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Abstract： 

Several electricity tariffs have emerged for Demand Side Management (DSM), 
and residential customers are faced with challenges to choose the plan satisfying their 
personal needs. Electricity Plan Recommender System (EPRS) can alleviate the 
problem. This paper proposes a novel EPRS model named EPRS with Electrical 
Instruction-based Recovery (EPRS-EI), which is a dual-stage model consisting of 
feature formulation stage and recommender stage. In feature formulation stage, matrix 
recovery with electrical instructions is applied to recover appliance usages, and the 
recovered data is set as features representing customers’ living patterns. In the 
recommender stage, Collaborative Filtering Recommender System (CFRS) based on 
K-Nearest Neighbors (KNN) and adjusted similarity is applied to recommend personal 
electricity plans to customers based on the above features. Different from other EPRS 
models, EPRS-EI is the first model utilizing matrix recovery methods and similarity 
computation with electrical instructions. With these electrical instructions, the proposed 
model is possible to utilize more explicit features and recommended more personalized 
plans. We then apply EPRS-EI to predict the testing customers’ preference for 
electricity plans. Simulation results on recovering electricity data and their applications 
in EPRS confirm the effectiveness of our proposed methods in comparison to state-of-
the-art methods, with 93.56%-94.85% customers correctly recommended. 
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Nomenclature 
n  The number of samples 
d  The number of features 
X  The sample matrix (kWh) with the size d×n 

X*   The recovered sample matrix (kWh) 

E  The noise of the sample matrix (kWh) 
Z   The representation matrix of the sample matrix with the size n	×n 
S  The similarity matrix among customers with the size n	×n 
Y  Total appliance electricity usages (kWh) with the size n	×1 
R  The rating matrix with the size n×c 

Um   The mth  customer 

Umk   The K Nearest Neighbors of the mth  customer 

Λ  The unknown appliance usage set 



 

 

Ω  The known appliance usage set 

Xi,j   The ith  row and jth  column element of matrix X 

Yi   The ith  element of vector Y 

Xi,*  The ith  row vector of matrix X 

X*,i  The ith  column vector of matrix X 

Xt   The tth  iteration of X 

r  The rank of sample matrix 
μ  The penalty parameter 

μmax  The maximum penalty parameter 

σi   Singular value of sample matrix 

I  Identity matrix 
W  The projection matrix with the size 1×d 
J  The auxiliary computation matrix with the size d×n 
Y1, Y2 Lagrange multipliers matrices 
 
1 Introduction 

An increasing number of factors including intermittent renewable power 
generation and load consumption have posed a threat to the stability of the power 
system. These factors cause the fluctuation of the power system and the growing peak 
value of electricity demand. To deal with the problems, Demand Side Management 
(DSM) [1-5] is used to regulate the demand of energy consumers. In DSM, with the 
purpose of shaving peak and filling valley, Pricing Based Demand Response (PBDR) 
[6-9] is proposed to provide residential customers with various electricity plans, 
indirectly influencing their energy consumption patterns. For example, if a customer 
selects a plan with a lower charge in the morning, the customer may shift the use of 
some appliances from evening to morning. 

In a matured electricity market, thousands of electricity plans are listed in the 
electricity plan interface, which brings challenges to residential customers for making 
choices among the great number of electricity plans. If a customer chooses an improper 
electricity plan, to compromise the electricity cost, the customer may have to change 
the living pattern and sacrifice the living comfort. Faced with this problem, a new 
technique named Electricity Plan Recommender System (EPRS) is introduced to help 
residential customers to choose proper electricity plans. In a project named Smart Grid 
Smart City (SGSC) [10], 200 residential customers are selected to make a comparison 
between choosing plans with and without EPRS. It shows that aggregated daily load 
profiles in the two scenarios are similar in shape but slightly different in the lowest and 
highest values. This project inspires some electricity market platforms, foster them to 
provide electricity plan recommender service, such as Energy Made Easy, iSelect and 
Power to Choose [11–13]. 

The current EPRS methods can be classified into the direct method and indirect 



 

 

method. The direct method is relatively easy to be realized, and the above EPRS models 
[10-14] belong to this class. These methods directly calculate the residential customers’ 
electricity charges through multiplying their total usages by the unit charge of electricity 
plans and recommend the electricity plans to make less charges to the residential 
customers. The main drawback of direct methods is that they lack consideration of the 
personal needs of customers, because two customers having the same electricity usages 
may have different living patterns. 

In the last decade, the electricity meter can only count for the total appliance 
electricity usages of customers, so direct methods are the mainstream EPRS methods. 
Fortunately, with the development of the smart meter, the monitoring of household 
appliances has become an increasingly attractive research field. Unlike the traditional 
meters, smart meters and intelligent home devices [14-23] can be utilized to monitor 
the living patterns of various residential customers, which give the possibility to extract 
key factors affecting personal living patterns. Based on this technology, indirect 
methods are introduced to recommend electricity plans based on such factors. Indirect 
methods are a dual-stage model, consisting of feature formulation stage and 
recommender stage. In the feature formulation stage, primary data and certain features 
are set as input and output respectively, and the outputted features are the key factors 
to represent the living patterns. In the recommender stage, the similarity [24-26] of 
customers is calculated and the testing personalized electricity plans can be obtained 
through the calculation based on similarity and training personal electricity plans. The 
dual-stage framework of EPRS is shown in Fig. 1 below. 

 

 
Similar to the dual-stage of indirect methods, there are two stages as well in these 

methods. In the feature formulation stage, more explicit features will be obtained. In 
the recommender stage, personalization will be achieved. The creation will be firstly 
made in the recommender stage. Reference [27] proposed Cluster-based Recommender 
System (CB-RS), which set daily electricity usages of different hours as the features 
and used them to cluster customers. In CB-RS, customers in the same cluster shared the 
same series of recommended electricity plans. If a new testing feature is inputted into 
CB-RS, the recommended plans can be computed once the cluster is known. Compared 
to direct methods, CB-RS proposed clustering methods to recommend personal 
electricity plans to a new customer based on the cluster, but the disadvantage is that 
customers in the same cluster are allocated to the same range of electricity plans. The 
method Social Filtering EPRS (SF-EPRS) in [28] solved this problem by introducing 
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Fig. 1 The dual-stage framework of EPRS. 



 

 

Collaborative Filtering Recommender System (CFRS) [29] into the recommender stage. 
In SF-EPRS, the feature formulation stage was similar to that of CB-RS, but in 
recommender stage, a weighting function was used to compute the recommended 
electricity plans of a testing customer. With this weighting function, the recommended 
plans of all testing customers are possible to be different from each other, to satisfy the 
need for personalization in EPRS. The recommender methods of following papers [30-
31] are all based on CFRS. 

When the recommender stage is matured, researchers tend to utilize more explicit 
features in the feature formulation stage. In [30], Collaborative Filtering-based EPRS 
(CF-EPRS) was proposed. In this model, electricity usages of several selected 
appliances are transferred into operation duration in the feature formulation stage, and 
the operation duration is set as features used to compute similarity. Compared with the 
feature used in CF-EPRS [30], for example, the operation time of washing machine, the 
feature in CB-RS [27] and SF-EPRS [28], such as the average evening usage or average 
summer usage, is abstract and implicit. Further progress can be seen in Bayesian Hybrid 
Collaborative Filtering-based EPRS (BHCF-EPRS) [31]. To avoid the data 
incompletion, BHCF-EPRS additionally utilizes Probabilistic Matrix Factorization 
(BPMF) [32] to recover the extracted operation time, which alleviates the sparse 
problem. Besides, BHCF-EPRS introduces a classification machine to compute the 
similarity, which makes customers with similar total electricity usages more possible to 
be set as nearest neighbors. To give the difference of typical indirect methods, Table 1 
presents the two stages of these methods. 

 
 
 
 
 
 
 
 
 
 

 
 

 
However, for BHCF-EPRS, although BPMF is an applicable way to recovery 

appliance usages, progress is possible to be made in improving the recovery precision, 
so we can extract more explicit features. According to [33], a sample matrix is an 
instinctively low-rank space, which means variables of a sample matrix only depend on 
a comparably smaller number of factors. The core of matrix recovery is to extract these 
factors and use them to reconstruct the corrupted data. For example, when predicting 
the rating of a movie, it is reasonable to assume that the rating may only be determined 
by a few preferences [34]. 

In matrix recovery, to exploit low-rank space, two methods are proposed, namely, 
Matrix Factorization (MF) [34] and Nuclear-Norm Minimization (NNM) [35-37]. The 
difference between these two methods is the treatment of the rank of the sample matrix. 
For MF, the rank of the sample matrix and the probability distribution of parameters are 
set before learning, for example, parameters in BPMF are set to follow Gaussian-
Wishart distribution. Instead, NNM [35-37] does not set any prior information into low-
rank space and they apply nuclear regularization [38-40] to regulate the sample matrix. 

TABLE 1 
Some typical indirect EPRS methods. 

Method Feature extraction stage Recommender stage 

CB-RS [27] Manual extraction Cluster 
SF-EPRS [28] Manual extraction CFRS 
CF-EPRS [30] Turn-on Threshold  

& 
Probability Density Function 

CFRS 

BHCF-EPRS [31] BPMF User classification, CFRS 
 



 

 

A theorem in [35] shows that NNM can achieve global optimum if the sample matrix 
is relatively complete, while MF does not have similar convergence property. 

In this paper, to get more explicit features, we introduce novel NNM methods to 
recover appliance usages. According to the difference of recovery principles, we 
reformulate two classic NNM methods into novel ones, and they are Robust Principal 
Component Analysis (RPCA) [35] and Low-Rank Representation (LRR) [36], which 
apply nuclear regularization to learn low-rank data matrix and low-rank representation 
matrix respectively. Different from the prototypes, the novel ones are combined with 
electrical recovery instructions, which makes novel methods specialize in recovering 
appliance usages. Therefore, the new methods are named RPCA with Electrical 
Instructions (PRCA-EI) and LRR with Electrical Instructions (LRR-EI), respectively, 
and the new EPRS model is named EPRS with Electrical Instruction-based Recovery 
(EPRS-EI). 

The contributions of this paper are as follows: 
(1) We propose EPRS-EI, which is a dual-stage model consisting of feature 

formulation stage and recommender stage. In feature formulation stage, appliance 
usages are recovered by PRCA-EI or LRR-EI and set as features, while in recommender 
stage, CFRS with K-Nearest Neighbors and adjusted similarity is applied to recommend 
personal electricity plans for customers. 

(2) Different from the classical matrix recovery models, electrical recovery 
instructions are applied in PRCA-EI and LRR-EI, which makes matrix recovery models 
specialize in recovering appliance usages. The recovery instructions we use are 
appliance classification and total electricity usage. The appliance classification is 
utilized to keep the known appliance data unchanged, while the total electricity usage 
is used to make recovered data constrained. 

(3) We also utilize a novel adjusted similarity evaluation in CRFS to computing 
the testing electricity plans. The total electricity usages are introduced into similarity 
evaluation for computing living pattern similarity among residential customers. In this 
case, residential customers with similar total electricity usages are more possible to be 
set as nearest neighbors. 

(4) We provide algorithms to solve our proposed methods, together with the 
convergence behavior and computational complexity analysis. Finally, the results in a 
recovery simulation and application simulation of EPRS confirm the effectiveness of 
our proposed methods in comparison to the state-of-the-art methods. 

The rest of the paper is organized as follows. Section 2 describes the proposed 
matrix recovery methods. In Section 3, the framework of the proposed EPRS is 
proposed. In Section 4, simulation results are conducted and discussed. Finally, the 
conclusion and future work are presented in Section 5. 
 
2 Proposed Matrix Recovery Methods 
2.1 Previous matrix recovery methods 

To show the difference between our methods and other methods, Table 2 provides 
information on the matrix recovery methods. 

From Table 2, it can be seen that methods are classified into two parts, and they 
are MF and NNM. The objective of matrix recovery methods is to learn the low-rank 
sample matrix and find the intrinsic information in the sample matrix [35]. For MF 
methods, such as BPMF, the rank and the probability distribution of parameters are set 
before machine learning, while for NNM methods, for example, RPCA, the rank is 
adjusted during machine learning. NNM methods are thought as better methods because 
they perform better in convergence. 



 

 

In addition to this, NNM methods can be classified into single subspace recovery 
(like RPCA), and multiple subspaces recovery (like LRR), and the difference is the unit 
used to recover the sample matrix. For RPCA, the unit is a certain recovered sample, 
while for LRR, the unit is a series of samples. 

To improve performance, additional information is set as recovery instructions. 
NSHLRR [37] is the method that introduces graph construction and sparse 
regularization into LRR. Our proposed models also use appliance classification and 
total electricity usages as recovery instructions, and these instructions are introduced 
into both RPCA and LRR. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Partridge et al. [35] proposed RPCA to learn a low-rank matrix with the same 

dimensions of the sample matrix. The objective function of RPCA is: 
min
Z,E
‖Z‖* +λ‖E‖1

s.t.   X=Z+E
                       (1) 

where  Z∈ℝd×n  denotes the low-rank sample matrix,  E∈ℝd×n	  denotes the noise 
matrix. λ is the trade-off parameter of two terms. In Model (1), the first and second 
terms are nuclear-norm regularization of recovered matrix and L1-norm regularization 
of the noise matrix, respectively. The constraint is the formulation of the sample matrix. 
The L1-norm regularization of matrix E is computed by ‖E‖1 =∑ ∑ %Ei,j %n

j=1
d
i=1 , and 

the nuclear-norm regularization of matrix Z is computed by ‖Z‖* =∑ %σi %r
j=1  with r 

denoting the rank of matrix Z and σi  denoting the ith  singular value of matrix Z. 
Through the optimization of Model (1), the low-rank sample matrix Z can be learned 
and viewed as the recovered data of sample matrix X. 

The principle of RPCA is that nuclear-norm regularization is applied to extract 
low-rank bases of the sample matrix, utilizing the bases to reconstruct the recovered 
samples. Details are shown in Fig. 2. In Fig. 2, X3  and X6  are selected as a base to 
recovery the sample matrix. 

Liu et al. [36] proposed Low-Rank Representation (LRR) to seek the lowest rank 
representation among all the candidates that can represent the data samples as linear 
combinations of the bases from primary data, where the objective function is formulated 
as: 

min
Z,E
‖Z‖* +λ‖E‖1

s.t.   X=XZ+E
                      (2) 

TABLE 2 
Some typical matrix recovery methods. 

Method Classification Recovery base Additional 
instructions 

BPMF [32] MF Gaussian-Wishart 
distribution 

 

RPCA [35]  
 

NNM 

Single subspace 
LRR [36]  

 
Multiple subspaces NSHLRR [37] Graph construction 

& Sparse 
regularization  

 



 

 

where Z∈ℝn×n denotes the low-rank representation matrix of the sample matrix. λ is 
a trade-off parameter of two terms. In Model (2), the first term is the nuclear-norm 
regularization of the representation matrix and the second term is the L1-norm 
regularization of the noise matrix. The constraint is the formulation of a sample matrix. 
After obtaining an optimal solution (Z, E), the original data can be recovered by using 
XZ  (or  X-E ). Since rank(XZ)≤rank(X) , XZ  is also a low-rank recovery to the 
corrupted data X. 

Different from RPCA, LRR introduces low-rank regularization into the 
representation matrix, instead of the sample matrix. In this case, the data matrix is first 
to split into various subspaces, and the recovered sample is linearly reconstructed by 
the samples belonging to the subspace same as the recovered sample. Details are shown 
in Fig. 2. In Fig. 2, X1 , X2  and X3  are allocated to one subspace, while X4 , X5  
and X6  are allocated into other subspace. 

 

 
Theoretically, this difference of RPCA and LRR lies on the computation flexibility. 

In [36], it is assumed that the data matrix consists of p low-rank subspaces {Si}1<i<p, 
RPCA can only exploit the sum of these subspaces ∑ Sim

i=1 , while LRR can exploit the 
union of the subspaces ⋃ Sim

i=1 . Therefore, LRR can exploit more reconstruction units, 
having more computation flexibility. 

 
2.2 Matrix Recovery Methods with Electrical Instructions 

In this paper, we propose novel methods by introducing electrical recovery 
instructions into RPCA and LRR according to the specific of the electricity usage, and 
the novel ones are named RPCA with Electrical Instructions (PRCA-EI) and LRR with 
Electrical Instruction (LRR-EI). 

These electrical recovery instructions are appliance classification and total 
electricity usage. Firstly, for the appliance classification, there are two appliance 
categories, that is, the known ones and the unknown ones. The goal is to recover 
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unknown data based on the known appliance data, and the known data is kept 
unchanged. Secondly, the incompletion can be computed by the difference between 
total appliance electricity usage and the sum of appliance electricity usages. By 
introducing total electricity usage into the model, the recovered data can get close to 
complete total electricity usage. 

The objective function of LRR-EI is formulated as: 

min
Z,E
‖Z‖* +λ1 'PΩ (E)'

1
+λ2 ‖Y-WXZ‖F2

s.t.   X=XZ+E,   PΛ (E)=0
                (3) 

where the third term is the Frobenius-norm regularization of data incompletion error, 

the second constraint is used to make the noise of measurable appliances zero. λ1  and 

λ2  are trade-off parameters. The projection matrix W∈ℝ1×d  is a vector that only 

contains '1', which is used to compute the sum of recovered appliance electricity usage. 

PΛ  and PΩ  are sets of measurable and measurable appliances, respectively. The 

Frobenius-norm regularization of matrix X is computed by ‖X‖F =(∑ ∑ Xi,j2n
j=1

d
i=1 . 

Since the appliances only contain known and unknown parts, Λ=Ω and Model (3) 
can be transformed into: 

min
Z,E
‖Z‖* +λ1 'PΩ (E)'1 +λ2 ‖Y-WXZ‖F2

s.t.   X=XZ+E,   PΩ (E)=0
                 (4) 

When λ2 =0 and the appliance sets are cancelled, LRR-EI degenerates into the 
primary LRR. 

Similarly, the objective function of PRCA-EI is formulated as: 

min
Z,E
‖Z‖* +λ1 'PΩ (E)'1 +λ2 ‖Y-WZ‖F2

s.t.   X=Z+E,   PΩ (E)=0
                 (5) 

When λ2 =0 and the appliance sets are cancelled, PRCA-EI degenerates into the 
primary RPCA. 
 
2.3 Solution 
(1) LRR-EI 

In this part, the optimization algorithm of LRR-EI is developed. 
To make the model unconstrained, the model is reformulated by Augmented 

Lagrange Method (ALM) [41]. 
Theorem 1 (ALM) [41]: 
With the following objective function: 

min	g(X)
s.t.   h(X)=0                        (6) 

where g：ℝn →ℝ, h：ℝn →ℝm . 
Model (6) can be reformulated to the following Model (7): 

min L(X,Y1,𝜇)

s.t.   L(X,Y1,𝜇)=g(X)+tr((Y1)T h(X))+μ
!
‖h(X)‖"! ,			𝜇>0

           (7) 



 

 

where Y1 is the Lagrange multiplier and 𝜇 is the penalty parameter. The optimum of 
Model (7) is the same as that of Model (6) 

Firstly, by adding an auxiliary matrix J and reformulate Model (3) into: 

min
Z,E,J

‖J‖* +λ1 'PΩ (E)'1 +λ2 ‖Y-WXZ‖F2

s.t.   X=XZ+E,   PΩ (E)=0,   Z=J
             (8) 

Secondly, through ALM, Model (8) can be reformulated into the following 
augmented Lagrangian function: 

min
Z,E,J,Y1,Y2

‖J‖* +λ1 'PΩ (E)'
1

+λ2 ‖Y-WXZ‖F2

tr((Y1)T (X-XZ-E))+tr((Y2)T (Z-J))
+ μ
2

(‖X-XZ-E‖F2+‖Z-J‖F2 )

s.t.   PΩ (E)=0

           (9) 

where Y1, Y2 are Lagrange multipliers, and μ is a positive penalty parameter. 
Model (9) is convex and can be optimized by updating Z, E, J, Y1 and Y2 

alternatively. To optimize Model (9), the following lemma should be provided. 
Lemma 1 ([42]): Given the following model: 

min
W

1
α
‖W‖* + 1

2
‖W-S‖F2                     (10) 

W can be optimized by: 

W=Udiag{max((σi - 1
α

),0)}
1≤i≤r

VT               (11) 

where r  is the rank of S , σi , U  and V  are obtained by the Singular Value 
Decomposition (SVD) of S , i.e. S=Udiag{σi }1≤i≤rV

T . 
Then Z, E, J, Y1 and Y2 can be subsequently updated. To compute Z when 

other variables are fixed, Model (9) can be reformulated into: 
fZ =λ2 ‖Y-WXZ‖F2+tr((Y1)T (X-XZ-E))+tr((Y2)T (Z-J))

+ μ
2

(‖X-XZ-E‖F2+‖Z-J‖F2 )
       (12) 

With complete square formula, Eq. (12) can be reformulated into: 

fZ =λ2 ‖Y-WXZ‖F2+ μ
2

(+X-XZ-E+ Y1
μ
+
F

2
++Z-J+ Y2

μ
+
F

2
)       (13) 

By taking the derivative of fZ  with respect to Z and setting it to zero, we have: 
∂fZ
∂Z

=0

λ2 (WX)T (WX)Z+μXT XZ-μXT (X-E+ Y1
μ

)

+λ2 (WX)T Y+μZ-μ(J- Y2
μ

)=0

Z=(λ2 (WX)T (WX)+μXT X+μI)
-1

(μXT (X-E+ Y1
μ

)+μ(J- Y2
μ

)+λ2 (WX)T Y)

         (14) 

To compute J when other variables are fixed, Model (9) can be reformulated into: 
fJ =‖J‖* +tr((Y2)T (Z-J))+ μ

2
‖Z-J‖F2               (15) 

With complete square formula, Eq. (15) can be reformulated into: 

fJ = 1
μ
‖J‖* + 1

2
+J-(Z+ Y2

μ
)+
F

2
                   (16) 



 

 

J in Eq. (16) can be solved by Lemma 1. 
To compute E when other variables are fixed, Model (9) can be reformulated into: 

fE =λ1 'PΩ (E)'
1

+tr((Y1)T (X-XZ-E))+ μ
2
‖X-XZ-E‖F2

s.t.   PΩ (E)=0
      (17) 

With complete square formula, Eq. (17) can be reformulated into: 

fE = λ1
μ
'PΩ (E)'

1
+ 1
2
+X-XZ-E+ Y1

μ
+
F

2

s.t.   PΩ (E)=0
             (18) 

According to [36], Eq. (18) can be solved by E=PΩ (Sλ
μ

(X-XZ-E+ Y1
μ

)), where 

Sτ (x) is a shrinkage operator denoted as Sτ (x)=sgn(x)max(|x|-τ,0). 
Finally, since Y1 and Y2 are Lagrange multipliers, and μ is a positive penalty 

parameter, these matrices can be updated by the inexact ALM in [42]. 
From the above analysis, the overall algorithm for optimizing LRR-EI is described 

in Algorithm 1 as follows: 
 

Algorithm 1: LRR-EI 
1) Input: X, Y and trade-off parameter λ. 
2) Initialization: Initialize J0 =0 , E0 =0 , Y1 =Y2 =0 , μ0 =10-6 , μmax=106 ,  

ρ=1.05 and t=0. 
3) While not converged do 

l Given other variables, update Zt+1 via Eq. (14). 
l Given other variables, update Jt+1 via Eq. (16). 
l Given other variables, update Et+1 via Eq. (18). 
l Update the multipliers Y1 and Y2 via 
l Y1t+1=Y1t +μt (X-XZt ). 
l Y2t+1=Y2t +μt (Z-Jt ). 
l Update the parameter μt+1 by μt+1=min{ρμt ,μmax}. 
l t=t+1. 

4) End while 
5) Output: The recovered data X* =PΩ (XZ). 

 
(2) RPCA-EI 

Same as LRR-EI, RPCA-EI can be made unconstrained by ALM. In this case, 
Model (4) can be reformulated into the following augmented Lagrangian function: 

min
Z,E,J,Y1,Y2

‖J‖* +λ1 'PΩ (E)'
1

+λ2 ‖Y-WZ‖F2

tr((Y1)T (X-Z-E))+tr((Y2)T (Z-J))

+ μ
2

(+X-Z-E+ Y1
μ
+
F

2
++Z-J+ Y2

μ
+
F

2
)

s.t.   PΩ (E)=0

              (19) 

where Y1, Y2 are Lagrange multipliers, and μ is a positive penalty parameter. 
Then we can subsequently update Z, E, J, Y1 and Y2. To compute Z when 

other variables are fixed, Model (19) can be reformulated into: 



 

 

fZ =λ2 ‖Y-WZ‖F2+ μ
2

(+X-Z-E+ Y1
μ
+
F

2
++Z-J+ Y2

μ
+
F

2
)       (20) 

By taking the derivative of fZ  with respect to Z and set it to zero, we have: 

Z=(λ2 WT W+2μI)
-1

(μ(X-E+ Y1
μ

+J- Y2
μ

)+λ2 WT Y)
                 (21) 

To compute J when other variables are fixed, Model (19) can be reformulated as 

fJ = 1
μ
‖J‖* + 1

2
+J-(Z+ Y2

μ
)+
F

2
              (22) 

J in Eq. (22) can be solved with Lemma 1. 
To compute E when other variables are fixed, Model (19) can be reformulated as 

fE = λ
μ
'PΩ (E)'1 + 1

2
+X-Z-E+ Y1

μ
+
F

2

s.t.   PΩ (E)=0
              (23) 

it can be solved by E=PΩ (Sλ
μ

(X-Z-E+ Y1
μ

)). 

From the above analysis, the overall algorithm for optimizing RPCA-EI is 
described in Algorithm 2 as follows: 
 
Algorithm 2: RPCA-EI 
1) Input: X, Y and trade-off parameter λ. 
2) Initialization: Initialize J0 =0 , E0 =0 , Y1 =Y2 =0 , μ0 =10-6 , μmax=106 ,  

ρ=1.05 and t=0. 
3) While not converged do 

l Given other variables, update Zt+1 via Eq. (21). 
l Given other variables, update Jt+1 via Eq. (22). 
l Given other variables, update Et+1 via Eq. (23). 
l Update the multipliers Y1 and Y2 via 
l Y1t+1=Y1t +μt (X-Zt ). 
l Y2t+1=Y2t +μt (Z-Jt ). 
l Update the parameter μt+1 by μt+1=min{ρμt ,μmax}. 
l t=t+1. 

4) End while 
5) Output: The recovered data X* =PΩ (Z). 

 
2.4 Convergence Analysis and Complexity Analysis 

Firstly, the convergence of the alternating optimization algorithm is discussed. For 
both RPCA-EI and LRR-EI, the whole model is solved by inexact ALM [36], while Z, 
J and E are optimized by derivation, Singular Value Thresholding (SVT) [38] and 
sparse function [39]. These algorithms converge and the proof is demonstrated in [36], 
[38] and [39]. 

Then, we analyze the computational complexity of LRR-EI (Algorithm 1) as well 
as RPCA-EI (Algorithm 2), and the notation O is used to represent the time complexity.  
As for LRR-EI, according to Eq. (14), Eq. (16), and Eq. (18), the time complexities of 
calculating Z, J and E are O(2n2d+n3), O(nr2+n2r+n3), and O(nd) respectively, 
where r is the rank of Z. Let t be the iteration number of the overall algorithm, we 
have O(t(2n2d+2n3+nr2 +n2 r)) as the overall time complexity of Algorithm 1. In the 



 

 

real application, we have n≫d, and therefore, the time complexity of Algorithm 1 can 
approximately be taken as O(2tn3). 

For RPCA-EI, according to Eq. (21), Eq. (22) and Eq. (23), the time complexities 
of calculating Z , J  and E  are O(d3) ,  O(dr2+ndr+n3)  and O(nd)  respectively, 
where r is the rank of Z. Let t be the iteration number of the overall algorithm. Thus, 
we have O(t(dr2+ndr+n3 +d3 )) as the overall time complexity of Algorithm 2. In the 
real application, we have n≫d, and therefore, the time complexity of Algorithm 2 can 
approximately be taken as O(tn3). 
 
3 Proposed Electricity Plan Recommender System 

In this part, a detailed analysis of EPRS with Electrical Instruction-based Recovery 
(EPRS-EI) is given. The recommender system used in this paper is neighborhood-based 
collaborative filtering in [29], and we introduce total electricity usage into similarity, to 
propose a novel adjusted similarity. The process of neighborhood-based collaborative 
filtering can be viewed as a utility function: U×T→R which can generate a mapping 
from a set user U and set item T to set rating R. In this paper, the set user U stands 
for the customers, the set item T stands for the electricity plans users choose, and the 
set rating R stands for the preference of customers to different electricity plans. The 
recommender process consists of two stages, and they are feature formulation stage and 
recommender stage. The detail is shown as follows: 

 
3.1 Feature Formulation Stage 

In this stage, we need to get features which represent the customers’ living patterns. 
Appliance usages are set as feature data, but it is impossible to utilize the raw appliance 
usages because the loss of data is inevitable. The incompletion can be found out when 
the user's total appliance electricity usage fails to match with the sum of the appliance 
electricity usages. 

To recover the corrupted data, both RPCA-EI and LRR-EI are applied to recover 
the data, and then the recovered data is inputted into the recommender stage. 
 
3.2 Recommender Stage 

In this stage, feature data is transformed into a similarity matrix by similarity 
evaluation and testing rating is calculated by a weighting function based on training 
rating and similarity matrix. 

 
(1) Similarity Evaluation 

In neighborhood-based collaborative filtering, the neighbors of the testing 
customers need to be searched. Firstly, KNN is utilized to search for each testing 
customer’s neighbors. Through KNN, we can avoid computing the similarity of pair 
customers, making it efficient to detect training customers having a similar living 
pattern to that of the testing customers. 

Radial Basis Function (RBF) is then used to evaluate the similarity of the neighbors 
selected by KNN, which is shown as follows: 

Si,j=e
-
!X*,i-X*,j!2

2

2ρ2
                         (24) 

where S∈ℝn×n  is the similarity matrix indicating the similarity between pair 
customers,  X∈ℝd×n  denotes the feature data of customers which represents 
customers’ electricity living patterns, and Si,j  indicates the similarity of the customers 



 

 

Ui  and Uj . The larger the element is, the more similar the pair customers are. The 

L2-norm regularization in Eq. (24) is computed by ‖Y‖2 =(∑ Yi2n
i=1 . 

To improve the performance, we introduce total electricity usage into similarity 
evaluation and call the new similarity adjusted similarity. The computation is: 

Si,j=
1

1+#Yi -WX*,i#2

× 1

1+#Yj -WX*,j#2

×e
-
!X*,i-X*,j!2

2

2ρ2            (25) 

where 1

1+#Yi -WX*,i#2

 and 1

1+#Yj -WX*,j#2

 are the penalty factors computed by total 

electricity usages. If the error between customer's total appliance electricity usage 
and the sum of the appliance electricity usages enlarges, the penalty factors will 
make the similarity small, and vice versa. 

 
(2) Item Recommender 

For the testing customer Um , let Umk  be the K-Nearest Neighbors of Um , the 
rating of Um  can be calculated by the weighting function as shown below: 

Rm,i=
∑ Sm,nRn,in∈Umk

∑ Sm,nn∈Umk
                         (26) 

 
If we set the yearly charge of electricity plans as the rating, a lower rating indicates 

more possibilities that customers choose the electricity plan. 
The metric of EPRS is precision for a top N recommendation, and it is calculated 

by: 

Precision=
%I&m
N
⋂ImN %

N
                         (27) 

where I0m
N  and ImN  are the set of top N possible predictive and real electricity plans 

customer Um  would like to choose. In our experiment, N is set to be 6. 



 

 

 

 
3.3 Algorithm and Complexity Analysis 

Overall, we have Fig. 3 to show the framework, and the algorithm 3 of EPRS-EI 
are shown as follows: 

 
Algorithm 3: EPRS-EI 
1) Input: Appliance electricity usage of training customers Xtr  and testing 

customers Xte , the yearly charge of electricity plans of training customer is 
(training ratings) Rtr . 

2) Recovering Xtr  and Xte  by RPCA-EI (or LRR-EI) 
3) Detecting neighbors of testing customers via KNN and Eq. (25). 
4) Predicting testing customers via Eq. (26). 
5) Output: Testing ratings Rte . 

 
For EPRS-EI (Algorithm 3), let nte  be the number of testing samples and k be 

the number of their nearest neighbors. We have  O(2tn3) (or  O(tn3)), O(n2d) and 
 O(nte k) as the time complexity of Steps 2-4 for EPRS-EI (LRR-EI) and EPRS-EI 
(RPCA-EI), and the overall time complexity of EPRS-EI (LRR-EI) and EPRS-EI 
(RPCA-EI) are O(2tn3) and O(tn3) respectively 
 
4 Simulations and discussions 

In this part, two types of simulations are conducted. The first type is for recovery, 
which is utilized to test the recovery capability of the models, while the second 
simulation is for application, which is utilized to test these models’ application potential 
in EPRS. 

 
4.1 Recovery Simulation 

In this simulation, we extract yearly load data from 2014 to 2018 of the three cities 
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Fig. 3 The framework of EPRS-EI. 



 

 

(Austin, Boulder, San Diego), in Dataport [43]. In Dataport, the total appliance 
electricity usage is the sum of 67 appliance electricity usage. For simplifying the 
computation, regular electricity usage including wall outlets are cancelled, and only 13 
appliances are taken into consideration. Besides, because for a customer, the appliance 
usage in the weekday and the weekend is different. Therefore, the number of features 
we set is 26, and the first 13 features represent the usage in the weekdays while the 
other 13 features represent the usage at the weekends. The selected appliances are 
shown in Table 3. The data size for 2014 to 2018 data is 622×26, 577×26, 415×26, 
364×26, 310×26 respectively. 

 
 
 
 
 
 
 

 
 

To conduct the recovery, we select a certain number of appliance electricity usage 
from known appliance electricity usage and allocate those data into unknown data. In 
this case, the known data is allocated into training data and the unknown one is allocated 
into testing data. The testing data is recovered based on the remaining data (training 
data) by matrix recovery. 

To avoid bias, 10 runs are conducted in each database by selecting 30%, 40%, 50% 
and 60% known appliance usage as training data randomly in each yearly data, and 10 
cross-validations are adopted to select parameters. After recovering, Root Mean Square 
Error (RMSE), and RRMSE are computed by: 

RMSE=(∑ (x;i -xi )
2

xi ∈Dtest
                  (28) 

Where X<  denotes the mean of the testing data. The lower RMSE indicates better 
performance. 

To test and verify the effectiveness of our proposed method, several competing 
methods are considered Bayesian Probabilistic Matrix Factorization (BPMF) [32], 
RPCA [35], LRR [36], NSHLRR [37], RPCA-EI and LRR-EI. All the regulation 
parameters in the models are chosen from the set {10-4 ,10-3 ,…,101 } , the rank 
parameter in BPMF is set to be 5 times smaller than the number of appliances. The 
simulation results of RMSE performance are shown in Tables 4-8, and t-test result 
between proposed methods and other methods are shown in Tables 9-13. In t-test, “W” 
means the proposed method performs better. ‘‘M’’ means other approaches perform 
better. Value in the bracket is the associate p-value. Statistical significance of t-test is 
5%. The smaller p-value means the higher assurance of the conclusion. 

 
 
 
 
 
 
 

 

TABLE 3 
The selected appliances. 

Air-conditioner Electric vehicle Clothes washer Dishwasher 
Dryer Furnace Heater House fan 
Microwave Oven Range hood Water heater 
Refrigerator    

 
 



 

 

 
 

4.2 Recovery Result Discussions 
From Fig. 4, we can see that as the trade-off parameters which have the closest 

relationship with the objective low-rank matrix may lead to greater change. Comparing 
with λ2 , as λ1  changes, the amplitude of RMSE changes dramatically. This is 
because λ1  in both RPCA-RI and LRR-EI, is the parameter which compromises 
between nuclear-regularization term and other error. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

Fig. 4 RMSE for different databases with different parameters. (only show 2014-2016’s 60% testing data cases) 
(a) RPCA-EI. (b) LRR-EI. 

TABLE 4 
The RMSE performance for 2014 data. 

      Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

BPMF 13.89 0.22  11.72 0.18 9.83 0.16 8.03 0.09  10.87   
RPCA 5.89 0.07 5.37 0.09  4.82 0.09  4.07 0.12 5.03  
LRR 5.75 0.07 5.20 0.09  4.61 0.10 3.82 0.13 4.85  
NSHLRR 4.47 0.07 5.47 0.08 4.47 0.02 3.17 0.12  4.39  
RPCA-EI 5.10 0.07 4.67 0.02 4.21 0.08 3.54 0.13  4.38   
LRR-EI 3.76 0.08  3.54 0.08 3.29 0.09 2.74 0.14 3.33  

 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 5 
The RMSE performance for 2015 data. 

      Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

BPMF 12.66 0.12  10.70 0.13  9.01 0.16  7.39 0.13 9.94  
RPCA 5.68 0.11 5.17 0.12 4.61 0.12  3.97 0.11  4.86  
LRR 5.55 0.11 5.00 0.12  4.40 0.13  3.72 0.12 4.67  
NSHLRR 5.87 0.01  5.17 0.12  4.61 0.12  3.47 0.01 4.78  
RPCA-EI 4.90 0.11  4.47 0.12 3.99 0.13  3.44 0.12 4.20  
LRR-EI 3.53 0.16  3.28 0.12 2.99 0.15 2.60 0.14 3.10  

 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±

TABLE 6 
The RMSE performance for 2016 data. 

      Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

BPMF 12.72 0.21 10.69 0.16 8.98 0.13 7.29 0.16 9.92  
RPCA 4.56 0.07 4.16 0.09 3.71 0.11 3.22 0.09 3.91  
LRR 4.44 0.07  4.01 0.10 3.52 0.11 3.00 0.09 3.74  
NSHLRR 4.56 0.07 3.16 0.09 3.31 0.11 3.12 0.09 3.54  
RPCA-EI 3.89 0.06 3.56 0.08 3.19 0.10 2.77 0.08 3.35  
LRR-EI 2.49 0.06 2.32 0.05 2.11 0.06 1.83 0.07 2.19  

 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±

TABLE 7 
The RMSE performance for 2017 data. 

      Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

BPMF 11.74 0.30 13.87 0.20 11.70 0.23 13.88 0.21 12.80  
RPCA 5.28 0.06 5.86 0.11 5.31 0.08 5.81 0.09 5.57  
LRR 5.11 0.07  5.73 0.12 5.14 0.08 5.68 0.09 5.41  
NSHLRR 4.47 0.09 5.47 0.10 4.47 0.18 5.47 0.19 4.97  
RPCA-EIR 4.58 0.07 5.07 0.11 4.60 0.08 5.03 0.09 4.82  
LRR-EI 3.46 0.07 3.72 0.11 3.48 0.07 3.71 0.06 3.59  

 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 10 
t-test result between proposed models and other methods for 2015 data. 

Training/Total 
data set 

Method 

RPCA-EI Training/Total 
data set 

Method 

LRR-EI 

30% 40% 50% 60% 30% 40% 50% 60% 

BPMF W(.00) W(.00) W(.00) W(.00) BPMF W(.00) W(.00) W(.00) W(.00) 
RPCA W(.00) W(.00) W(.00) W(.00) RPCA W(.00) W(.00) W(.00) W(.00) 
LRR W(.02) W(.00) W(.00) W(.00) LRR W(.00) W(.00) W(.00) W(.00) 
NSHLRR W(.00) W(.00) W(.01) W(.00) NSHLRR W(.00) W(.00) W(.08) W(.00) 
LRR-EI M(.01) M(.00) M(.00) M(.04) RPCA-EI W(.00) W(.01) W(.00) W(.00) 

 
 

TABLE 9 
t-test result between proposed models and other methods for 2014 data. 

Training/Total 
data set 

Method 

RPCA-EI Training/Total 
data set 

Method 

LRR-EI 

30% 40% 50% 60% 30% 40% 50% 60% 

BPMF W(.00) W(.00) W(.00) W(.00) BPMF W(.00) W(.00) W(.00) W(.00) 
RPCA W(.00) W(.00) W(.00) W(.00) RPCA W(.00) W(.00) W(.00) W(.00) 
LRR W(.00) W(.00) W(.00) W(.00) LRR W(.00) W(.00) W(.00) W(.00) 
NSHLRR W(.00) F(.04) W(.01) W(.02) NSHLRR W(.00) W(.03) W(.00) W(.00) 
LRR-EI M(.00) M(.00) M(.01) M(.00) RPCA-EI W(.02) W(.00) W(.01) W(.00) 

 
 

TABLE 11 
t-test result between proposed models and other methods for 2016 data. 

Training/Total 
data set 

Method 

RPCA-EI Training/Total 
data set 

Method 

LRR-EI 

30% 40% 50% 60% 30% 40% 50% 60% 

BPMF W(.00) W(.00) W(.00) W(.00) BPMF W(.00) W(.00) W(.00) W(.00) 
RPCA W(.00) W(.00) W(.00) W(.00) RPCA W(.00) W(.00) W(.00) W(.00) 
LRR W(.00) W(.00) W(.00) W(.00) LRR W(.00) W(.00) W(.00) W(.00) 
NSHLRR W(.00) F(.09) W(.00) W(.00) NSHLRR W(.00) W(.00) W(.00) W(.00) 
LRR-EI M(.00) M(.00) M(.02) M(.00) RPCA-EI W(.00) W(.00) W(.00) W(.02) 

 
 

TABLE 8 
The RMSE performance for 2018 data. 

      Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

BPMF 13.87 0.20  11.74 0.30 9.82 0.15 8.04 0.09 10.87  
RPCA 5.86 0.11 5.28 0.06 4.75 0.09 4.10 0.12 5.00  
LRR 5.73 0.12 5.11 0.07 4.54 0.09 3.86 0.13 4.81  
NSHLRR 5.47 0.01 5.60 0.01 4.47 0.09 3.77 0.01 4.83  
RPCA-EIR 5.07 0.11 4.58 0.07 4.13 0.09 3.57 0.13 4.33  
LRR-EI 3.72 0.16 3.46 0.07 3.17 0.11 2.77 0.14 3.28  

 
 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For Tables 4-13, some discussions are given as follows: 

l It is known that with the increase of the training samples, RMSE decreases for all 
methods. This is because as the known information increases, it is easier to recover 
the appliance electricity usage.  

l The performance of BPMF cannot exceed other methods. This is because BPMF 
belongs to MF method, we need to input the matrix’s rank as a parameter. If this 
rank fails to match well with the data, then it cannot perform well.  

l Conversely, other NNM methods can adjust the rank of data matrix automatically 
in the learning process, and it can be drawn that all methods with instructions, i.e., 
NSHLRR, RPCA-EI and LRR-EI, outperform their prototypes (RPCA and LRR). 
The result implies that additional instructions can improve recovery performance, 
but the additional instructions may cause incorrect recovery results. That is why 
NSHLRR cannot outperform the prototypes in some databases. 

l Fortunately, the performances of RPCA-EI and LRR-EI are better than that of other 
methods, which indicates that our specific recovery instructions, appliance 
classification and total electricity usages, are effective in the electronic application.  

l To present the effectiveness of proposed methods, RMSEpre-RMSEpro
RMSEpre

×100%  is 

proposed to compute the comparisons, where RMSEpre  denotes RMSE of the 
previous methods and RMSEpro  denotes that of the proposed methods. 
Specifically, in Table 4, comparing to NSHLRR (RMSENSHLRR=4.39), our method 

TABLE 13 
t-test result between proposed models and other methods for 2018 data. 

Training/Total 
data set 

Method 

RPCA-EI Training/Total 
data set 

Method 

LRR-EI 

30% 40% 50% 60% 30% 40% 50% 60% 

BPMF W(.00) W(.00) W(.00) W(.00) BPMF W(.00) W(.00) W(.00) W(.00) 
RPCA W(.01) W(.00) W(.00) W(.00) RPCA W(.00) W(.00) W(.00) W(.00) 
LRR W(.05) W(.00) W(.00) W(.00) LRR W(.00) W(.00) W(.00) W(.00) 
NSHLRR W(.01) W(.00) W(.00) W(.00) NSHLRR W(.03) W(.00) W(.00) W(.00) 
LRR-EI M(.00) M(.00) M(.00) M(.01) RPCA-EI W(.00) W(.00) W(.00) W(.02) 

 
 

TABLE 12 
t-test result between proposed models and other methods for 2017 data. 

Training/Total 
data set 

Method 

RPCA-EI Training/Total 
data set 

Method 

LRR-EI 

30% 40% 50% 60% 30% 40% 50% 60% 

BPMF W(.00) W(.00) W(.00) W(.00) BPMF W(.00) W(.00) W(.00) W(.00) 
RPCA W(.00) W(.00) W(.00) W(.00) RPCA W(.00) W(.00) W(.00) W(.00) 
LRR W(.00) W(.00) W(.00) W(.00) LRR W(.00) W(.01) W(.00) W(.00) 
NSHLRR M(.03) W(.00) M(.02) W(.00) NSHLRR W(.01) W(.00) W(.00) W(.00) 
LRR-EI M(.00) M(.00) M(.00) M(.01) RPCA-EI W(.00) W(.00) W(.00) W(.03) 

 
 



 

 

LRR-EI (RMSELRR-EI=3.33) gives up to 4.39-3.33
4.39

×100%=24.14% improvement. 

Similarly, in Table 6, we have RMSENSHLRR=3.54, RMSELRR-EI=2.19, so LRR-
EI gives up to 3.54-2.19

3.54
×100%=38.15% improvement. Improvements can also be 

seen in other datasets with the range from 24.14% to 38.15%.  
l In Table 4, comparing to LRR-EI’s prototype LRR (RMSELRR=4.85), our method 

LRR-EI (RMSELRR-EI=3.33) gives up to 4.85-3.33
4.85

×100%=31.22% improvement, 

while in Table 6, we have RMSELRR=3.74, RMSELRR-EI=2.19, so LRR-EI gives 
3.74-2.19
3.74

×100%=41.50% improvement. Improvements can also be seen in other 
datasets with the range from 31.22% to 41.50%. 

l In Table 4, comparing to RPCA-EI’s prototype RPCA (RMSERPCA=5.03), RPCA-
EI (RMSERPCA-EI=4.38) gives up to 5.03-4.38

5.03
×100%=12.99% improvement, while 

in Table 6, we have RMSERPCA=3.91, RMSERPCA-EI=3.35, so LRR-EI gives 
3.91-3.35
3.91

×100%=14.32% improvement. Improvements can also be seen in other 
datasets with the range from 12.99% to 14.32%. 

 
4.3 Application Study 

In this paper, customers’ yearly appliance electricity usage is set as feature data. 
The rating is the yearly charge ranking of different electricity plans. The electricity 
plans are collected from Energy Made Easy [10], including 7 time-of-use tariffs and 7 
single-rate tariffs. 

The rating is calculated from 2015, 2016, 2017, 2018 data, and the feature data 
used is the year-ahead rating. The data size is 343×26, 314×26, 242×26, 153×26. The 
number of nearest neighbors is chosen from 2 to 5, N in Eq. (27) is set as 6, 10 runs are 
conducted in each data by selecting 30%, 40%, 50% and 60% of all the users as training 
users randomly. 

To test and verify the effectiveness of our proposed method, several competing 
methods are considered including DWR (Data without Recovery), SF-EPRS, BHCF-
EPRS, EPRS-EI (RPCA-EI) and EPRS-EI (LRR-EI), where DWR is the EPRS model 
by setting corrupted data as features. All the regulation parameters in the models are 
chosen from the set {10-4 ,10-3 ,…,101 }. Fig. 5 shows the learning curve of EPRS-EI, 
while Fig. 6 shows precision for these different databases with different parameters. 
The simulation results of precision performance are shown in Tables 14-17, and t-test 
result between EPRS-EI and other methods are shown in Tables 18-21. In t-test, as 
mentioned before, “W” means EPRS-EI performs better. ‘‘M’’ means other approaches 
performs better. Also ‘‘B’’ means that EPRS-EI and other approaches cannot 
outperform each other. Value in the bracket is the associate p-value. Statistical 
significance of t-test is 5% and we have not reported the p-value when the mark is ‘‘B’’. 
The smaller p-value means the higher assurance of the conclusion. 
 



 

 

 
4.4 Application Result Discussions 

From Fig. 5, we can see that the simulations in both training and testing data. The 
horizontal coordinate is training data size, and “20” (to “70”) in the coordinate represent 
the training data takes up 20% (to 70%) of total data and testing data takes up 80 % (to 
30%) of total data. When the training data size is enlarged, performance in the testing 
data cannot exceed performance in the training data, which indicates that our models 
can avoid overfitting. 

 
(a)                                    (b) 

Fig. 5 Learning curve with different training data size (only show 2015-2016’s data cases) (a) EPRS-EI (RPCA-
EI). (b) EPRS-EI (LRR-EI). 



 

 

 

 
From Fig. 6, it can be seen that same as Fig. 4, the trade-off parameter λ1 , which 

has the closest relationship with the objective low-rank matrix, is the leading factor to 
affect the EPRS simulations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

Fig. 6 Precision for different databases with different parameters (only show 2015-2017’s 60% testing data cases) 
(a) EPRS-EI (RPCA-EI). (b) EPRS-EI (LRR-EI). 

TABLE 14 
The precision performance for 2015 data. 

        Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

DWR 92.86 1.19% 92.69 1.19% 92.03 0.57% 92.43 0.69% 92.50% 
CF-EPRS 93.24 0.86% 93.43 0.60% 93.75 0.57% 92.80 0.82% 93.30% 
BHCF-EPRS 92.58 0.99% 93.15 0.87% 93.71 0.66% 93.93 0.89% 93.09% 
ERPS-EI(RPCA-EI) 94.78 0.33% 94.67 0.44% 94.36 0.20% 94.60 0.62% 94.60% 
ERPS-EI(LRR-EI) 94.83 0.35% 94.77 0.51% 94.00 0.46% 94.70 0.56% 94.57% 

 
 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 18 
t-test result between proposed models and other methods for 2015 data. 

Training/Total 
data set 

 
Method 

ERPS-EI (RPCA-EI) Training/Total 
data set 

 
Method 

ERPS-EI (LRR-EI) 

30% 40% 50% 60% 30% 40% 50% 60% 

DWR W(.00) W(.03) W(.00) W(.00) DWR W(.00) W(.05) W(.00) W(.00) 
CF-EPRS W(.00) W(.00) W(.01) W(.00) CF-EPRS W(.00) W(.00) B(-) W(.00) 
BHCF-EPRS W(.00) W(.00) W(.00) W(.00) BHCF-EPRS W(.00) W(.00) W(.00) W(.00) 
ERPS-EI 
(LRR-EI) B(-) B(-) W(0.03) B(-) 

ERPS-EI 
(RPCA -EI) B(-) B(-) M(0.03) B(-) 

 
 

TABLE 15 
The precision performance for 2016 data. 

        Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

DWR 91.99 1.09% 92.67 1.19% 92.26 1.22% 92.45 1.55% 92.34% 
CF-EPRS 93.07 0.73% 93.22 0.74% 93.09 0.69% 92.88 0.78% 93.06% 
BHCF-EPRS 93.54 0.50% 93.39 0.69% 93.38 0.72% 93.20 0.82% 93.38% 
ERPS-EI(RPCA-EI) 94.95 0.48% 94.67 0.48% 94.79 0.69% 95.00 0.72% 94.85% 
ERPS-EI(LRR-EI) 95.08 0.61% 94.77 0.54% 94.73 0.57% 94.64 0.77% 94.81% 

 
 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±

TABLE 16 
The precision performance for 2017 data. 

        Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

DWR 92.66 0.50% 92.36 0.81% 93.06 1.00% 92.99 1.39% 92.77% 
CF-EPRS 92.90 0.99% 92.39 0.85% 92.56 0.69% 92.32 0.80% 92.54% 
BHCF-EPRS 93.06 0.64% 92.98 0.58% 93.13 0.68% 92.49 0.79% 92.91% 
ERPS-EI(RPCA-EI) 93.33 0.54% 93.86 0.51% 93.62 0.57% 93.42 0.84% 93.56% 
ERPS-EI(LRR-EI) 93.47 0.28% 93.77 0.96% 94.22 0.50% 94.69 0.95% 93.79% 

 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±

TABLE 17 
The precision performance for 2018 data. 

        Training/Total 
data set 

Method 

 
30% 

 
40% 

 
50% 

 
60% 

 
Average 

DWR 92.84 1.14% 91.59 1.40% 91.82 1.09% 92.96 0.73% 92.30% 
CF-EPRS 93.41 1.04% 93.28 1.15% 92.59 1.05% 92.90 1.50% 93.04% 
BHCF-EPRS 93.54 0.64% 92.92 0.45% 92.87 0.85% 93.11 1.08% 93.11% 
ERPS-EI(RPCA-EI) 93.80 1.24% 93.73 0.30% 94.06 0.53% 94.04 0.62% 93.91% 
ERPS-EI(LRR-EI) 93.74 1.11% 93.77 0.71% 94.01 0.59% 94.28 1.02% 93.70% 

 
 

± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±
± ± ± ±



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For Tables 14-21, some discussions are given as follows: 

l It is known that in 2017-2018 data (Tables 16-17), with the increase of the training 
samples, the precision of all methods often rises. This is because as the data size 
increases, it is much easier to include the training customers having the same living 
pattern with the testing customer. However, as data size increases in 2015-2016 
data (Tables 14-15), we can observe fluctuations. This is because the whole data 
size of 2015-2016 data  is larger than that other data, and ever in the simulations, 
with the increase in training data, the training customers have no more changes in 

TABLE 19 
t-test result between proposed models and other methods for 2016 data. 

Training/Total 
data set 

 
Method 

ERPS-EI (RPCA-EI) Training/Total 
data set 

 
Method 

ERPS-EI (LRR-EI) 

30% 40% 50% 60% 30% 40% 50% 60% 

DWR W(.04) W(.00) W(.00) W(.03) DWR W(.02) W(.00) W(.03) W(.21) 
CF-EPRS W(.00) W(.00) W(.00) W(.00) CF-EPRS W(.00) W(.00) W(.00) W(.00) 
BHCF-EPRS W(.00) W(.00) W(.00) W(.00) BHCF-EPRS W(.00) W(.00) W(.00) W(.00) 
ERPS-EI 
(LRR-EI) B(-) B(-) B(-) B(-) 

ERPS-EI 
(RPCA-EI) B(-) B(-) B(-) B(-) 

 
 

TABLE 20 
t-test result between proposed models and other methods for 2017 data. 

Training/Total 
data set 

 
Method 

ERPS-EI (RPCA-EI) Training/Total 
data set 

 
Method 

ERPS-EI (LRR-EI) 

30% 40% 50% 60% 30% 40% 50% 60% 

DWR W(.17) W(.09) W(.05) W(.29) DWR W(.12) W(.15) W(.07) W(.14) 
CF-EPRS B(-) W(.01) B(-) W(.02) CF-EPRS B(-) B(-) W(.05) W(.04) 
BHCF-EPRS W(.02) W(.09) B(-) W(.01) BHCF-EPRS W(.00) W(.00) W(.00) W(.02) 
ERPS-EI 
(LRR-EI) B(-) M(.22) M(.13) M(.39) 

ERPS-EI 
(RPCA-EI) B(-) W(.22) W(.13) W(.39) 

 
 

TABLE 21 
t-test result between proposed models and other methods for 2018 data. 

Training/Total 
data set 

 
Method 

ERPS-EI (RPCA-EI) Training/Total 
data set 

 
Method 

ERPS-EI (LRR-EI) 

30% 40% 50% 60% 30% 40% 50% 60% 

DWR W(.00) W(.02) W(.10) W(.06) DWR W(.08) W(.01) B(-) W(.00) 
CF-EPRS B(-) B(-) W(.00) W(.08) CF-EPRS B(-) B(-) W(.00) W(.04) 
BHCF-EPRS B(-) W(.05) W(.00) W(.08) BHCF-EPRS B(-) W(.05) W(.00) W(.03) 
ERPS-EI 
(LRR-EI) B(-) B(-) W(0.19) B(-) 

ERPS-EI 
(RPCA-EI) B(-) B(-) M(.19) B(-) 

 
 



 

 

the diversity of living patterns. Besides, the training customers which influences 
our result is only 2 to 5 customers, which are set as nearest neighbors, and the 
number of neighbors is also too small to influence the whole simulations, especially 
in the large data such as 2015-2016 data. 

l In most cases, the performances of DWR fails to have better influence than other 
methods, and DWR only exceeds other methods when the data size is small, which 
indicates the effectiveness of the utilization of explicit features and it proves that 
researchers may be hard to get explicit features when data size is small.  

l Also, it can be seen that BHCF-EPRS normally has better performance than CF-
EPRS, which proves that BHCF-EPRS can get more explicit features because of 
the utilization of matrix recovery and user classification. With the user 
classification technique, even the diversity of customers is scarce in the small data 
and the nearest neighbors are hard to be detected by similarity evaluation, BHCF-
EPRS can also detect nearest neighbors, which strengthen the ability to compute 
personalized plans. 

l Our proposed EPRS-EI still has the best performance, which indicates the 
effectiveness of the specific recovery instructions, i.e., appliance classification and 
total electricity usage. All the numbers in Tables 14-17 are computed by Eq. (27). 
In Table 14, EPRS-EI (RPCA-EI) and EPRS-EI (LRR-EI) have 94.60% and 94.57% 
of customers correctly recommended respectively. Comparing with BHCF-EPRS 
(93.09%), their improvements are 94.60%-93.09%=1.62% and 94.57%-
93.09%=1.59% respectively. In Table 16, EPRS-EI (RPCA-EI) and EPRS-EI 
(LRR-EI) do not show such superiority, with 93.56% and 93.79% of customers are 
correctly recommended respectively. Comparing with BHCF-EPRS (92.91%), 
their improvements are 93.56%-92.91%=0.70% and 93.79%-92.91%=0.95% 
respectively. Improvements can also be seen in other datasets with the range from 
0.70% to 1.62%.  

l Overall, EPRS-EI has the worst performance in Table 16, with 93.56% are correctly 
recommended, while it has the best performance in Table 15, with 94.85% of 
customers are correctly recommended. 

l It can also be seen that compared to the simulation in recovery simulation, the gap 
between two proposed methods, i.e. EPRS-EI (RPCA-EI) and EPRS-EI (LRR-EI) 
is reduced. It indicates that though the data can be well recovered and explicit 
features can be obtained, the number of nearest neighbors is only 2 to 5 customers, 
which imposes a limit on the effectiveness of recommender stage. To improve 
performance, additional techniques such as user classification in BHCF-EPRS can 
be utilized in EPRS-EI. To invoke user classification, total usages need to be 
reformulated into regressed targets, which is discrete value, but the total usages in 
EPRS-EI are set as a continuous value to compute the incompletion between total 
usages and the sum of appliance usages. Additional preprocessing techniques 
should be set before user classification is introduced into EPRS-EI. 

 
5 Conclusion and Future Work 

Among several electricity tariffs, residential customers can choose a tariff to 
facilitate DSM. To mitigate the negative effect of corrupted data and recommend 
personalized electricity plans according to the living patterns, electrical instructions, 
i.e., appliance classification and total electricity usage, are introduced into improving 
the performance of EPRS. 

Firstly, we propose a novel EPRS model EPRS with Electric Instruction-based 
Recovery (EPRS-EI) which is a dual-stage model consisting of both feature formulation 



 

 

stage and recommender stage. In the feature formulation stage, novel matrix recovery 
models with recovery instructions, namely RPCA-EI and LRR-EI are used to obtain 
more explicit features. These explicit features represent the living patterns of customers. 
In the recommender stage, KNN and adjusted similarity are utilized to detect nearest 
neighbors of testing customers, and with the help of the nearest neighbors, testing 
electricity plans can be computed. 

Algorithms are developed to solve the proposed methods. Simulation results on 
recovery and recommendation confirm the effectiveness of our proposed methods. 
According to Section 4, LRR-EI recovers up to 24.14%-38.15% of more data compared 
to NSHLRR, while comparing with BHCF-EPRS, more than 0.70%-1.62% of 
customers are correctly recommended in EPRS-EI. 

Besides, there are two workable improvements for EPRS-EI. The first one is 
extensive applications to recommend other items. EPRS-EI is a recommender system 
based on collaborative filtering whose input data consists of feature data and rating. 
Therefore, if the rating is replaced by other items, this model can be utilized to 
recommend these items. Two possible recommended items are energy-saving electrical 
appliances and demand response schedules, and what needs to be done is setting 
customers’ preferences of those appliances or schedules as the rating. The second one 
is the potential improvement in recommender stage. Since the number of nearest 
neighbors is limited, if we cannot select the nearest neighbors correctly, the 
improvement is also limited. The possible selection method is user classification in 
BHCF-EPRS. However, to invoke user classification, total usages need to be 
reformulated into regressed targets, additional preprocessing techniques should be set 
before user classification is introduced into EPRS-EI. In our future work, we also look 
for the detailed information on electricity plans, usages and charges to accurately 
compute the saving gained by customers with the help of EPRS.  
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