$, which follows from (38), and the connection

$$
\begin{equation*}
\frac{\partial^{3} \hat{W}}{\partial \lambda^{3}}\left(1, \lambda_{3}\right)=-3 \frac{\partial^{2} \hat{w}}{\partial \lambda^{2}}\left(1, \lambda_{3}\right), \tag{55}
\end{equation*}
$$

which is obtained by differentiating (37) three times with respect to λ.

Equation (54) shows that, as indicated in Figure 1, the initial gradient to each branch is vertical irrespective of the form of \hat{W}. The initial curvature depends on the second derivative; a second differentiation of (47) yields

$$
\begin{equation*}
\frac{\partial^{2} t^{(1)}}{\partial \lambda^{2}}=\frac{1}{6} \frac{\partial^{4} \hat{W}}{\partial \lambda^{4}}\left(1, \lambda_{3}\right)-2 \frac{\partial^{2} \hat{W}}{\partial \lambda^{2}}\left(1, \lambda_{3}\right) \quad \text { for } \quad \lambda=1, \tag{56}
\end{equation*}
$$

(55) again having been used. For the strain-energy function (51), equation (56) simplifies to

$$
\frac{\partial^{2} \mathrm{t}^{(1)}}{\partial \lambda^{2}}=\frac{1}{3} \mu\left(\mathrm{~m}^{2}-1\right) \lambda_{3}-\frac{1}{2} \mathrm{~m} \quad \text { for } \quad \lambda=1
$$

and this reflects the intermediate role played by $|\mathrm{m}|=1$ in Figure 1.
The Taylor expansion

$$
\mathrm{t}^{(1)}=\mathrm{t}_{\mathrm{c}}^{(1)}+\frac{1}{2}(\lambda-1)^{2} \frac{\partial^{2} \mathrm{t}^{(1)}}{\partial \lambda^{2}}+\ldots
$$

of (47) near $\lambda=1$ emphasizes that two deformation branches emanate from ($\mathrm{t}_{\mathrm{c}}{ }^{(1)}, 1$) for arbitrary \hat{W} since, to the second order in $(\lambda-1)$, it describes a parabola in the $\left(\mathrm{t}_{\mathrm{c}}{ }^{(1)}, \lambda\right)$-plane.

Thus far, by fixing λ_{3}, we have restricted attention to the plane strain problem. The corresponding problem of all-round dead load with $\mathfrak{t}_{1}^{(1)}, \mathfrak{t}_{2}^{(1)}, \mathfrak{t}_{3}^{(1)}$, prescribed is also governed by equations (45), and we conclude with some remarks about this. If, in particular, $\mathrm{t}_{1}^{(1)}=\mathrm{t}_{2}^{(1)}$ then, in the notation of (35) and (36), equations (45) become

$$
\begin{gather*}
\left(\lambda-\lambda^{-1}\right) \lambda_{3}^{-\frac{1}{2}} \mathrm{t}_{1}^{(1)}=\lambda \frac{\partial \hat{\mathrm{W}}}{\partial \lambda} \tag{57}\\
\lambda_{3} \mathrm{t}_{3}^{(1)}-\frac{1}{2}\left(\lambda+\lambda^{-1}\right) \lambda_{3}^{-\frac{1}{2}} \mathrm{t}_{1}^{(1)}=\lambda_{3} \frac{\partial \hat{\mathrm{~W}}}{\partial \lambda_{3}} \tag{58}
\end{gather*}
$$

The results described in (10) for the neo-Hookean strain-energy function ($\mathrm{m}=2$ in (51)) are recovered by appropriate specialization of (57) and (58), and generalized by examining the solutions of (57) and (58) for prescribed $t_{1}^{(1)}$ and $t_{3}^{(1)}$ along the lines described here for the plane-strain problem. We do not consider the general case here but illustrate the problem by taking $\mathrm{t}_{3}^{(1)}=0$ and using the strainenergy function (51). Elimination of $t{ }_{1}^{(1)}$ from (57) and (58) shows that either $\lambda=1$ or λ_{3} is given by

$$
\begin{equation*}
\lambda_{3}^{\frac{3 \mathrm{~m}}{2}}=\left(\lambda^{\mathrm{m}-1}-\lambda^{-\mathrm{m}-1}\right) /\left(\lambda^{-1}-\lambda\right) \tag{59}
\end{equation*}
$$

which has value $1-\mathrm{m}$ in the limit $\lambda \rightarrow 1$. For (59) to have a positive solution for λ_{3} we must have $\mathrm{m}<1$. By taking $\mathrm{m}=\frac{1}{2}$, for example, we obtain

$$
\lambda_{3}=\left(\lambda^{\frac{1}{2}}+\lambda^{-\frac{1}{2}}\right)^{-\frac{4}{3}}, \quad t_{1}^{(1)}=2 \mu \lambda_{3}
$$

which define an unstable path of deformation from the bifurcation point $\mathrm{t}_{1}^{(1)}=\mu 2^{-\frac{1}{3}}$ on the path $\lambda=1$.

Finally, on setting $\mathrm{t}_{3}^{(1)}=\mathrm{t}_{1}^{(1)}$ in (58) we see that a possible solution of (57) and (58) is $\lambda=\lambda_{3}=1$ for all $t_{1}^{(1)}$. A solution with $\lambda=1$ and $\lambda_{3} \neq 1$ is governed by

$$
\begin{equation*}
\mathrm{t}_{1}^{(1)}=\lambda_{3} \frac{\partial \hat{\mathrm{~W}}}{\partial \lambda_{3}}\left(1, \lambda_{3}\right) /\left(\lambda_{3}-\lambda_{3}^{-\frac{1}{2}}\right) \tag{60}
\end{equation*}
$$

and bifurcates from $\lambda=\lambda_{3}=1$ at the critical value

$$
\mathrm{t}_{1}^{(1)}=\frac{2}{3} \frac{\partial^{2} \hat{\mathrm{~W}}}{\partial \lambda_{3}^{2}}(1,1)
$$

as $t_{1}^{(1)}$ increases. Secondary bifurcation into a deformation path with $\lambda \# 1$ may occur subsequently when $t_{1}^{(1)}$ reaches the critical value obtained from (57) in the limit $\lambda \rightarrow 1$, namely

$$
\mathrm{t}_{1}^{(1)}=\frac{1}{2} \lambda_{3}^{\frac{1}{2}} \frac{\partial^{2} \hat{\mathrm{~W}}}{\partial \lambda^{2}}\left(1, \lambda_{3}\right)
$$

where λ_{3} and $t_{1}^{(1)}$ are also connected by (60). In respect of the Mooney strain-energy function such bifurcations were analyzed in (1), but for (51) the above critical values of $t_{1}^{(1)}$ are both equal to μ (independently of m).

REFERENCES

(1) BALL, J.M. and SCHAEFFER, D.G. Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions. To appear.
(2) HILL, R. On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5 (1957), 229-241.
(3) HILL, R. Eigenmodal deformations in elastic/plastic continua.
J. Mech. Phys. Solids $\underset{\sim}{15}$ (1967), 371-386.
(4) HILL, R. Aspects of invariance in solid mechanics. Advances in Applied Mechanics 18 (1978), 1-75.
(5) OGDEN, R.W. On stress rates in solid mechanics with application to elasticity theory. Proc. Cambridge Philos. Soc. 75(1974), 303-319.
(6) OGDEN, R.W. Inequalities associated with the inversion of elastic stress-deformation relations and their implications. Math. Proc. Cambridge Philos. Soc. (81) (1977), 313-324.
(7) OGDEN, R.W. Nonlinear Elastic Deformations (Ellis Horwood, 1983), to appear.
(8) RIVLIN, R.S. Large elastic deformations of isotropic materials - II.

Some uniqueness theorems forpure homogeneous deformation. Phil. Trans. Roy. Soc. London A 240 (1948), 491-508.
(9) RIVLIN, R.S. Stability of pure homogeneous deformations of an elastic cube under dead loading. Quart. Appl. Math. 32 (1974), 265-271.
(10) SAWYERS, K.N. Stability of an elastic cube under dead loading: two equal forces Int. J. Non-Linear Mech. 11 (1976), 11-23.

Caption to Figure 1

Fig. 1. Bifurcation diagram in the $\left(\mathrm{t}^{(1)}, \lambda\right)$-plane showing branches emanating from bifurcation point $t^{(1)}=t_{c}^{(1)}$ on the path $\lambda=1$ for different values of $|\mathrm{m}|$.

[^0]: † The notation $\underset{\sim}{\mathrm{T}^{(1)}}$ is used because $\underset{\sim}{T}{ }^{(1)}$ is conjugate to $\underset{\sim}{\mathrm{U}}-\underset{\sim}{\mathrm{T}}$ corresponding to $\mathrm{m}=1$ in the class $\left(\underset{\sim}{\mathrm{U}}{ }^{\mathrm{m}} \underset{\sim}{-\mathrm{I}}\right) / \mathrm{m}$ of strain tensors. For a full account of conjugate stress and strain tensors see (\mathbb{Z}).

