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REVIEW

The psychological consequences of (perceived) ionizing radiation exposure:
a review on its role in radiation-induced cognitive dysfunction

George Collett , Kai Craenen , William Young , Mary Gilhooly , and Rhona M. Anderson

Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life
Sciences, Brunel University London, Uxbridge, UK

ABSTRACT
Purpose: Exposure to ionizing radiation following environmental contamination (e.g., the
Chernobyl and Fukushima nuclear accidents), radiotherapy and diagnostics, occupational roles and
space travel has been identified as a possible risk-factor for cognitive dysfunction. The deleterious
effects of high doses (�1.0 Gy) on cognitive functioning are fairly well-understood, while the con-
sequences of low (�0.1Gy) and moderate doses (0.1–1.0Gy) have been receiving more research
interest over the past decade. In addition to any impact of actual exposure on cognitive function-
ing, the persistent psychological stress arising from perceived exposure, particularly following
nuclear accidents, may itself impact cognitive functioning. In this review we offer a novel interdis-
ciplinary stance on the cognitive impact of radiation exposure, considering psychological and epi-
demiological observations of different exposure scenarios such as atomic bombings, nuclear
accidents, occupational and medical exposures while accounting for differences in dose, rate of
exposure and exposure type. The purpose is to address the question that perceived radiation
exposure - even where the actual absorbed dose is 0.0 Gy above background dose - can result in
psychological stress, which could in turn lead to cognitive dysfunction. In addition, we highlight
the interplay between the mechanisms of perceived exposure (i.e., stress) and actual exposure (i.e.,
radiation-induced cellular damage), in the generation of radiation-induced cognitive dysfunction.
In all, we offer a comprehensive and objective review addressing the potential for cognitive
defects in the context of low- and moderate-dose IR exposures.
Conclusions: Overall the evidence shows prenatal exposure to low and moderate doses to be det-
rimental to brain development and subsequent cognitive functioning, however the evidence for
adolescent and adult low- and moderate-dose exposure remains uncertain. The persistent psycho-
logical stress following accidental exposure to low-doses in adulthood may pose a greater threat
to our cognitive functioning. Indeed, the psychological implications for instructed cohorts (e.g.,
astronauts and radiotherapy patients) is less clear and warrants further investigation. Nonetheless,
the psychosocial consequences of low- and moderate-dose exposure must be carefully considered
when evaluating radiation effects on cognitive functioning, and to avoid unnecessary harm when
planning public health response strategies.
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1. Introduction

Cognitive functioning refers to mental abilities such as
learning, reasoning, problem solving, decision making, and
attention (Fisher et al. 2019). The maintenance of cognitive
function is crucial to maintain function at all ages. For
example, cognitive abilities have been identified as predictors
of school performance in children (Welsh et al. 2010), work
performance in adults (Salthouse 1994; Salthouse 2012), and
for maintaining independent living (Willis et al. 2006; Jekel
et al. 2015) and positive well-being in older adults
(Llewellyn et al. 2008). Factors such as physical activity, edu-
cation, occupational status, and cognitively stimulating activ-
ity can help preserve cognitive functioning (Sofi et al. 2011;
Opdebeeck et al. 2016), while factors such as excessive

smoking (Anstey et al. 2007), alcohol consumption (Anstey
et al. 2009), and certain genes such as the apolipoprotein
E e4 allele (Beydoun et al. 2012) have been associated with
cognitive dysfunction.

Ionizing radiation (IR) has also been identified as a
potential risk factor for cognitive dysfunction, in individuals
exposed through medical diagnostics/therapy (e.g., cranial
irradiation; Greene-Schloesser and Robbins 2012), as a con-
sequence of nuclear disasters such as Chernobyl (Bromet
et al. 2011), or during their occupation, for instance nuclear
workers or astronauts (Parihar et al. 2015; Limoli 2017). The
consequences of high radiation doses (�1.0Gy) on the brain
are fairly well understood, but the effects of moderate
(0.1–1.0Gy) and low doses (�0.1Gy) on the brain have not
been explored as extensively. Any cognitive defects may be
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observed via functional (e.g., cognitive scores, school per-
formance) and clinical outcomes (e.g., dementia diagnosis).
For example, exposure during prenatal development can
lead to morphological anomalies in the brain while exposure
in adults can lead to inflammatory disturbances (in cardiovas-
cular and central nervous system; CNS), both of which may be
related to cognitive dysfunction. In addition, perceived radi-
ation exposure (i.e., believing or knowing that you have been
exposed) is often linked to psychological stress, particularly
relating to the anxiety of potential health consequences in both
themselves and in their descendants (Fukasawa et al. 2017).
Such psychological stress may itself lead to cognitive dysfunc-
tion. In this narrative review, we address the question that per-
ceived radiation exposure – even where the actual absorbed
dose is 0.0Gy above background dose – can result in psycho-
logical stress, which could in turn lead to cognitive dysfunc-
tion. We frame this question in the context of radiation-
induced cellular damage and other systemic disturbances,
which were previously linked to cognitive defects. In all, we
offer a comprehensive and objective review addressing the
potential for cognitive defects in the context of low- and mod-
erate-dose IR exposures.

To address the question, a literature search was conducted
using PubMed, PsycInfo and PsycArticles databases. Examples
of search terms covered ‘radiation anxiety’, ‘radiation psycho-
logical stress’, ‘radiation and cognitive functioning’, ‘radiation
and cognitive impairment’, ‘neuroinflammation’, ‘radiation and
vascular effects’, and ‘psychological stress and cognitive func-
tioning’. Only peer-reviewed articles available in English
were chosen.

2. Psychological impact of perceived exposure

Perceived radiation exposure is often described in the con-
text of excessive psychological stress (Figure 1, ‘perceived
exposure’). For example, the impact on mental health is
argued to be the largest public health consequence following
the Chernobyl disaster (Bennett et al. 2006; International
Atomic Energy Agency 2006; Havenaar et al. 2016) with
reports of increased levels of anxiety and depression irre-
spective of the dose received (Ginzburg 1993; Pastel 2002;
Danzer and Danzer 2016). Other groups such as American
nuclear test-veterans have reported anxieties about adverse
health effects in themselves and their descendants (Murphy
et al. 1990), and may experience changes in identity, world-
view, and lifestyle (Vyner 1983). The term radiophobia has
been used to denote the fear of radiation exposure following
Chernobyl (Pastel 2002). Phobias are an excessive or unreason-
able persistent fear regarding an object or situation (American
Psychiatric Association 2013). However, in the absence of dos-
imetry it is difficult to assess whether or not an individual’s fear
of radiation is unreasonable or excessive (Pastel 2002).
Following the Fukushima disaster, where the psycho-societal
impact was also reported to be significant (Kamiya et al. 2015)
despite no deaths being directly caused by acute radiation
exposure (Steinhauser et al. 2014), a new term was introduced.
Radiation-anxiety is defined as the negative cognition regarding
the potential adverse health effects following radiation exposure
(Fukasawa et al. 2017). It is also associated with problems such
as perceived stigma and discrimination (Becker 1997; Ben-Ezra
et al. 2015; Fukasawa et al. 2017).

Figure 1. Ionizing radiation (IR) may cause cognitive defects via two broad mechanisms, stemming from perceived and actual exposure. First concerning actual
exposure effects (dark gray boxes) observed at high doses (>1.0 Gy) and potentially moderate (0.1–1.0 Gy) and low doses (<0.1 Gy), and second concerning psycho-
logical stress effects (white boxes) following perceived exposure at any dose level (� 0.0 Gy). Both actual IR effects and psychological stress effects on cognitive
function share common mediators such as vascular inflammation, neuroinflammation, and decreased neurogenesis (shown in light gray boxes). Also shown are the
mediators of cognitive defects specific to psychological stress, such as elevated cortisol and health-risk behaviors (shown in white boxes). These stress-specific medi-
ators may further exacerbate any possible cognitive defects caused by actual IR exposure.
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Most non-single item measures of radiation-anxiety are
based on Slovic’s model of risk perception (Takebayashi et al.
2017), which posits two psychological dimensions: dread risk
and unknown risk. In the context of radiation exposure, dread
risk typically refers to the negative health effects on the indi-
vidual and on future generations. Unknown risk refers to the
possibility that the true health consequences of exposure are
not understood (Slovic 1987). For technological risks (i.e.,
man-made), negative risk perception has been associated with
stress and anxiety (Lima 2004), and may cause greater distress
than that observed for natural risks due to scientific uncer-
tainty and the perception of ‘interfering with nature’ (Sj€oberg
2000; Lima 2004). This uncertainty is a key component of the
psychological impact (Danzer and Danzer 2016). The dose
received and whether health consequences will occur is difficult
for the individual to ascertain, and those exposed to subclinical
doses e.g., due to an accident, could interpret the introduction
of radioprotective measures as a signal for serious harm. One
notable example is the increased detection of thyroid cancer in
children following the Fukushima nuclear disaster, which was
erroneously attributed to radiation exposure, despite effective
thyroid doses in children being well below 0.1 Sv (Tokonami
et al. 2012; Yamashita et al. 2018). Even though the introduc-
tion of radioprotective actions intended to minimize harm in
low-dose scenarios, it could bring unwarranted psychological
consequences and pose greater harm than any direct effects
brought by low-dose exposure (Thomas and Symonds 2016;
Midorikawa et al. 2017). Furthermore, the psychological conse-
quences regarding adverse effects may last a lifetime. For
example, in an aged cohort that had lived in the vicinity of the
A-bomb explosion in uncontaminated suburbs in Nagasaki,
poorer mental health correlated with anxiety about the radio-
logical hazard was observed (Kim et al. 2011), indicating that
the psychological effects can persist over a lifetime. One pos-
sible explanation for this is that ‘worry’ (the core cognitive fea-
ture of anxiety) could be a mental problem-solving mechanism
that enables the individual to prepare for a future outcome
involving possible negative consequences (Tallis and Eysenck
1994; Brosschot et al. 2006). One factor that might impact on
this process is increased age. For example, if one is nearing
end of life then the future may not appear as uncertain, but
their descendants’ future remains uncertain meaning the worry
may be redirected to the descendent. Supporting this, evidence
shows that older adults tend to report worrying more about
the health and welfare of loved ones (Gonçalves and Byrne
2013). Furthermore, older adults were more concerned about
the effects of radiation exposure on future generations follow-
ing Fukushima, while those of reproductive age (15–49) were
more concerned about the delayed health effects in themselves
(Suzuki et al. 2015).

Before examining how psychological stress following per-
ceived radiation exposure may impact cognitive functioning, it
is important to summarize what is currently known about the
effects of low and moderate doses of IR on cognitive function-
ing (Figure 1, ‘actual exposure’). For the purpose of this review,
we focus on observations from human studies and organize lit-
erature into prenatal, childhood, and adult exposure.

3. Cognitive functioning and IR

3.1. Observations from human studies

It is generally accepted that the developing prenatal brain is
more susceptible to radiation exposure as compared to the
adult brain (Hladik and Tapio 2016), with detrimental
effects being observed not just with high but after moderate
and low doses as well (Yang et al. 2017). The first studies
examining moderate doses in this field focused on Japanese
survivors of the atomic bombings in Hiroshima and
Nagasaki (Plummer 1952; Yamazaki et al. 1954; Otake and
Schull 1998). Gamma and neutron exposure during the first
and second trimester significantly increased the risk for
morphological birth defects such as microcephaly (a reduced
brain size) and functional cognitive defects when the mother
was within 1200m from the epicenter (fetal brain dose
approximately 0.356–0.851Gy; Chen 2012).

More studies exploring the health consequences of low-
dose prenatal exposure to fallout from the Chernobyl
nuclear accident showed reduced school test results (average
Cs-137 deposition in most contaminated area ¼ 44.1 kBq/
m2; Almond et al. 2009) and lower verbal intelligence quo-
tient (IQ) scores (mean external dose for exposed areas ¼
0.935 mSv; Heiervang et al. 2010) in children born in conta-
minated areas of Sweden and Norway, respectively. Such
studies however may be at risk of misclassification due to
comparisons being made between areas of low exposure lev-
els, which is especially true for Heiervang et al. (2010) con-
sidering the small sample size (Pasqual et al. 2020). Other
research has shown reduced mean intelligence quotient (IQ)
scores between prenatally exposed and control groups but
no significant correlation between IQ and individual thyroid
doses (estimated mean dose ¼ 0.4Gy; Kolominsky et al.
1999). The impact on IQ detriments observed by
Kolominsky et al. (1999) could possibly be explained partly
by unfavorable psychological and sociocultural factors asso-
ciated with relocation. Regarding individuals exposed during
childhood due to nuclear accidents, no differences in atten-
tion, memory, and school performance were observed in
children aged between 10 and 12 years, who were in utero to
age 15months at the time of the accident (effective dose
approximately 0.033 Sv), as compared to unexposed non-
evacuees (Litcher et al. 2000). A follow up study also did
not identify any detriment at 19 years of age in individuals
exposed in utero to age 15months (Taormina et al. 2008).
Similarly, other studies observed no effect of early childhood
low-dose exposure (proxy estimation by residence location
at time of accident; in utero and up to 4 years of age) on
adolescent cognitive functioning (Joseph et al. 2004).

There is some evidence examining low and moderate
doses from medical procedures during childhood. For
example, a negative relationship between dose and learning
ability and logical reasoning was observed in men when
tested at 18 years of age, who received radiotherapy
(included beta, gamma, and x-ray irradiation) for cutaneous
hemangioma before the age of 18months (median estimated
dose to brain ¼ 0.02Gy, range ¼ 0–2.8Gy; Hall et al. 2004).
For those exposed later in childhood, recent observations in
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those exposed to low-dose computed tomography scans
(total dose between 0.023 and 0.146Gy based on 56% of
participants) between the age of 6 to 16 suggest no differ-
ence in later cognitive functions (Salonen et al. 2018).
However, this remains to be verified in larger, more statis-
tically powerful studies (Pasqual et al. 2020). Overall, the
strength of the epidemiological evidence for cognitive out-
comes when exposed to low or moderate doses during child-
hood and prenatal development is limited, and indeed there
are methodological concerns with some studies (for in-depth
review and evaluation see Pasqual et al. 2020).

Although the adult brain is considered more resilient in
comparison to the developing brain, recent evidence from
cranial radiotherapy patients highlights the impact of high-
dose exposure on brain morphology and network function-
ality/connectivity (Ma et al. 2017; Jacob et al. 2018; Qiu
et al. 2018; Cramer et al. 2019; Huang et al. 2019). Further,
there is growing evidence that exposure of the adult brain to
moderate doses may be detrimental to cognitive functioning.
Following the Chernobyl nuclear accident, Gamache et al.
(2005) observed poorer cognitive functioning in clean-up
workers, as compared to foresters and agricultural workers
over a 4 year period, with each group receiving mean doses
of 0.63, 0.13 and 0.09Gy, respectively. Furthermore, in a
cohort working on the Chernobyl ‘Shelter Object’ project
(0–0.0567 Sv total dose from external and internal sources),
an increase in verbal memory deficits were observed com-
pared to before the project (Loganovsky et al. 2015). Other
studies observed no significant difference in verbal memory
between clean-up workers exposed to greater than 0.5 Sv
and clean-up workers exposed to less than 0.02 Sv, but
observed reduced brief global cognitive scores in the former
group (Bazyka et al. 2015). Such studies (Loganovsky et al.
2015; Bazyka et al. 2015) should be treated cautiously if
interpreting any effect to radiation dose, due to limited con-
trol for other variables. Indeed, Bazyka et al. (2015) observed
higher rates of stress-related disorders in the most exposed
clean-up workers, therefore any observed association
between dose and cognitive function could be attributed to
psychological stress rather than to radiation itself.

Another source of chronic low- and moderate-dose
exposure is in space (Limoli 2017; Cucinotta and Cacao
2019), where heavy ions are the major contributors to the
effective radiation dose. The recent NASA twins study
observed reductions in cognitive efficiency persisting for up
to 6months post-flight in the flight subject (physical dosim-
eter ¼ 0.07618Gy, effective dose ¼ 0.146 Sv) compared to
the ground subject (Garrett-Bakelman et al. 2019) and there
is emerging evidence from animal studies that support this
(see later section, Britten et al. 2012; Lonart et al. 2012;
Parihar et al. 2016; Parihar et al. 2018). Indeed, Garrett-
Bakelman et al. (2019) acknowledge that, aside from direct
radiation effects, the stress of returning back to earth may
also account for these cognitive decrements. Cosmic radi-
ation is comprised of various radiation types, including
alpha, beta, gamma radiation, and heavy charged particles
termed high-charge and high-energy (HZE) ions. The latter
cause considerably more damage to cells and tissue as

compared to particles of lower mass (Limoli 2017). Such dif-
ferences in radiation quality and biological effectiveness are
important to consider when comparing cognitive outcome
findings from different exposure scenarios, limiting the value
of any direct comparison between, for example, space and
terrestrial studies discussing similar absorbed doses, as the
effective doses will likely differ greatly. Indeed, radiation
quality and dose-rate may also be important when evaluat-
ing the contrasting findings seen in the A-bomb survivor
studies in this regard.

Such A-bomb survivor studies provide insight into the
long-term effects of IR exposure on cognitive functioning.
For example, no association between radiation dose and vas-
cular dementia or Alzheimer’s disease in Hiroshima survi-
vors born before September 1932 has been observed
(Yamada et al. 2003). Additionally, a longitudinal study on
Hiroshima survivors exposed to �4.0Gy of radiation at or
after adolescence, indicated that neither cognitive function-
ing or cognitive decline was associated with radiation dose
(Yamada et al. 2016). Similarly, no difference in general cog-
nitive functioning in Nagasaki A-bomb survivors was
reported (Kinoshita et al. 2019), but indeed the sample size
is small and a more extensive battery of cognitive tests is
required. Overall, studies with humans suggest the adult
brain is susceptible to moderate absorbed dose cosmic radi-
ation, but research is conflicted whether moderate and low
absorbed doses of photon radiation impacts cognitive func-
tioning (e.g., radiotherapy). Exposure to alpha and beta radi-
ation may occur following nuclear incidents. Given the
relatively densely ionizing nature of alpha and beta radi-
ation, these may have different effects on cognitive function
compared to photon irradiation. Accordingly, a significant
challenge in evaluating the impact of widespread exposures
(e.g., A-bomb, Chernobyl) relates to determining the types
of radiation and dose rates. Further study is required to
examine effects relating to dose, various dose-rates and type
of radiation and whether these potential effects persist over
a lifetime.

3.2. Observations from animal studies

It is acknowledged that the epidemiological studies noted
above are generally opportunistic, therefore some cohort
designs are not always ideal. To further examine the impact
of low- and moderate-dose exposure on cognitive function-
ing, a series of animal studies have highlighted a link
between radiation exposure and cognitive defects, supporting
the previously discussed findings in exposed human popula-
tions (summarized in Table 1). Prenatal exposure in rodents
is primarily characterized by gross morphological defects of
the brain, more subtle hippocampal anomalies and cognitive
defects in later life (Gao et al. 2002; Verreet et al. 2015;
Koko�sov�a et al. 2015; Ganapathi and Manda 2017; Craenen
et al. 2018). Similar observations on behavior in adulthood
were made following neonatal exposure (Eriksson et al.
2016). A plausible explanation for the major structural
defects is the highly dynamic character of the brain during
prenatal and neonatal life, as it undergoes major
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developmental processes. Of note, most recent studies have
focused on the teratogenic impact of low-LET exposure,
leaving the health effects of prenatal exposure to high-LET
exposures largely unexplored. There is relatively little

research examining low-dose photon radiation on adult cog-
nitive functioning, but cellular anomalies such as decreased
neurogenesis (Figure 1, ‘decreased neurogenesis’) and cell
proliferation have been observed in relation to moderate-

Table 1. Summary of animal data in order of age at exposure (prenatal to adult) and organized into radiation type and dose level.

Irradiated animal
Lowest dose at which

effect was seen Dose rate Age at exposure
Key study outcomes in

adult animals Reference

Female mice (C57BL/6 J) 0.071 Gy internal
beta particles

See paper for details Prenatal (E12.5) Hippocampal cellular
anomalies and
behavioral deficits

Gao et al. (2002)

Female mice (C57BL/6 J) 0.2 Gy gamma-rays 1.465 Gy/min Prenatal (E5.5) Abnormal hippocampal
neurogenesis
and behavior

Ganapathi and
Manda (2017)

Female mice (C57BL/6 J) 0.5 Gy X-rays 0.375 Gy/min Prenatal (E7.5) Structural brain defects Craenen et al. (2018)
Female mice (C57BL/6 J) 1.0 Gy X-rays 0.35 Gy/min Prenatal (E11) Cognitive dysfunction

and structural
brain defects

Verreet et al. (2015)

Female rats (Wistar) 1.0 Gy gamma-rays Not stated Prenatal (E16) Behavioral and
cognitive defects, no
observed
cellular anomalies

Tom�a�sov�a et al. (2012)

Female rats (Wistar) 1.0 Gy gamma-rays Not stated Prenatal (E17) Hippocampal cellular
anomalies and
cognitive deficits

Koko�sov�a et al. (2015)

Male and female mice
(C57BL/6 J
and NMRI)

0.5 Gy gamma-rays 0.02 Gy/min Neonatal (PND 3 or 10) Behavioral changes Eriksson et al. (2016)

Male and female mice
(BALB/c)

2.0 Gy X-rays (acute or
fractionated)

1.2 Gy/min or
1.0 Gy/min

Adolescent Cellular anomalies but
no cognitive deficit

Peng et al. (2019)

Male mice (C57BL/6 J) 0.05 Gy of 4He
(400MeV/n)

0.05 Gy/min Adult Hippocampal and
cortical circuit-level
functional and
morphological
anomalies, and
behavioral defects

Parihar et al. (2018)

Male rats (Wistar) 0.2 Gy of 56Fe (1 GeV/u) 0.5 Gy/min Adult Cognitive dysfunction Lonart et al. (2012)
Male rats (Wistar) 0.2 Gy of 56Fe (1 GeV/u) 0.5 Gy/min Adult Cognitive dysfunction Britten et al. (2012)
Male mice (C57BL/6 J),

male and female
mice (Nestin-GFP)

0.2 Gy of 28Si
(300MeV/n)

1.0 Gy/min Adult Short-term cellular
anomalies and
cognitive defects

Whoolery et al. (2017)

Male mice (C57BL/6 J) 0.3 Gy 56Fe (1 GeV/n) See paper for details Adult Cellular anomalies Sweet et al. (2016)
Transgenic mice

(Tg(Thy1-EGFP) MJrsJ)
and rats (Wistar)

0.3 Gy of 16O or 48Ti
(600MeV/n)

0.05–0.25 Gy/min Adult Various neuro-
morphological
defects,
neuroinflammation
and
behavioral defects

Parihar et al. (2016)

Male mice (C57BL/6) Combined 0.5 Gy 1H
and 0.1 Gy 16O

0.18-0.19 Gy/min (1H)
and 0.18-0.33 Gy/
min (16O)

Adult Molecular, cellular, and
behavioral anomalies

Kiffer et al. (2018)

Male and female mice
(APP/PS1)

1.0 Gy 56Fe (1 GeV/u) 0.1–1 Gy/min Adult Cognitive defects and
accumulation of
beta-
amyloid isoforms

Cherry et al. (2012)

Mice 0.1 Gy gamma-rays 0.64 Gy/min Adult Transcriptional changes
similar to the ageing
human brain /
Alzheimer’s disease

Lowe et al. (2009)

Female ApoE-deficient
mice (C57BL/6)

0.3 Gy gamma-rays 0.001 Gy/day Adult Cellular and molecular
signaling alterations

Kempf et al. (2016)

Male rats
(Sprague Dawley)

0.3 Gy (photon; type
not stated)

Not stated PND 21, or 50, or 70 Age-associated dose-
dependent cellular
and
behavioral anomalies

Achanta et al. (2009)

Mice (Kunming) 0.3 Gy X-rays Not stated Adult Increased neurogenesis
and behavioral
performance

Wei et al. (2012)

Male and female mice
(C57/BL6)

0.5 Gy X-rays 0.05 Gy/day Adult Molecular and cellular
changes, decreased
cell proliferation

Silasi et al. (2004)

Male and female mice
(Nestin-CFP)

Combined 0.34 Gy
neutron and 0.36 Gy
gamma-rays

See paper for details Adult Cellular anomalies, no
cognitive defect

Mineyeva et al. (2019)
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dose photon irradiation (Silasi et al. 2004), although other
data exists suggesting no detrimental effect of moderate
doses of photons on neurogenesis (Achanta et al. 2009; Wei
et al. 2012; Kempf et al. 2016; Sweet et al. 2016). Indeed a
number of studies also report no association between cogni-
tive deficits and impaired neurogenesis following moderate
and high-dose exposures (Tom�a�sov�a et al. 2012; Peng et al.
2019; Mineyeva et al. 2019). By contrast, there are a wealth
of studies examining cognitive effects following high-LET
exposure in adulthood. Such moderate-dose cosmic irradi-
ation of the adult brain does appear to elicit behavioral
changes (Britten et al. 2012; Lonart et al. 2012; Whoolery
et al. 2017; Kiffer et al. 2018) and more subtle (cellular)
anomalies at the hippocampal and cortical level (Lowe et al.
2009; Cherry et al. 2012; Parihar et al. 2016; Sweet et al.
2016; Parihar et al. 2018).

Most of these experimental studies however rely on data
from external exposures. For internal exposures, radionu-
clides have the potential to accumulate in certain brain areas
by crossing the blood-brain barrier (Fitsanakis et al. 2006)
or via the olfactory nerve following intranasal exposure
(Ibanez et al. 2014). Alpha-emitting radioisotopes are more
effective in inducing damage than X- or gamma-rays
(Brugge and Buchner 2011), and have been observed to lead
to poorer spatial working memory in rats (Houpert et al.
2005; Houpert et al. 2007). Separately, repeated exposure to
depleted Uranium (which is relatively non-radiotoxic) has
been associated with poorer spatial working memory
(Monleau et al. 2005). This latter study also raises important
considerations especially in the context of low-dose exposure
whereby the combined effect of radiation and non-radio-
logical chemicals may be relevant for adverse effect. For
example, although low-moderate-dose gamma irradiation
(0.05–0.2Gy) of postnatal mice (day 10) does not elicit
behavioral defects, the combined exposure with ketamine
(7.5mg kg-1) severely impaired learning and memory
(Buratovic et al. 2018). As such, it is important to further
understand to what extent neurocognitive effects are attrib-
utable to low-dose/rate irradiation or if a synergistic effect
exists with non-radiation exposures. This mixed exposure
phenomena may also extend to psychological stress, which
has already been considered in other areas of biology (Feng
et al. 2012; Katsube et al. 2017), and will become increas-
ingly important to consider in the evaluation of mixed low-
dose exposure cognitive effects. The psychological impact
has also been recently considered in the evaluation of low-
dose IR epidemiological studies (Wang et al. 2016;
Vaiserman et al. 2018). Drawing on this, it could be
hypothesized that the potential relationship between low-/
moderate-dose IR and cognitive functioning observed in epi-
demiological data could be impacted by the psychological
stress of perceived exposure.

4. Role of psychological stress in radiation-induced
cognitive dysfunction

It is known that psychological stress (e.g., anxiety) can cause
short-term cognitive dysfunction (Scott et al. 2015) perhaps

due to cognitive interference depleting attention resources
(Stawski et al. 2006; Eysenck et al. 2007). Further, observa-
tional studies show that chronic psychological stress over
time may also affect cognitive functioning. Although find-
ings have not always been consistent (de Bruijn et al. 2014),
it is generally accepted that poorer cognitive functioning
and accelerated cognitive decline in older adults is associated
with greater levels of anxiety or stress (Sinoff and Werner
2003; Aggarwal et al. 2014; Munoz et al. 2015; Gulpers et al.
2019), and self-reported worry symptoms (Pietrzak et al.
2012; de Vito et al. 2019). Anxiety may also be a risk factor
for dementia incidence (Petkus et al. 2016) and progression
in those with mild cognitive impairment (Li and Li 2018).
Accordingly, psychological stress is an important risk factor
for poorer cognitive functioning in old age. Although there
is currently no research examining the relationship between
cognitive functioning and psychological stress specifically
relating to radiation exposure, there is evidence suggesting
that temporary displacement (Ishiki et al. 2016) and loss of
housing (Hikichi et al. 2017) is associated with risk of cogni-
tive impairment in older adults affected by Great East Japan
Earthquake and Tsunami. Additionally, although more
research is required with larger cohorts, recent evidence
demonstrates the impact of stress due to other natural disas-
ters on cognitive functioning. For example, natural disaster
exposure has been associated with cognitive functioning in
adults (Bell et al. 2019; Walling et al. 2020), but such decre-
ments can recover with time (Cherry et al. 2011).
Interestingly, prenatal maternal stress following natural dis-
asters has been associated with toddler cognitive functioning
(Laplante et al. 2018).

The possible relationship between the psychological
impact arising from perceived exposure and cognition could
be explained, at least in part, by cortisol (Figure 1, ‘elevated
cortisol’). Cortisol is a glucocorticoid hormone and func-
tions to regulate numerous bodily processes with levels
known to increase during periods of stress (Staufenbiel et al.
2013). Following Chernobyl, elevated cortisol levels were
reported in some (Souchkevitch and Lyasko 1997) but not
all (Goncharov et al. 1998) studies on clean-up workers,
while elevated cortisol levels and self-reported stress symp-
toms were reported in Three Mile Island residents (Schaeffer
and Baum 1984). The biological basis for the possible associ-
ation with cognition is that elevated corticosterone decreases
the expression of brain-derived neurotrophic factor (Smith
et al. 1995; Li et al. 2008; Makhathini et al. 2017) which is
important for neurogenesis (Figure 1, ‘decreased neurogen-
esis’) and which has been associated with a decrease in hip-
pocampal volume (Erickson et al. 2010), cognitive
functioning (Shimada et al. 2014; Siuda et al. 2017), and
cognitive decline (Buchman et al. 2016). Indeed, elevated
cortisol levels accompanied with decreased cognitive func-
tioning have also been observed in older adults born in con-
taminated areas around the Mayak site (Burtovaya et al.
2016), which could be partly attributed to (maternal) psy-
chological stress. Experimental work showing that persistent
stress in adult mice is associated with impaired spatial
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memory 6 to 7months after cessation of stress (Wheelan
et al. 2018) and likely due to glucocorticoid activity sup-
ports this.

Furthermore, it is generally accepted that cardiovascular
risk-factors (induced by vascular inflammation; Wirtz and
von K€anel 2017) can be resultant of psychological stress
(Figure 1, ‘vascular inflammation’). For example, anxiety has
been associated with high blood pressure (see Tully et al.
2013 for review), which could be attributed to the stress-
induced increased secretion of pro-inflammatory cytokines
such interleukins (e.g., IL-6), interferons, and tumor necrosis
factors (H€ansel et al. 2010). In the context of radiological
incidents, increased psychological stress and systolic blood
pressure has been observed in both exposed and nearby
‘potentially-exposed’ individuals three and a half years fol-
lowing the Goiânia accident (Collins and de Carvalho 1993).
Two years following the Fukushima nuclear accident,
increases in systolic blood pressure was also observed in
both evacuated male residents and non-evacuated male and
female residents compared to before the disaster (Ohira
et al. 2016); observations that could be attributable to psy-
chological stress. A higher systolic blood pressure and an
increase in (albeit non-significant) anxiety symptoms were
also observed in Three Mile Island residents (Davison et al.
1991). The role of hypertension in explaining a potential
link between psychological stress and cognitive function
(Figure 1, ‘vascular inflammation’) requires further examin-
ation, given that high blood pressure is associated with white
matter lesions (Verhaaren et al. 2013), decreased cognitive
functioning and accelerated cognitive decline later in life
(Kilander et al. 1998; Knopman et al. 2001; Elias et al. 2003;
Yamada et al. 2003; Emdin et al. 2016; Rouch et al. 2019).
Although this may not be valid in the oldest-old (Richmond
et al. 2011; Gottesman et al. 2014; Szewieczek et al. 2015;
Corrada et al. 2017).

Behaviors associated with psychological stress such as cig-
arette smoking (Patten and Liu 2007; Phillips et al. 2009;
McKee et al. 2011; Fluharty et al. 2017), excessive alcohol
consumption (Keyes et al. 2012), and decreased sleep quality
(Van Reeth et al. 2000) may also impact cognitive function-
ing (Figure 1, ‘behaviors’). Psychological distress was
observed to be a risk-factor for smoking initiation amongst
Fukushima evacuation area residents (Nakano et al. 2018),
while research elsewhere observed no association in exposed
residents near the Semipalatinsk nuclear test-site, despite an
increase in anxiety and somatic distress (Semenova et al.
2019). We are not aware of studies which have examined
associations between cigarette smoking and cognitive func-
tioning in populations exposed to IR, however it is known
that cigarette smoking is associated with elevated levels of
inflammatory markers (Levitzky et al. 2008; Khanna et al.
2013; McEvoy et al. 2015) and hypertension (Bowman et al.
2007; Halperin et al. 2008) which has been linked to demen-
tia and cognitive decline (Anstey et al. 2007; Rusanen et al.
2011), and hippocampal atrophy (Debette et al. 2011). Thus
although it is unclear whether radiation-related psycho-
logical distress is associated with smoking, psychological dis-
tress may lead to smoking habituation in individuals

susceptible to smoking (Nakano et al. 2018), and contribute
to accelerated cognitive decline. Regarding excessive alcohol
consumption, an increased risk of alcohol-related mental
disorders among clean-up workers (Rahu et al. 2014) and an
increased risk of alcohol disorders among men having lived
in the Chernobyl-contaminated zone has been observed
(Bolt et al. 2018). Furthermore, an initial post-traumatic
stress response in Fukushima nuclear workers predicted
increased alcohol use post-disaster (Komuro et al. 2019),
suggesting that psychological stress may be associated with
excessive alcohol consumption. Psychological distress was
also associated with continued drinking among newly-
started drinkers post-disaster (Orui et al. 2017). Excessive
alcohol consumption is neurotoxic (Kim et al. 2012; Caputo
et al. 2012) and has been associated with cognitive decline
and risk of dementia (Neafsey and Collins 2011; Sabia et al.
2014; Langballe et al. 2015). Thus, excessive alcohol con-
sumption in at-risk individuals may also mediate cognitive
decline. For sleep, an increased risk of insomnia has been
seen in Fukushima nuclear (Ikeda et al. 2019) and
Chernobyl clean-up workers (Laidra et al. 2015), although
this association may not apply to general morbidity of sleep
disorders (Rahu et al. 2014). Poor sleep quality due to worry
may contribute to cognitive decline in those at risk of
Alzheimer’s disease. For example, evidence suggests that nat-
ural sleep may serve as a function to clear beta-amyloid pla-
ques (Kang et al. 2009; Ju et al. 2013; Xie et al. 2013).
Further, a recent meta-analysis concluded that insomnia was
associated with Alzheimer’s disease (Shi et al. 2018), while
self-reported sleep disturbances have been associated with
reduced cognitive functioning (Jelicic et al. 2002; Tsapanou
et al. 2019) particularly in ApoE4 carriers (Virta et al. 2013).

These psychological stress effects on vascular inflamma-
tion, endocrine factors, and subsequently cognitive function-
ing, contribute to the complexity of the potential impact of
low/moderate-dose radiation exposure. Neuroinflammation
(Solleiro-Villavicencio and Rivas-Arancibia 2018) and vascu-
lar inflammation (Baselet et al. 2016) are both also thought
to be associated with reactive oxygen species (ROS) and
reactive nitrogen species, which are generated in excess by
direct IR exposure (Figure 1, ‘ROS/RNS and DNA damage’).
In turn, they are thought to contribute to the adverse effect
of exposure on cognitive function (for in-depth reviews see
Hladik and Tapio 2016; Lumniczky et al. 2017). Firstly, IR-
induced ROS may induce a pro-inflammatory response in
the vascular system, which can lead to circulatory diseases
(Borghini et al. 2013; Baselet et al. 2016; Baselet et al. 2017).
Observational studies with exposed populations demonstrate
this. For example, elevated inflammatory markers have been
observed with increased radiation dose in A-bomb survivors
(range ¼ 0 to >1.5Gy; Hayashi et al. 2003). Furthermore,
associations between radiation dose and hypertension and
cerebrovascular diseases have been observed in Chernobyl
emergency workers (mean dose ¼ 0.1Gy; Ivanov et al.
2006) and Mayak workers (mean external dose ¼ 0.66Gy
for males and 0.52Gy for females, Azizova et al. 2011; mean
external dose ¼ 0.45Gy for males and 0.37Gy for females,
Azizova et al. 2019). Although the available evidence is
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limited to the high-dose range, this impact of radiation
exposure on vascular systems may be important in cognitive
dysfunction. For example, high-dose whole-brain irradiation
(5.0Gy twice weekly for four weeks) in mice results in cere-
bromicrovascular dysfunction coupled with decreased spatial
memory performance persisting three months post-irradi-
ation (Ungvari et al. 2017). Whether similar vascular effects
occur at low or moderate doses in exposed populations war-
rants further examination, especially given that cognitive
decline has been consistently associated with hypertension
(Wiesmann et al. 2013; Knopman et al. 2018), ischemic
heart disease (Deckers et al. 2017), and circulating pro-
inflammatory cytokines (Trollor et al. 2012; Shibayama
et al. 2019).

Secondly, in a state of oxidative stress, ROS mediates cell
signaling which leads to microglia and astrocyte activation
(Solleiro-Villavicencio and Rivas-Arancibia 2018). When
activated, microglia and astrocytes secrete pro-inflammatory
cytokines and ROS, which can aggravate further neuronal
damage (Lumniczky et al. 2017). Studies suggest that this
pro-inflammatory response has been implicated in IR-
induced cognitive deficits at high doses (Lee et al. 2010;
Jenrow et al. 2013; Acharya et al. 2016; Hladik and Tapio
2016). At low doses/rates (0.031Gy; 0.0072 mGy/min), ele-
vated levels of inflammatory response markers in human
neural progenitor cells have also been observed (Katsura
et al. 2016). Although other studies in mice observed no
increased inflammatory response for doses below 2.0Gy (x-
ray and cosmic rays; Casciati et al. 2016; Cherry et al. 2012),
and moderate/fractionated doses (0.3Gy gamma rays) may
even be associated with an anti-inflammatory response
(Kempf et al. 2016). However, as outlined earlier, age at
exposure is likely to determine microglia susceptibility to
moderate doses of gamma exposure (Kempf et al. 2014).
Overall, evidence for IR-induced neuroinflammation appears
to exist at the high-dose range but less so for the low-dose
range (for a detailed overview on direct effects on neuroin-
flammation see Betlazar et al. 2016). In addition to the oxi-
dative stress caused by actual exposure, there is evidence
that psychological stress (without actual exposure to IR) can
also result in neuroinflammatory events. As such it is pos-
sible that both pathways (actual exposure and perceived
exposure) contribute to neuroinflammation (Figure 1,
‘neuroinflammation’). For example, there is research impli-
cating the role of psychological stress in microglia activation
and cytokine secretion in early life and adulthood (Calcia
et al. 2016). Although glucocorticoids (e.g., cortisol as men-
tioned previously) are traditionally regarded as anti-inflam-
matory, its relationship with the CNS is complex and such
elevated glucocorticoids may potentiate CNS pro-inflamma-
tory effects (Duque E de and Munhoz 2016). In addition to
microglial activation, stress-induced glucocorticoid secretion
may also promote structural ramifications of microglia
which exaggerates cytokine release following subsequent
stressors (Walker et al. 2013). These neuroinflammatory
effects are thought to underlie stress-induced cognitive dys-
function (Ohgidani et al. 2016) which has been observed fol-
lowing experiments with rodents designed to mimic chronic

psychological stress in humans (McKim et al. 2016).
Therefore, it may be difficult to determine the extent to
which neuroinflammatory effects can be attributed directly
to actual radiation exposure.

In summary, psychological stress has been associated
with pro-inflammatory and endocrine effects which are
thought to be associated with reduced cognitive function.
This association may be further promoted by behaviors
thought to be related to psychological stress such cigarette
smoking, excessive alcohol consumption and poor sleep
quality. Based on the evidence provided, it is therefore
apparent that pro-inflammatory mechanisms in the CNS
and the vascular system may co-exist as a result of both dir-
ect IR exposure and psychological stress relating to per-
ceived IR exposure. In addition, the possible effect on
neurogenesis may also be impacted both by direct IR expos-
ure, and from elevated cortisol caused by chronic psycho-
logical stress, further complicating the issue. Continuing
along the line of the mixed exposure phenomena, it is worth
examining whether psychological stress compounds the pos-
sible effect of direct IR exposure on cognitive functioning.
Experimental research on this scenario is required.
Interestingly, based on the evidence above, psychological
stress may pose a greater threat to cognitive functioning spe-
cifically in the context of low- and moderate-dose terrestrial
radiation exposures.

5. Societal relevance and implications

The totality of any direct and psychological stress effects of
low/moderate-dose IR exposure on cognitive functioning has
implications for policy and public health. For example, the
International Commission on Radiological Protection
(ICRP) which guides precautionary measures following acci-
dental exposures, states that a dose rising toward 0.1 Sv will
almost always justify protective measures (acute or annual
dose; ICRP 2007). However when framed in context of the
Fukushima nuclear disaster, precautionary measures such as
forced evacuation may bring considerable unnecessary harm
in low-dose scenarios (Cuttler 2012; Socol et al. 2013)
through mechanisms described in this review. Further, the
psychological stress associated with nuclear accidents may
be further exacerbated through stigma and discrimination
(Tanisho et al. 2016; Maeda and Oe 2017), and social change
associated with displacement (Tanaka 2015; Kunii et al.
2016). Therefore effort is required at the community level to
ameliorate these psychosocial consequences and prevent fur-
ther psychological stress (Becker 1997). Consideration of
such stress may also be relevant when considering other
radiation-associated non-cancer effects. The term resilience
is often used in disaster preparedness and is relevant to
nuclear accidents where large numbers of the population are
potentially exposed to low and moderate doses of IR. To
account for the above, radiation protection guidelines could
be developed to supply greater psychological guidance,
which in itself could play a critical role in resilience. For
instance, psychological effects can reduce the potential for
resilience (Sandifer and Walker 2018), and indeed cognitive
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dysfunction may also reduce this potential (Hunter et al.
2018) which may be especially relevant to older adults
(Cloyd and Dyer 2010).

All of this is also relevant for occupational and medical
exposure scenarios. As addressed previously, astronauts
(Limoli 2017; Garrett-Bakelman et al. 2019; Cucinotta and
Cacao 2019) and radiotherapy patients (Greene-Schloesser
and Robbins 2012) are potentially at risk of altered cognitive
functioning and could therefore benefit from a deeper
understanding of radiation-related psychological stress.
Although astronauts will be well-informed about radiation
effects, they are already under considerable stress from the
nature of space travel alone (Garrett-Bakelman et al. 2019).
For conventional radiotherapy patients the relevance of psy-
chological stress relating to radiation is less clear because
the radiation is used to treat a current disease and the
exposure is consented to. Nonetheless, some understanding
to support possible anxiety directly associated with the
actual treatment is warranted, since the importance of psy-
chological interventions, particularly in cancer treatments,
has already been established (Spiegel 2012).

6. Conclusion

It is generally agreed that exposure to relatively high doses
of IR can impair cognitive functioning in adults, and more
so in the developing brain. Although likely detrimental fol-
lowing prenatal and neonatal irradiation, the evidence for
low- and moderate-dose photon exposure in adulthood
appears inconsistent, based on the experimental data pro-
vided. The epidemiological evidence also appears inconsist-
ent, but factors such as radiation type (high-LET vs. low-
LET) are important to consider as well as level of dose,
which makes comparisons between different exposure scen-
arios difficult. Further to any potential impact of low- and
moderate-dose exposures, the considerable psychological
stress associated with perceived or actual exposure may also
impact cognitive functioning. Indeed, mechanisms for both
direct radiation and psychological stress impacting cognitive
functioning appear to overlap, particularly relating to pro-
inflammatory effects. Therefore, such mechanisms for cogni-
tive dysfunction may co-exist and should be accounted for
in epidemiological studies to avoid overestimating the
impact of IR exposure alone. Further for animal studies, the
psychological stress resulting from restraint and transport of
subjects must be planned for and addressed prior to IR
experimentation. Overall, the current review suggests that
psychological stress associated with low-dose exposures is
likely to have a greater negative impact on cognitive func-
tioning than the effects of actual exposure, specifically in the
context of nuclear accidents. In other populations however
(e.g., astronauts and radiotherapy patients), the significance
of any psychological stress is not well documented and
requires further examination. Nevertheless, efforts to under-
stand and alleviate stress relating to radiation exposure are
still warranted. Given the potential for such negative health
consequences there is a pressing need to consider how infor-
mation on risk is communicated to and received by

populations concerned about exposure to IR at any dose
level, including where this is negligible.
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