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Abstract—A novel event-based predictive maintenance frame-
work based on sensor signal measurements and regressive pre-
dictions to minimise machine breakdown and component failure
is proposed. Such capabilities will be complemented by Event-
Clustering technique to cluster and remove less impact sensor
signals and also build breakdown genomics from the root of a
failure in order to predict the upcoming machine breakdowns
and components failures. The creation of machine breakdown
genomics requires the knowledge of systems state observed as well
as the state change at specified time intervals (discretization). The
proposed framework is applied to a real application case study.
An industrial case study of a continuous compression moulding
machine that manufactures the plastic bottle closure (caps) in
the beverage industry has been considered as an experiment.
The machine breakdown genomics theory is tested in this case
to build the sequence of events or the genomics of breakdown,
where sequences of contiguous events lead to failure or healthy
machine status. This is complemented by the Regression Event-
Tracker method to estimates the condition monitoring of the
components and provide components real-time remaining useful
life estimation. The Weibull failure-rate analysis is carried out on
the remaining useful life estimates for each element to understand
and estimate the mean time to failure for the manufacturing
machine.

Index Terms—Real-time Event Sequencing, Genomics of Ma-
chine Breakdown, Predictive Maintenance, Regressive Event
Tracker, RUL, Machine Learning, Compression Moulding Ma-
chine

I. INTRODUCTION

Over the last decades, there have been considerable ad-
vances in integrated sensors, instrumentation, signal process-
ing algorithms, and internet technology infrastructure that lead
the concept of smart factories under the concept of “Industry
4.0”. It has been estimated that already, 26 to 50 billion
“things” are connected to the Internet, and this means the cre-
ation of a huge online amount of data [1]. This concept insti-
gates today’s increasing large-scale developments in machin-
ery health monitoring. Machinery health monitoring includes
three stages of fault detection, fault diagnosis, and remaining
useful life (RUL) prediction which the latter is an essential
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requisite for proactive maintenance and prognostic health
management (PHM) [2]. RUL prediction is a process using
predictive methods to forecast the upcoming performance of
machinery and obtain the time left before the machine loses
its capabilities in operation [3]. Predictive Maintenance (PdM)
is one of the most critical components of smart manufacturing
and Industry 4.0 [4]. The benefits of PdM include improved
efficiency, quality and safety, better compliance and mainly
costs reduction due to prevention of machines and equipment
damages. PdM strategy for industrial equipment can accurately
perceive performance degradation since it was designed to
achieve near-zero breakdowns throughout the entire manu-
facturing process [5]. Therefore, the Industrial Internet of
Things (IIoT) revolution combination with today’s advanced
data analytical methods, enable industries to implement new
and more effective maintenance strategies to progress the
PdM. This instigates the authors to present a novel approach
for sequential learning of breakdown’s events in industry
domain. The named Genomic of machine breakdown (GMB)
terminology borrows some of the classical term and descriptors
of DNA sequencing from biology science to prognosis the
upcoming breakdowns or components failure. Furthermore, a
regression-based event-tracker is introduced to the estimate of
the RUL and Mean time to failure (MTTF) of the machine
in real-time by exploiting the event-clustering and genomics
of the failure. In the following sections, a review of the most
relevant PdM methods available in the literature is presented,
followed by a detailed description of the proposed GMB and
Regressive Event-Tracker methods and their applications in an
industrial case study.

II. RELATED WORKS

In the recent years, extensive research works have been
conducted in the subject of PdM and PHM (including fault
and breakdown prognosis and RUL) in manufacturing industry
domain. For example, reference [6] addresses recent research
works in PHM for advanced manufacturing paradigms to fore-
cast health trends, avoid production breakdowns, reduce main-
tenance cost and achieve rapid decision making. Availability
of large dataset of machines status and process parameters, as
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well as advancements in signal processing techniques, are the
main reason for these extensive research works [7]. PdM meth-
ods in the literature are mainly classified into four categories of
model-based, knowledge-based, data-driven and hybrid prog-
nosis [8]. However, between these methods, data-driven PdM
extensively applied to industrial manufacturing using methods
such as time series [9], principle component analysis (PCA)
[10], the hidden Markov model (HMM) [11], neural network
[12], machine learning (ML) [13], [14] and deep learning
(DL) algorithms [15], [16]. The ML-based PdM is divided
into the two main classes of supervised, where the failures’
information is known (e.g. regression method in [1] and
classification method in [17]) and unsupervised, where only
process information is available. But, maintenance data are not
available [13]. The solutions provided by supervised learning
are accurate, but the availability of maintenance information is
strictly related to the adopted maintenance management policy.
The authors of reference [18] have conducted a comprehensive
review on data-driven approaches applied in recent years in
PdM domain. Another recent comprehensive review has been
conducted in [5] on PdM applications from the aspects of
ML and DL. This research also compared and ranked the
methods based on their accuracy. Reference [19], [20] presents
a methodology to calculate the RUL of machinery equipment
by utilizing physics-based simulation models and digital twin
concept to enable PdM for manufacturing resources using
PHM techniques. The PHM aims to predict the RUL of
the machine from the historical and ongoing degradation
trends obtained from condition monitoring information. In
the past years, a large number of research works have been
conducted specifically on RUL prediction approaches which
been divided into four groups according to their techniques and
methodologies: physics model-based, statistical-based, hybrid
and ML-based methods [13], [20], [21]. Physical model and
statistical-based methods use empirical physical and mathe-
matical models of failure mechanisms to interpret machine
breakdown and degradation trends [22]–[24]. A disadvantage
of conventional statistical modelling approaches is that they
rely on expert prior knowledge, heuristic decision and several
assumptions. Other examples of research delivered in RUL
estimation domain are recurrent neural network (RNN) in
[25], Wiener-process-based methods in [26] and HMM in [27].
Another method in RUL prediction is an ensemble learning
based prognostic method [28]. This research work combines
multiple deep learning algorithms to predict more accurately.
However, deep learning drawback is it’s highly reliance on the
availability of large training dataset, while in real-world ap-
plications, despite the availability of large dataset of a normal
operational dataset, it is often impossible to obtain a significant
number of failure or breakdown dataset sample. Therefore,
these deep neural network methods are not able to cover
the major challenge in data-driven prognostics: Prediction of
rare failures and breakdowns in PdM and RUL estimation.
With reference to the constituent nodes of the Markovian
processes chain which form a series of sequences akin to genes
terminology in the DNA which are repeatable and predictable,

an online temporal sequence learning algorithm named GMB
technique is introduced in the next section. The proposed
technique learns the event of complex sequencing in real-time
while existing types of learning (such as statistical and ML)
methods are not well suited to solve such real and practical
need and desire from industrial applications.

III. SEQUENTIAL BREAKDOWN PREDICTION THE THEORY
OF EVENT-BASE GMB

The intention here is to develop an accurate and applicable
machine breakdown predictive framework that be able to
predict upcoming anomaly machine breakdown and estimate
the components useful life. So that during the process, the
online likelihood of breakdowns is identified, the system is
alerted, and subsequently, prognostic maintenance is taken,
these leads to zero-break manufacturing. As reviewed in the
previous section, all learning-based methods require training
and large sets of data that rarely exists about the state of
the machine and the type of breakdown. Furthermore, no
formal and verifiable data/knowledge exists of the correlations
between systems parameters that relate to machine breakdown.
The challenge was to build a real-time machine breakdown
framework that is able to interlink the causal relationship
between machine parameters/state and its maintenance sched-
ule and remaining life-time. This prediction and appropriate
taking action mean savings of machine life and improvement
in the machine performance and quality of the products.
The proposed method introduces a general framework for
using Event-Clustering technique [29] and event sequence
prediction (ESP) in forming a GMB terminology. The ESP
consists of predicting the occurrence of the next elements
of a sequence based on the sequential nature of events and
previously observed elements. Event sequencing is, registering
as an observed event at specified time intervals. If such
occurrence has not been observed previously, then a new event
is registered. We have named the proposed method as a theory
of event-based genealogy of breakdown since this prediction
method borrows its terminology from genetics science. Similar
to the chains in a DNA, the sequences of events are represent-
ing machines parameters and states causal relationships. The
strings in the DNA of a machine breakdown can be presented
the linear sequence of events where a specific constellation
can be interpreted as the building blocks of the breakdown.
For example, the chain of events that forms the DNA of a
healthy machine that successfully produces a “non-defective
product” or otherwise. Some constellations of machine’s genes
(DNA) will lead to “non-defective” products and some lead to
defects. Eventually, recognising and identifying and labelling
the machine defect genes will lead to prognosis the cause and
life-time of the machine breakdown. Moreover, identifying the
machine breakdowns’ genes will help to take maintenance
actions. In this paper, an example of manufacturing where
the GMB type 1 is presented as a sequence and chain of
events (genes labelled alphabetically) that prognosis state of
the machine breakdown one is discussed. For instance, the
first breakdown can be labelled as a combination of repeatable
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Fig. 1. Genome labelling and sequential differentiation example.

events labelled A, B, C, D, and this breakdown would happen
if a sequence of A→B→C→D occurs. A, B, C, D are
representative of distinguished machine states which will be
explained in detail in the next sections.

A. GMB Algorithm

The proposed GMB methods begin with dimensionality
reduction through Rank Order Clustering (ROC) technique
to ranks and groups the relationship between machine input
and output parameters [29]. The array of inputs and their
weight vis-à-vis system outputs are used in building the event
sequences genomes blocks and their likelihood of occurrence.
The following step is the definition of a safety threshold
(ST). This threshold is defined by the manufacturer for the
operational reasons or as a limit of operations. As the sensor
values cross the ST a breakdown may not occur; however, the
machine is not operating in the optimum performance level.
Genomes labelling and sequential event differentiation is the
next step in GMB training algorithm. In this step, detection
of the state of the machine is conducted at every collected
sample, and then each detected state is labelled as illustrated
in Fig. 1 to generate the sequence of breakdown. Here, in this
example, the breakdown threshold is at T = 4. Then the value
of relevant sequences will be read and labelled in the following
time sequences of t0, t1, t2, t3, t4. To generate the sequence of
ABCDE to prognosis the machine breakdown. In this example,
the genome length is five elements. The first element in the
sequence is registered at t0 and labelled as ‘A’, then according
to the clustering output which ranks the inputs importance
weight on the outputs, the second sequence labelled could
be a new state differentiable to the prior state, only if the
system state’s difference passes the trigger threshold (see [30]
to trigger threshold definition) then a new label is assigned to
the new state as ‘B’ this is continued until the moment of state
‘E’ which is occurrence at breakdown threshold. Subsequently
the formation of events from t0 to t4, five consecutive events
form the genome strand ‘ABCDE’. At the end of the training,
all trained genomes will be stored in the sequence database
as a lookup table to predict different machine breakdown
scenarios. In the above example, if during prediction, state ‘A’
is detected, the likelihood of the breakdown is 20% (one out
of five possible events). Consequently, if ‘A’→‘B’→‘C’→‘D’
occurred in the real-time prediction, more likely the next
sequence is ‘E’ unless it occurred otherwise. A case study
is presented in the following section to explain further the

implementation of the GMB in a real industrial case. Here
every step of the machine breakdown is registered in the
form of a chain of events coded in the form of a sequence
of genomes representing the DNA of machine that lead to
“healthy” or “breakdown” outcome.

IV. THE DNA OF CONTINUOUS COMPRESSION MACHINE

A use case of a continuous compression moulding machine
is considered which manufactures the plastic bottle closure
(caps) that caters for the beverage industry. The process
uses a compression moulding technique rather than the more
traditional approach of injection moulding machine [31]. The
compression moulding [32] machine produces bottle caps at
a faster rate with the process of compressing and cooling
happening at the same stage. The crucial process in the
manufacturing of the caps is the coolant which is cooling the
moulded plastic. This module is called the thermal regulator.
The thermal regulator maintains the temperature of the coolant
through the process by a series of a control system, as shown
in Fig. 2. The coolant temperature is set by the operator, which
is customised and the recipe of the desired caps manufacturer.
The set values of temperature (T ) are maintained by the
combinations of pumps and heat exchanger. The coolant passes
through the module which has the molten plastic, which is to
be cooled. The temperature of the coolant gains the tempera-
ture of ∆T1 after passing through the heat source. The coolant
then passes through the filter so that the particulates (if any)
are filtered and then to a heat exchanger. The heat exchanger
reduces (by ∆T2) the coolant temperature back to the set
temperature (T ). The values of ∆T1 and ∆T2 are maintained
equally to retain T value. The health of thermal regulator is
monitored by the four sensors, i.e. Temperature (Tx), pressure
(P ), coolant flow-rate (Q) & valve control. The proprietary
sampling rate of the sensor acquisition is every cycle of the
manufacturing of caps. The temperature (Tx) is used in the
feedback mechanism for the heat exchanger to maintain the
constant coolant temperature at T . The control values are used
to chill more of the coolant if the Tx > T . The presence
of the filter decreases the flow-rate of the coolant in the
circuit. This is an indicator of the degradation of the filter. The
failure mode evaluation and critical analysis (FMECA) reports
reveal that the filter clog is the main failure mode involving
a repeated change of the filters over time due to the clogs.
The clogs in the filter are due to the suspended particulates

Fig. 2. The flow diagram of the coolant in the thermal regulator.
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(a) (b)

Fig. 3. (a) The control system feedback relation between coolant flow-rate
(Q) and the pressure (P ). (b) The coolant flow-rate and pressure sensor values
after performing preventive maintenance by clearing the clogs in the filter.

in the coolant, which decreases the flow-rate. This decrease in
flow-rate causes motor to pump more coolant into the circuit,
causing an increase in pressure (P ). The dynamics of the flow-
rate (Q) and pressure (P ) are shown in Fig. 3a. The coolant
flow-rates values are the direct impact of the continuous filter
clogging over time. Fig. 3b indicates that the machine has been
stopped and preventive maintenance has been carried to clear
the filter. The step-by-step implementation of the proposed
ESP is as follows:

A. Event-Clustering sensitivity analysis algorithm

As explained above, GMB algorithm begins with dimen-
sionality reduction through Event clustering technique. This
helps to find the correlation between inputs and output signal
parameters, reveals the sensitivity of the filter clogging (out-
put) against the machine state parameters (system input signals
i.e. coolant flow-rate, pressure, control valve and temperature).
The interpretation of the data series is based on triggers
and events. Only those changes in the data series that are
interpreted as triggers represent state change, and the trigger
threshold was set at 2% (chosen by conducting a false negative
test and system expert [30]). It means that any alteration in
input sensors (machine data) and filter clogging, more than 2%
has been considered as a new event. The Event-Cluster outputs
are shown in Table I. The outputs prove that coolant flow-rate
has a high degree of impact on the filter clogging and should
be considered as important sensors in the sequential algorithm
while coolant pressure has a medium impact, and the other
two sensors have a low degree of impact. The low-ranking
parameters could be ignored in the next steps (dimension
reduction).

TABLE I
EVENT CLUSTERING OUTPUT BETWEEN THE MACHINE SENSORS AND

FILTER CLOGGING

Input/output Filter clog
Coolant flow-rate (Q) 82%

Pressure (P ) 59%
% control valve opening (%v) 42%

Temperature (TX ) 36%

TABLE II
LABELLED STATE, COOLANT FLOW-RATE AND DURATION

State label Coolant flow-rate (m3 s−1) Duration
A 281-275.3 7d 19h
B 275.3-269.5 2d 5h
C 269.6-264.2 20h
D 264.2-250(ST) 1 d 7h

B. Safety threshold (ST)

The second step in the sequential event modelling algorithm
is the identification of ST for machine sensors. ST is defined
for every sensor values by the operator below which the
component will not be operating in the regime condition.
The manufacturer could define the ST for the operational
reasons or as a limit of operations. As the sensor values cross
the ST a breakdown may not occur; however, the machine
is not operating in the optimum performance level. In this
experiment, ST is set at 85% of the set sensor value.

C. Genomes labelling and sequential differentiation

In the training process, a series of the events of machine
coolant flow-rate sensor (the highest impact) are labelled. The
First label is ‘A’ at the beginning of the cycle, i.e. coolant
sensor, which is between 281 and 275. State ‘A’ lasts 7 d
19 h. The remaining state and their duration are in Table II.
Therefore, the GMB and degradation for the specific full
cycle is ‘ABCD’ as defined in Table II. The duration of
this breakdown lasts 12 d 3 h. The results of gene definition,
labels and their sequence of occurrence (DNA) after tens of
full-cycle samples (More sample in training, leads to more
accuracy and confidence in prediction) will be stored in the
machine breakdown genes pool. This trained genes would be
useful for the machine operator, which based on online process
parameter and machine data, potential anomaly alerts raised
by the model could enable PdM.

V. REGRESSIVE EVENT-TRACKER

The data from the online repository is accessed via Orion
context broker using FIWARE protocols. The sensor data are
modelled by a linear degradation model, as described in (1).
The f(x) is the model of the sensor values, σ is the set values

Fig. 4. Sensor values of flow-rate training period of 105 cycles and prediction
of sensor values and RUL until the predicted values crosses the ST.
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(a) MTTF - Coolant flow-rate (b) MTTF - Coolant pressure

(c) MTTF - Coolant temperature (d) MTTF - % Control valve

Fig. 5. MTTF estimation for each sensor in the thermal regulator. The ST is
85% of the set value of the sensors.

of any of the sensors chosen by the operator/the end-user or
the manufacturer, φ(t) is the time-varying degradation model,
and ε(t) is the data acquisition instrumentation noise which
could be a combination of Gaussian and Poissonian.

f(x) = σ + φ(t) · g(t) + ε(t) (1)

The noise in the model can be minimised by having a larger
training period. The function g(t) = t, as for the case for linear
models. An exponential model can also be considered; how-
ever, for fast prediction, the linear models are implementable
with less computational complexity. The RUL is estimated as
shown in the (2) at every cycle and described in Fig. 4.

R(t) =

(
S − σ
φ(t)

)
− t (2)

For the calculation of RUL at every cycle, R(t), the ST is set
at 85% of the value of set value as explained in the previous
section. Fig. 4 shows the implementation of regressive based
predictions. The model is trained with a historical data length
of 105 cycles, and then the extrapolation of the trained model
would be the prediction of the future sensor value. The time
(cycles) frame between the trained cycle and the predicted
sensors crossing the ST is the RUL, as shown in Fig. 4.

TABLE III
THE MTTF ESTIMATION COMPONENTS VIA THE ASSOCIATED FOUR

SENSORS OF THE THERMAL REGULATOR

Sensors MTTF
Coolant flow-rate (R1(t)) 9 week

Pressure (R2(t)) 10 week
% control valve opening (R4(t)) 1 week

Temperature (R3(t)) 32 week

A. MTTF estimation for each sensors

The estimation of RUL for all the sensors is carried out
according to the ST prescribed by the machine manufacturer,
i.e. 85% of the set values. The distribution analysis of the
RUL provides the insight of mean time for the machine to be
in optimum regime conditions. The Weibull distribution which,
as shown in Fig. 5 of all the sensors in the thermal regulator.
If the ST can be considered as the definite filter clog failure
threshold, then the mean time of the operations becomes an
MTTF, and the RUL becomes time to failure. The estimated
MTTF for sensors is shown in Table III.

B. Estimation of lifetime of the thermal regulator

The life-time, Reff (t), of the thermal regulator with respect
to the filter clog failure mode is estimated by the combination
of MTTF of all the sensors and the weightage (w) of the
sensors related to the filter clog as estimated in Table I. The
life time of the thermal regulator is estimated as shown in (3).

Reff (t) =

N∑
i=1

wiRi(t)

N∑
i=1

wi

(3)

Where RN (t) and N are the MTTF and number of sensors
in the thermal regulator, the estimated life-time of the thermal
regulator with respect to filter clog is 12 week 3 d 16 h 25 min
15 s. The life-time of the thermal regulator estimation clearly
dependent on the safety (failure) threshold.

VI. CONCLUSION

This paper proposed a new framework for real-time se-
quencing strategy predicts of machine breakdown and combin-
ing it with more traditional ML techniques such as regressive
methodology along with Weibull failure-rate analysis. The
Theory of GMB’s term was instigated from genetic science
and DNA forms to label and establish sequential event differ-
entiation. These labelled genomes of the machine states are
being used to predict the events according to their occurrence
sequence, which leads to predict machine breakdown. An
industrial case study of continuous compression moulding ma-
chine manufactures the plastic bottle closure (caps) in beverage
industry has been considered as an experiment to predict the
machine breakdown. This case study also has been applied in
the proposed Regression Event-Tracker method to estimates
the condition monitoring of the components and provide real-
time RUL estimation. The methodology also provides the life-
time of the thermal regulator based on the sensors’ weighting
obtained from event-clustering and MTTF estimation of each
sensor. A schematic of the applied research work process on
the case study, including the data acquisition system, two
raw sensor signals, breakdown prediction and RUL estimation
and ultimately, decision making is illustrated in Fig. 6. The
more details of the proposed method as well as validation and
verification through comparison of its accuracy with other ML
and DL techniques still have the potential for further research.
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Fig. 6. A schematic of the applied research work process on the case study.
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