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Loca l  and  g loba l  b i furca t ion  phenomena  

    i n  p lane  s t ra in  f in i te  elasticity 

By R.W. OGDEN 

Department of Mathematics and Statistics,  Brunel University 

Abstract.     Bifurcation, global non-uniqueness and stability of solutions       

to the plane-strain problem of an incompressible isotropic elastic material 

subject to in-plane dead-load tractions are considered. In particular,  for 

loading in equibiaxial tension, bifurcation from a configuration in which     

the in-plane principal stretches are equal is shown to occur at a certain  

critical value of the tension (which depends on the form of strain-energy 

function).  Results concerning the global invertibili ty of the elastic stress- 

deformation relations are obtained and then used to derive an equation 

governing the deformation paths branching from this critical value. The 

stability of each branch is also examined. The analysis is carried through     

for a general form of strain-energy function and the results are then  

i l lustrated for a particular class of strain-energy functions. 

1.  Introduction.   Non-uniqueness of solution to the problem of a cube       

of incompressible isotropic elastic material subject to three equal pairs                  

of equal and opposite dead-load tractions acting normally to its faces has      

been examined by Rivlin )~9,~8(  in respect of the neo-Hookean form of strain-

energy function. Rivlin also determined the stability of the solutions;         

Hill  ( ~3 ) pointed out some deficiencies in Rivlin's ( ~8 ) stability analysis   

which were subsequently corrected ( ~9 ). Somewhat different aspects of the 
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same problem have been considered recently by Ball and Schaeffer ( ~1 );  in        

particular,  they have examined the branching of solutions from a configur-                  

ation of pure dilatation as the applied load increases from zero and the               

stability of the branches. Their work made extensive use of the Mooney form 

of strain-energy function and they used singularity theory to examine the  

local  aspects  of bifurcation.  The closely-related problem of non uniqueness 

and stability of a cube subject to two equal pairs of tractions differing from                
the third pair has been discussed by Sawyers ( ~10 ) with attention restricted                   

to the neo-Hookean strain-energy function. 

In the present paper we consider a slightly different problem, namely             

the plane-strain bifurcation, non-uniqueness and stability of a body subject              

to in-plane equibiaxial dead-load tractions. The material is taken to be 

incompressible and isotropic, but no other restriction is placed on the form               

of elastic strain-energy function. 

 
We begin by giving a brief general account of the governing equations          

and their application to the study of bifurcation and stability in order to              

place the problem under consideration within a broader framework. 

 

2.  The basic equations.  Consider a material body which occupies the 

region  in some reference configuration, and suppose that the 0B deformation                  

~X : 0B → B  defines the region   occupied by the body in the current Configur-             B

ation. Let ~X  denote a typical point of  and also its position vector                      0B

relative to an arbitrary choice of origin. Similarly, let ~X  denote the                         

position vector of ~X  in , so that B

                                   
                                            ~X =  ~X )~(X   0B~X ∈  .     (1)  

The deformation gradient tensor ≈A  is defined by 
  

                                     = Grad≈A ~X ,            (2) 
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where Grad denotes the gradient operator with respect to ~X .  Use will  be                   

made of the polar decomposition 
 

 ≈A = ≈≈ UR ,      (3) 

  where ~~R  is proper orthogonal and ≈U is the positive definite,  symmetric                      

r i g h t  s t r e t c h  t e n s o r .    I n  t h i s  p a p e r  a t t e n t i o n  i s  r e s t r i c t e d  t o  i n c o m -                   
pressible materials so that we have the constraint 

 
                                det ≈A  = det ≈U  = 1 .  (4)  

 
For an (incompressible) elastic material the nominal stress tensor  

≈S  is given by 

                                                 ≈S  =  
1PA

A
W −

≈−
≈∂
∂

,  (5) 

where  p  is the arbitrary hydrostatic pressure (Lagrange multiplier)                    

arising from the constraint  (4)  and  W( ≈A )  is the elastic strain energy                       
per unit volume. 

 
The strain-energy is objective, i .e.  unaffected by a superposed                   

r igid-body rotation after deformation, and it  therefore follows from                   
(3) that W depends on  only through ≈A ≈U  .  Thus 

  
 W( ≈A ) ≡  W ( ≈U ) .     (6) 

 
This leads to an alternative and very useful form of stress-deformation                
relation, namely 

 
(1)

T≈ = P
U
W

−
≈∂
∂ 1U−

≈  ,     (7) 

where is the symmetric Biot stress tensor
(1)

T≈
† .  

† The notation 
(1)

T≈ is used because 
(1)

T≈ is conjugate to  corres-                

ponding to m=1 in the class (
≈−≈ TU

≈−≈ IU
m

)/m of strain tensors. For a full                          
account of conjugate stress and strain tensors see ( ~7 ). 
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 For an isotropic material W depends on ≈U  only through its principal               

va lues   the  ,3,2,1 λλλ pr inc ipa l  s t re tches .  We wr i te  th i s  dependence  as                 
W )  and note the symmetries ,,( 321 λλλ

 

)λ,λ,W(λ)λ,λ,W(λ)λ,λ,W(λ 213231321 ==  ,   (8) 

with 

1321 =λλλ      (9) 

following from (4). 

If  (i  = 1,2,3) denote the principal components of then, 
(1)
it

(1)
T≈

for an sotropic material,  (7) gives 

1-
iPλ

iλ

W(1)
it −

∂

∂
=            i= 1,2,3 .   (10) 

Also, for an isotropic material,  we have the connection 
 

TR
U
W

A
W

≈
≈∂
∂

=
≈∂
∂                                                                  

(the proof of this is straightforward),  and hence, by  (3),   (5)  and                              

(7),  

 .RTS T(1)

≈≈=≈  (11) 

In terms of the principal components   of the Cauchy                                 1,2,3)(i it =
stress tensor  we have ≈≈=≈ SAT

P
iλ

W
iλ

(1)
itiλit −

∂
∂

==               i = 1,2,3 . (12) 

Finally in this section we record that in the absence of body                     

forces the equilibrium equation is simply                                                                
              
                         Div ~OS =≈     in  ,   (13) oB
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where Div is the divergence operator with respect to ~X .  Typical boundary 

conditions involve the specification of ~X  and the traction on com-~N
TS≈

plementary parts of the boundary 0B∂  of ,  0B ~N , being the unit outward 

normal to .  0B∂

3.  The incremental equations.  Let ⋅
~X denote an increment in  ~X ,   i .e.                       

a small deformation from the current configuration. Then, on taking the 

increment of (5),  we obtain the incremental constitutive law 

 

,
1

AA1-PAPAA1AS
−

≈
⋅
≈≈+⋅

≈−≈
⋅

≈=≈
⋅  (14) 

where  = Grad  and ⋅
≈A

⋅
≈

⋅
≈ S,X ⋅p  denote increments in ≈S  and p and 

      2

2
1

A
WA
≈∂
∂

=≈  

 

is  the  (fourth-order)  tensor of first-order elastic moduli associated                            

with the conjugate pair ( ≈≈ A,S )•  The right-hand side of  (14)  is correct               

to the first  order in incremental quantities.  

It  is convenient for our purposes to choose the reference configur-              

ation to coincide with the current configuration, in which case (14)                      

becomes 

                       + ≈+≈−≈≈=≈ ,APIPAAS 00
1
00

&&&& ,PA 0
⋅
≈   (15) 

where  is the (second-order) identity tensor and the subscript zero             ≈T

signifies evaluation in the current configuration. The tensor  is           0A≈
1

called the tensor of first-order  instantaneous moduli  associated with            
( ) ,  while ≈≈ A,S

 =
−

≈
⋅
≈=

⋅
≈

1
AA0A grad ,~V    (16) 

where  )~X(~V   is identified with ⋅~X )~(X  through  (1)  and grad denotes the 
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gradient operator with respect to ~X . 

Correct to the first  order in incremental quantities the incremental            

form of the constraint (4) is 

                        ,0~vdiv)tr(A0 =≡
⋅
≈       (17) 

div representing the divergence with respect to ~X . 

For an isotropic material we shall  require the components of               0
1

A≈
referred to the underlying principal axes   (i .e.  the principal axes of  ≈T ) .                   

These are given by 

 1
0iijjA

ji

2

ji
W
λ∂λ∂

∂
λλ= ,  

 

1
0ijijA  =   

j,i,jλiλ)
iλ

W
iλ

1
0iijjA1

0iiii(A
2
1

ji,jλiλ)j2-i2/(i2)jt-i(t

≠=
∂
∂

+−

≠≠λλλ
     (18)  

 

 .ji
iλ

W
iλ

1
0ijijA1

0jiijA1
0ijjiA ≠

∂
∂

−==  

Derivations of these expressions are contained in  ( ~5 )  and fuller details               

in (7).  
 

Referred to the current configuration the incremental counterpart                       

of (13) is 

             Div     in B ,       (19) ~0S0=≈
⋅&

and the boundary conditions may specify, for example, ~V and the incre-                  

mental traction ⋅ ~nST
0 on complementary parts of B∂ ,  where ~n  is the unit 

outward normal to  .  B∂



~X4.  Incremental uniqueness and stability.    Suppose that  is a                            

solution of the underlying problem and that the incremental problem                            
⋅
=~0~Xhas homogeneous boundary conditions.  It  follows that    is a solution                       

⋅
≠= ~0~V~Xof the incremental problem. If    is also a solution then, by use                             

of (16), (19) and the divergence theorem, we obtain 
 

0

T
00 ,0dS)~n(S~

B
vdV)A(S

B
tr ⋅⋅

=≈⋅
∂
=≈

⋅
≈ ∫∫  

where dV, dS denote volume and surface elements in B and  respectively.      B∂

Hence, incremental uniqueness (of both the problem with homogeneous data          

and that with inhomogeneous data) is guaranteed if 
 

∫ ≠
⋅
≈

⋅
≈ 0dV)Atr(S

B
00  

~vfor all  (twice continuously differentiable)  satisfying on the              ~0~v =

~vappropriate part of  and (17) in B. We refer to such B∂  as admissible.                   

~x        The configuration  is said to be unstable if the above functional                      

is negative for some admissible ~v  and stable if  
 

∫ ≥
⋅
≈

⋅
≈ 0dV)Atr(S

B
00       (20) 

 

~vfor all admissible  .   If strict  equality holds in  (20)  for some admissible                       

~v   then  ~x   is said to be ~0/~v ≡ with grad  neutrally stable.  However, this              

description is valid only to the second order in incremental quantities                          

and a neutrally stable configuration may, in fact,  be unstable when                        

assessed to higher order in  (the left-hand side of (20), which represents               0A⋅≈
twice the increase in total energy of the body under dead-loading con-                            

⋅
~xditions due to the increment ,  must then include such higher-order terms) .                

For full  discussion of this we refer to ( ~2 ), ( ~4 ) and ( ).~7
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W h e n  ( 2 0 )  i s  s t r e n g t h e n e d  t o  
 

         (21) 0dv)A)
.
S(

B
tr

.

00 >≈≈∫

for all  admissible    with  ~V ,0
.
A ≠
≈

  the current configuration is stable                   

and the incremental problem has a unique solution.  Thus (21) excludes 

bifurcation and is therefore referred to as the  exclusion condition  ( ~4 ). 

Suppose henceforth that the material properties and the deform-               

at ion ~x  are homogeneous.   Suppose further that  the body is subject to                

all-round dead load.  Then (21) is equivalent to 

          (22) 0)
.

0
A

.

0
S(tr >

≈≈

for all    satisfying (17), or,  from (15), 
.

0
A
≈

   ,0}
2

0
.
AP0

.
A)0

.
A1

0A{(tr >
≈

+
≈≈≈

    (23) 

 
independently of the geometry of the body.   Along a deformation path                  

on which (23) holds the exclusion condition first  fails where 

 ,0}
2

0
.
AP0

.
A)0

.
A1

0A{(tr ≥
≈

+
≈≈≈

    (24) 

for  a l l   sa t isfying (17)  with  equal i ty  holding for  some  
.

0
A
≈

.
~
00

.
A ≠
≈

Extremizing (24)  shows that  in  a  neutral ly  s table  configurat ion 

       (25) ,0I
.
p

0

.
Ap

0

.
A1

0
A0

.
S =

≈
−

≈
+

≈≈
≡

≈

where p is the Lagrange multiplier introduced in respect of the con- 

s t r a in t  (17) ,  i . e .  the  nomina l  s t r ess  i s  s t a t ionary  wi th  respec t  to   

incremental deformations which minimize the quadratic form (24). 

For  an isotropic  mater ia l  use  of  (17) ,  (18) ,  (12)  and a  l i t t le                   

algebra shows that the exclusion condition (23) may be arranged in               

the form 
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2
22V3t2tW

2

3
3

2
2

2
11V3t2tW

2

3
3

1
1

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ∂
∂

λ−
λ∂
∂

λ+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ∂
∂

λ−
λ∂
∂

λ  

22V11V3t2W
2

2
2

1
1W

2

3
3

2
2W

2

3
3

1
2

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ∂
∂

λ−
λ∂
∂

λ−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ∂
∂

λ−
λ∂
∂

λ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ∂
∂

λ−
λ∂
∂

λ+   

∑
∈≠

>
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

λ−λ

λ−λ
+λ+λ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

λ−λ

−+
}3,2,1{ij

,0ijVjiV2
j

2
i

2
ijt2

jit2)2
jiv2

j
2
ijv2

i(2
j

2
i

jtit

,i2
1  (26) 

 

where .  are  the components  of  grad v,  on the pr incipal  axes  of   I t  i s             ijV
≈
T

an easy mat ter  to  obtain  necessary and suff ic ient  condi t ions  for  (26)  to   

hold for  a l l  grad 0~v ≠ ;   for  the  plane s t ra in  special izat ion of  (26)  such  

condi t ions  are  given in  the fol lowing sect ion.  

For  an isotropic  mater ia l ,  neutral ly  s table  configurat ions  can be  

found ei ther  by use of  (25)  or  by direct  extremizat ion of  (26) .   Hencefor th   

we res t r ic t  a t tent ion to  the  plane s t ra in  problem for  isotropic  mater ia ls .  

 
5 .  P lane  s t r a in  b i fu rca t ion  c r i t e r i a .  Suppose  tha t  the  s t r e tch                     3λ

i s  f ixed and normal  to  the plane in  quest ion and that  the  mater ia l  is                      

subject  to  a  pure  homogeneous s t ra in  with  in-plane pr incipal  s t re tches                  

1λ  and  .  Le t  the  p r inc ipa l  axes  o f  the  s t r a in  de f ine  Car tes ian  axes                2λ

with coordinates  x  ,x2 ,x3 .  We res t r ic t  the  incremental  deformat ion   ~V

so that  v3  = 0 and v1 ,v2  are  independent  of  x3 .  Equat ion (17)  reduces  

to  

V1 1 + v2 2 = 0     (27) 

and the exclusion condition (26) to 

  +
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ∂
∂

λ−
λ∂
∂

λ 2
11v2t1tw

2

2
2

1
1       

)28(021v12v2
2

2
1

2
12t

2
21t2)2

12v2
2

2
21V2

1(2
2

2
1

2t1t >
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

λ−λ

λ−λ
+λ+λ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

λ−λ

−
+  

Where vi j= .jx/iv ∂∂  
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Necessary and suff ic ient  condi t ions  for  (28)  to  hold are ,  wi th  the 
help of  (12) ,  easi ly  seen to  be 

 

   ,0ttW 21

2

2
2

1
1 >−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ∂
∂

λ−
λ∂
∂

λ   ( 2 9 )  

     
    

      tt       ( 3 0 )  0)1(
2

)1(
1 >+

     
     

,0)/()t)t( 21
)1(

2
)1(

1 >λ−λ−      ( 3 1 )  

jo in t ly ,  and ,  by  a  l imi t ing  process ,  i t  can  a l so  be  seen  tha t   (31)   i s  

equivalent  to  (29)  when X  = X2.   Corresponding inequal i t ies  for  

compressible  mater ia ls  are  wel l  known ( ~4 )  but  for  incompressible  

mater ia l s  (29)  -  (31)  a re  apparent ly  new a l though (30)  and  (31)  a re  

ident ical  in  form to their  compressible  counterpar ts .  

Neutral ly  s table  configurat ions are  def ined by values  of                       1λ

and  for  which one or  more of  (29)  - (31)  just  fa i ls .   Such values                   2λ

define bifurcat ion points  in  the ( 1λ  , 2λ ) -plane.   The bifurcat ion                

cr i ter ion 
 

   0ttW 11

2

2
2

1
1 =−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ∂
∂

λ−
λ∂
∂

λ     (32) 

is associated with a pure shear mode of incremental deformation (v2 2 =- ) 11v

coaxial with the underlying pure strain, while 
 

0)1(
2t)1(

1t =+   

and 

)34(0)21/()1(
2t

)1(
1t( =λ−λ−

 
Permit in –plane shearing modes such that 121221 /v/v λλ−=  and  12 /λλ
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.02)21v12v(1t2
1}2)21V12V(

4
12

11v{1t2)a,1(ŵ2
>−+++

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−λ
λ∂

∂  (40) 

Necessary and suff ic ient  condi t ions  for   (40)   to  hold for  a l l   wi th                 ijv

0ijv ≠  for  some pair  i ,  j  are  s imply 

    ),1(Ŵ
2
1t0 32

2

1 λ
λ∂

∂
<<         (41)

  

On a  path of  equibiaxial  tensi le  loading with 1=λ  b i furcat ion 
becomes  

possible  when t 1  reaches the value 
  

 ),1(Ŵ
2
1t 32

2

1 λ
λ∂

∂
=      (42) 

and for  larger  values  of   t 1   the  deformation  λ  =1  is  c lear ly  unstable .                 

From the resul ts  of  Sect ion 5 we deduce that  a  symmetry-breaking 
mode            

of  deformation appears  a t  the value of   t 1   def ined by  (42) .    This  de-  

formation comprises  a  pure  shear  v2 2  = -v1 1  coaxial  with  the chosen  

Cartes ian axes  and a  shear ing mode with v1 2  = v2 1 .   The combinat ion                 

of  these modes represents  a  pure shear  deformation whose axes  have  

or ientat ion dependent  on  v
1 1 / v

1 2   (which is  arbi t rary) .   This                      

a rb i t r a r iness  i s  a  consequence  o f  the  fac t  tha t  the  o r ien ta t ion  o f  the                  

in-plane pr incipal  axes  of       i s  arbi t rary s ince     in  the )1(T
≈

)1(
2t)1(

1t =

cons idered  conf igura t ion .   This  la t te r  po in t  a l so  a r i ses  in  connec t ion               

wi th  the global  invers ion of  (5) ,  as  we see in  the fol lowing sect ion.  
 

7 .    Globa l  resu l t s .      Accord ing  to  (11) ,  for  an  i so t ropic  mater ia l  

we may decompose the nominal  s t ress  as  

          ( 4 3 )  .TR)1(TS ≈≈=≈

However ,  for  a  given S this  polar  decomposi t ion,  unl ike (3) ,  is  not               
 

unique s ince ( )
~T

1     need not  be posi t ive (or  negat ive)  defini te .   When    

TSS≈≈ has  d i s t inc t  p r inc ipa l  va lues  i t  i s  known ( )  tha t ,  fo r  g iven  ~7,~6
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respect ively.   Equat ions (32)  -  (34)  may be der ived direct ly  f rom (25) ,  
wi th  (32)  requir ing el iminat ion of  .  P&

 
The (nominal)  s t ress-deformat ion re la t ion is  c lear ly  local ly in-  

 

ver t ible  except  in  configurat ions  such as  those just  descr ibed and,                

more general ly ,  in  configurat ions  where (25)  holds  for   Given             .00
.
A ≈≠≈

.

0
S
≈

in  a  configurat ion where the exclusion condi t ion holds ,   i s  uniquely 
.
A≈

defined by (15) ,  being f ixed by the constraint  t r (  )  = 0 .  
.
p

.

0
A
≈

6.    Appl icat ion to  the case of  equibiaxial  tension.   At  this  point   

i t  i s  convenient  to  introduce the auxi l iary var iable  λ  def ined by 

   2
1

3
1

2
2
1

31 ,
−−−
λλ=λλλ=λ      ( 3 5 )  

together with the notation 

         ),,(w),(ŵ 3
2
1

3
12

1

33 λλλλλ=λλ
−−−

.    (36) 
 

F r o m t h e  s y mme t r y  ( 8 )  w e  d e d u c e  t h a t  
 

          ( 37 )  ),,(ŵ),(ŵ 33
1 λλ=λλ−

 

a  resul t  which wil l  be  required in  Sect ion 7.   

F r o m  ( 1 2 )  a n d  ( 3 6 )  w e  o b t a i n  

            
λ∂

∂
λ=−

ŵtt 21             ( 3 8 )  

and 

   ,t2ŵttw 22

2
2

21

2

2
2

1
1 −

λ∂
∂

λ=−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ∂
∂

λ−
λ∂
∂

λ   (39) 

 

the  la t ter  expression occurr ing in  (32) .  

Of par t icular  interest  is  the  deformation for  which   ,21 λ=λ  

i .e .   wi th  t1=λ 1  = t 2  correspondingly,  when the exclusion condi t ion  

(28) reduces to 
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~
S ,  there  are  just  four  dis t inct  polar  decomposi t ions  of  the  form (43)  

and,  moreover ,  only one of  these sat isf ies  the  s tabi l i ty  requirements  
 

     (44) .ji0)1(
jt)1(

it ≠>+

 
By constras t ,  i f  two pr incipal  values  of   are  equal  and non-  ~S

T
~S

z e r o ,  t h e  p r i n c i p a l  v a l u e s    ( i = 1 , 2 , 3 )  o f      a r e  a g a i n  u n i q u e l y  )1(
it )1(T≈

determined under  the requirements  (44)  ,  but  the  or ientat ion of  the 
pr incipal  axes  of      in  the  p lane  of  the  equal  va lues  i s  a rbi t rary               )1(T≈
( )  .   In  par t icular ,  th is  is  the  case for  the equibiaxial  problem                           ~7,~6

discussed in  Sect ion 6.  
Once ,   and hence ,  has  been obtained from (43)  with (44)  to  )1(T≈ ~~R

within the arbi t rar iness  just  ment ioned,  the  r ight  s t re tch tensor                 ,U≈
and hence  is  to  be found by invert ing (7)  subject  to  (4) .   For   .URA ≈≈=

≈

the  equ ib iax ia l  t ens ion  p rob lem  and  the  in -p lane  p r inc ipa l                )1(
2

)1(
1 tt =

axes  o f  and  hence  o f    have  a rb i t r a ry  o r i en ta t ion  in  the  (1 ,2 ) -)1(T≈ ,U≈
plane.   Since 3λ   i s  f ixed i t  therefore  remains  to  f ind 1λ   and ,               2λ

sub jec t  to  (9 ) ,  toge ther  wi th  p ,  i f  r equ i red ,  in  t e rms  o f   t  f rom (10) .  )1(
1

 
 El iminat ion of  p  f rom (12)  gives  
  

 .
3

W
3

)1(
3t3

2

w
2

)1(
2t2

1

w
1

)1(
1t1 λ∂

∂
λ−λ=

λ∂
∂

λ−λ=
λ∂
∂

λ−λ    (45) 

The f i rs t  equat ion in  (45)  serves  to  determine 1λ  and 2λ   for  f ixed 3λ  
and prescr ibed    and   whi le  the second equat ion then determines )1(

1t
)1(

2t

.t )1(
3  

 N o w  s e t   notationtheroduceintandtt )1(
2

)1(
1 =

  .)1(
1t2

1

3
)1(t

−
λ=      ( 4 6 )  

Clear ly ,  the  f i rs t  equat ion in  (45)  is  sat isf ied for  a l l  t ( 1 )   and             
when    =   ( λ  =1 in  the notat ion of  (35)) .   On use of  (35) ,  (36)  and 

3λ

1λ 2λ
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( 4 6 )  w e  s e e  t h a t  a  s o l u t i o n  w i t h  λ 1≠  i s  gove rned  by  

  )12/(ŵ2)1(t −λ
λ∂

∂
λ=     (47) 

a n d  t h a t  i n  t h e  l i m i t  λ  t h i s  b e c o m e s  1→

   ,)1(
ct)3,1(221t

)1(t ≡λ
λ∂

ŵ1 ∂
==     (48) 

wherein the cr i t ical  value     i s  def ined.  Recal l ing (42)  we note  )1(
ct

that  this  is  precisely  the cr i t ical  value a t  which bifurcat ion can 

occur  on the fundamental  deformation path  1=λ  as  t ( 1 )  increases  f rom 

zero.   Thus,  equat ion (47)  governs the global  path of  deformation 

emanat ing from the point   in  the ( )-plane.                                          )1,)1(
ct( λ,)1(t

As we indicated in  Sect ion 6 the fundamental  path is  unstable  

for  values   t ( 1 )   of  greater  than  .    In  order  to  assess  the s tabi l i ty  )1(
ct

of  the path descr ibed by (47)  we note  that  the exclusion condi t ion (28)  

simplifies to 

  .0)(/)vv(tvt2Ŵ
21

2
122211

)1(2
1122

2 >λ+λλ−λ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

λ∂
∂

λ   (49) 

However ,  the  lef t -hand s ide of  (49)  vanishes  for  shear ing modes 

governed by    i f   v122211 vv λ=λ 1 1  =  0   ( recal l  that  (34)  holds) .    I t  

fol lows that  the  deformation branch governed by (47)  is  (neutral ly)  

s table  provided 

    2

2
3)1( Ŵ

2
1t0

λ∂
∂

λ≤≤    

o r ,  e q u i v a l e n t l y ,  

   .0)1(/Ŵ2Ŵ 2
2

2
2 ≥−λ

λ∂
∂

λ≥
λ∂

∂
λ     (50) 

I n  o r d e r  t o  i l l u s t r a t e  t h e  c o n s e q u e n c e s  o f  t h e  i n e q u a l i t y  ( 5 0 )  
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we consider  the c lass  of  s t ra in-energy funct ions def ined by 

,m/)3(),,(W 2m
3

m
2

m
1321 −λ+λ+λμ=λλλ  

w h e r e  μ  >  0  i s  t h e  s h e a r  m o d u l u s .  

F r o m  ( 3 6 )  w e  obtain 

2m
3

m
2
1

3
mm

2
1

3
m

3 m/)3(),(Ŵ −λ+λλ+λλμ=λλ
−−−

  (51) 

and hence 

    m/))(Ŵ m
2
1

3
mmm −−− λλλ−λμ=

λ∂
∂

λ    (52) 
 

so  that  the  s t r ic t  form of the r ight  -  hand inequal i ty  in   (50)   can be 

rearranged as  

.0)(/})1m()1m()1m()1m({)(f 11m1m1m1m
m ≥λ−λλ−−λ++λ+−λ−≡λ −−−+−−+  (53)  

This  is  c lear ly  symmetr ic  with  respect  to  interchange of   λ   and  λ - 1

and reduces  to  zero in  the l imit   λ  →  1   for  any  m.  

F o r  | m |  =  1 ,  f m  ( λ)  =  0  w h i l e  

            
⎩
⎨
⎧

<≤
>≥

λ
1|m|for0
1|m|for0

)(fm

with equal i ty  i f  and only i f   λ  =  1 .  I t  fol lows that  for  s t ra in-energy 

funct ions with  |  m|  ≥  1 the deformation branch is  (neutral ly)  s table ,  but       

for  those with  |  m|  < 1  i t  i s  unstable .  

FIG. 1 ABOUT HERE 

 
 

The branching of  the deformation path is  i l lus t ra ted in  Figure 1   

where  λ   i s  plot ted against   t ( 1 )   for  a  typical  value of   |m|   in  each of   
ranges |m|  <1 and |  m |  >  1  on the basis  of  (47)  with  (52) .  In  each 
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case the curves  above and below the l ine   λ  =  1  are  obtained one 

from the other  by reversal  of  the  roles  of  λ  and λ - 1  ,  i .e .  of   λ 1  and                      

λ 2  .  Thus,  for  a  body of  square  cross  sect ion,  for  example,  under                  

b iaxial  deformation the curves  represent  geometr ical ly  equivalent   

deformations.  

I t  i s  ins t ruct ive to  examine the behaviour  of  the  branches in  the   

neighbourhood of  the bifurcat ion point  and for  this  purpose we diff-  

erent ia te  (47)  with  respect  to  λ  and evaluate  the  resul t  for   λ  =1.                      

One different ia t ion yields  

    1for0t )1(

=λ=
λ∂

∂     (54) 

for  arbi t rary  and λŴ 3 .   To obtain this  resul t  a  l imit ing process                         

must  be used together  with   ,  which fol lows from (38) ,                 0/),1(Ŵ 3 =λ∂λ∂
and the connect ion 

    ( ) ,,1w3),1(Ŵ
32

2

33

3

λ
λ∂

∂
−=λ

λ∂
∂ )

   (55) 

which is  obtained by different ia t ing (37)  three t imes with respect                 
to  λ .  

Equat ion (54)  shows that ,  as  indicated in  Figure 1 ,  the  ini t ia l   

gradient  to  each branch is  ver t ical  i r respect ive of  the form of .                     Ŵ

The ini t ia l  curvature  depends on the second der ivat ive;  a  second  

different ia t ion of  (47)  yields  
 

 ,1for),1(Ŵ2),1(Ŵ
6
1t

32

2

34

4

2

)1(2

=λλ
λ∂

∂
−λ

λ∂
∂

=
λ∂

∂   (56) 

(55)  again having been used.  For  the s t ra in-energy funct ion (51) ,               
equat ion (56)  s implif ies  to  
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   1form
2
1

3)12m(
3
1

2

)1(t2
=λ−λ−μ=

λ∂

∂  

and this  ref lects  the  intermediate  role  played by |  m |  =  1  in  Figure  1 .  

The Taylor  expansion 

   ...
2

)1(t22)1(
2
1)1(

ct
)1(t +

λ∂

∂
−λ+=   

o f  (47)  nea r  λ  =  1  emphas izes  tha t  two  deformat ion  b ranches  emana te 
f r o m ( t  c

( 1 )  , 1 )  f o r  a r b i t r a r y   s i n c e ,  t o  t h e  s e c o n d  o r d e r  i n  (λ - 1 ) ,             Ŵ

i t  descr ibes  a  parabola  in  the  ( t  c
(1 )  ,  λ ) -plane.  

Thus far ,  by f ixing λ 3 ,  we have res t r ic ted a t tent ion to  the  plane 

s t ra in  problem. The corresponding problem of  a l l - round dead load with 

,t,t,t )1(
3

)1(
2

)1(
1  prescr ibed is  a lso governed by equat ions (45) ,  and we                

conclude with some remarks about  this .   I f ,  in  par t icular ,  t                  )1(
2t)1(

1 =

then,  in  the notat ion of  (35)  and (36) ,  equat ions (45)  become 

               .Ŵt)( )1(
1

2
1

3
1

λ∂
∂

λ=λλ−λ
−−     (57) 

       .Ŵt)(
2
1t

3
3

)1(
1

2
1

3
1)1(

33 λ∂
∂

λ=λλ+λ−λ
−−    (58) 

 

The resul ts  descr ibed in  ( )  for  the neo-Hookean s t ra in-energy ~10

funct ion (m =2 in  (51))  are  recovered by appropriate  special izat ion              

of  (57)  and (58) ,  and general ized by examining the solut ions of  (57)                 

and  (58)  fo r  p resc r ibed  and   a long  the  l ines  desc r ibed  here                 )1(
1t )1(

3t

for  the plane-s t ra in  problem.  We do not  consider  the general  case                

here  but  i l lus t ra te  the problem by taking  and using the s t ra in-  0)1(
3t =

energy funct ion (51) .  El iminat ion of   f rom (57)  and (58)  shows                )1(
1t

that  e i ther  λ  =1 or  λ 3  is  given by 

   ,)(/)( 11m1m2
m3

3 λ−λλ−λ=λ −−−−     (59) 
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which has  value 1-m in  the l imit  λ  →  1  .  For  (59)  to  have a  posi t ive  

solut ion for  λ 3  we must  have m< 1.  By taking
2
1

=m , for  example,  we 

obtain 

   ,2t,)( 3
)1(

1
3
4

2
1

2
1

3 μλ=λ+λ=λ
−−

 

which def ine an unstable  path of  deformation from the bifurcat ion 

point  3
1

2)1(
1t

−
μ=  on the path λ  =  1 .  

Final ly ,  on set t ing    in  (58)  we see that  a  possible                )1(
1t

)1(
3t =

s o l u t i o n  o f  ( 5 7 )  a n d  ( 5 8 )  i s  13 =λ=λ  f o r  a l l   A  s o l u t i on  wi t h                     .)1(
1t

λ  =  1  and  is  governed by       13 ≠λ

   )3(/)3,1(
3

Ŵ
3

)1(
1t

2
1

3

−
λ−λλ

λ∂
∂

λ=     (60)  

and bifurcates  f rom λ  =  λ 3   =  1  a t  the  cr i t ical  value 

    )1,1(Ŵ
3
2t 2

3

2
)1(

1 λ∂
∂

=  

as     increases .  Secondary bifurcat ion into a  deformation path             )1(
1t

wi th  λ  #  1  may occur  subsequent ly  when  reaches  the cr i t ical  value )1(
1t

obtained from (57)  in  the l imit  λ  →  1 ,  namely 

    ,),1(Ŵ
2
1)1(

1t 32

22
1

3 λ
λ∂

∂
λ=  

where  λ 3  and  a re  a l so  connec ted  by  (60) .  In  respec t  o f  the  Mooney  )1(
1t

s t ra in-energy funct ion such  bifurcat ions were analyzed in  ,  but  for              
~
)1(

(51)  the  above  c r i t i ca l  va lues  o f  a re  bo th  equa l  to  μ  ( independen t ly               )1(
1t

of  m).  
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Capt ion to  Figure  1

Fig.1.   Bifurcat ion diagram in the  -plane                

showing branches emanat ing from bifurcat ion point                    
on the path λ  =1 for  different  values  of  |  m | .   
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