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This paper studies the priority pricing problem for a single-server queueing system with two priority classes

in which customers have different sensitivities to delay. The system makes a fixed-delay announcement to

inform arriving customers of the expected delay for each class, whereupon each customer must decide which

class to join. Any customer who joins the priority class is charged a fixed priority price. Our examination of

customers’ joining behavior under any given priority prices reveals that there can be multiple equilibrium

delays and that the number of those delays depends on the structure of customers’ delay cost distribution.

We characterize the stability of these equilibria and show that the system can reach the largest or smallest

equilibrium by making a proper initial delay announcement. In addition, we consider two pricing problems

to maximize the system’s long-run average revenue and social welfare respectively. The results derived here

establish that both the revenue-maximizing price and the social welfare–maximizing price are quite sensitive

to the delay cost distribution. Finally, we investigate the influence of the number of priority classes by

extending the two–priority-class model to a multiple–priority-class model.
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1. Introduction

Delay is a frequent phenomenon in both service and manufacturing systems. The delay cost rate—

defined as the delay cost per unit time—is a commonly used economic measure of delay (Reinertsen

2009). Customers in the real world are heterogeneous in their delay sensitivity, and a delay-sensitive

customer has a high delay cost rate (Akşin et al. 2013). In a typical service system, such customers

may be willing to pay extra in order to reduce their waiting time. Hence managers adopt “pri-

ority” service pricing as a valuable revenue management tool used to differentiate customers and

improve profitability (Afèche 2013). The four examples listed next are taken from the service and

manufacturing industries.

1



2

• SeaWorld, the water-based amusement park, offers a “Quick Queue” program that gives

patrons (who are willing to pay some $30) front-of-the-line admission to its most popular rides

(Gavirneni and Kulkarni 2016).

• When applying for a visa, the applicant can obtain priority service by paying an extra fee;

doing so puts the applicant’s paperwork ahead of all non-priority applications.

• Benjamin Franklin Plumbing, a nationally branded franchising organization in the United

States, offers a “Ben Franklin Society” program that allows its members to move to the top of the

appointment book if they want to get their plumbing service quickly.

• The Timken Company, a leading manufacturer of tapered roller bearings, offers a special

program called “Bearing Express”; the customers enrolled in that program can pay an additional

price to reduce the standard lead time by half. Timken implements this program by assigning

different levels of priority to orders (Gilland and Warsing 2009).

The characterization of customers’ delay cost is crucial to setting an effective pricing strategy.

Gavirneni and Kulkarni (2016) point out that the heterogeneity of delay cost depends on the specific

service offered. For amusement parks, customers’ delay costs depend on individual income and

wealth. In the case of consular services, the cost could reflect both ability to pay and the imminence

of travel plans. For the manufacturing industry, delay costs most often depend on the urgency of

the orders. In short, there is a wide distribution of customers’ delay costs across different service

types and their associated underlying environments. Yet the extant literature typically assumes

that customers’ delay costs are distributed in a specific way (see e.g. Naor 1969; Gilland and

Warsing (2009); Afèche 2013). That assumption gives rise to the following fundamental questions.

1. How important is it to generalize the distribution assumption of customers’ delay cost?

2. How does the customers’ delay cost distribution affect the service system’s pricing strategy

and revenue?

We shall address these questions by considering a general distribution for customers’ delay costs.

Following the line of Naor (1969), we assume that a customer’s delay cost is a linear function of

the waiting time.1 In order to assess the effect of a general delay cost distribution on customers’

“joining” behavior and on the pricing strategy of system managers, we start by considering a

stylized M/G/1 queueing system with two priority classes. In a typical setting, arriving customers

decide which queue to join by comparing utilities of each option; that process requires such system-

related information as the expected waiting time of each class and the current number of waiting

customers. The system often provides this information by way of a delay announcement. We shall

consider a specific delay announcement mechanism, the fixed delay (FD) announcement, whereby

1 Other authors (e.g., Akan et al. 2012) have studied convex or convex–concave delay costs. However, we do not
consider a nonlinear cost structure in this paper.
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each arriving customer is informed of long-run average waiting time for each class. Next we analyze

customers’ joining equilibrium—in terms of its existence, uniqueness, and stability—when the

priority price remains fixed. The results of that analysis are then used to characterize the revenue-

maximizing price and the social welfare–maximizing price as well as to obtain closed-form versions

of those optimal prices for some delay cost distributions. Finally, we extend our results based on

two priority classes to multiple classes and investigate the implications of offering a small number

of priority classes.

1.1. Main Results and Contributions

Our paper makes several contributions to the literature. First, we study customers’ behavioral equi-

librium under delay announcement in the context of a queueing game. Most research on queueing

games has assumed that customers can obtain the waiting time’s exact value, which they use to

make joining decision; thus customers’ behavioral equilibrium is presumed to be uniquely deter-

mined under a fixed decision variable (here, the priority price). In service systems, however, it is

difficult for customers to know the exact waiting time. A more realistic setting is one in which the

system will provide a delay announcement that merely guides customer decisions. It is therefore

worthwhile to study how the equilibrium will be formed under a given delay announcement scheme.

Our paper explores customers’ behavioral equilibrium under the FD announcement in terms of two

aspects: the equilibrium’s existence and uniqueness; and the evolution of customer response to the

system’s delay announcement. We find that the equilibrium delay may not be unique and that the

number of equilibria depends on the delay cost distribution structure. For uniform and exponential

distributions, uniqueness is guaranteed. Yet multiple equilibria may exist for unimodal distribu-

tions, in which case the queueing game literature’s typical assumption (i.e., exact knowledge of

waiting times) is invalid. It follows that the distribution structure of customers’ delay costs plays a

critical role in customers’ behavioral equilibrium and hence also in the system’s pricing strategies.

This connection demonstrates the importance of being able to generalize any assumption about

the distribution of customers’ delay costs. If there are multiple equilibria then we are naturally

interested in identifying the most desirable and reachable one. Thus we are motivated to study

these equilibria by analyzing the evolution of delay announcements under the iterative scheme

proposed by Armony et al. (2009). More specifically, we derive an explicit characterization of the

stability of these equilibria and demonstrate that the largest or smallest equilibrium delay can be

reached if the initial delay announcement is appropriate.

Second, we analyze the priority prices that maximize the system’s long-run average revenue

and the ones that maximize social welfare. We focus in particular on examining the effect of

delay cost distributions on these optimal prices. To build a consistent framework, we first analyze
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those two optimization problems and characterize the structural properties of related problems.

We then investigate these pricing strategies under some specific distribution families—namely,

the uniform, exponential, Weibull, power, and log-normal distributions. Our results indicate that:

(i) the optimal prices are sensitive to the specific delay cost distribution family considered; (ii) if the

delay cost distribution is mis-specified then the relative revenue loss can be significant, especially

when the system is congested; and (iii) some managerial insights reported in the literature are

likewise sensitive to the underlying distributional assumptions. For example, Gilland and Warsing

(2009) report that the social welfare–maximizing price is equal to the revenue-maximizing price.

In contrast, our study reveals that this claim holds only under certain distributions, such as the

uniform distribution (for some parameters) and the exponential distribution.

Finally, we investigate the influence of the number of priority classes by extending our model to

multiple priority classes. Thus we employ a transformation of variables to establish the existence of

a delay equilibrium and then analyze the corresponding two optimization problems. Our numerical

studies show that the service system’s revenue and social welfare both increase with the number

of priority classes and that the most benefit is gained by offering a relatively small number of such

classes.

1.2. Organization of the Paper

The rest of our paper proceeds as follows. Section 2 gives a detailed review of the related literature,

and the two–priority-class queueing model is introduced in section 3. In section 4, we discuss

customers’ equilibrium behavior under any given priority price. Sections 5 and 6 describe the

service system’s optimal pricing strategies from the perspectives of maximizing social welfare and of

maximizing its own long-run average revenue. Then, in section 7, we discuss these pricing strategies

under four distribution families and conduct several numerical studies. Section 8 is devoted to

analysis of the service system when multiple priority classes are offered. We conclude in section 9

with a summary of our findings and some suggestions for future research.

2. Literature Review

Our work is distinct from the literature on queueing games in two respects. First, instead of

assuming a particular delay cost distribution, we consider a general distribution of customers’ delay

cost in a service system priority pricing problem. Second, we evaluate the effect of the system’s

delay announcement on customer’s joining behavior upon arrival. We examine the properties of

customers’ behavioral equilibrium—especially its evolution and stability—as well as its effect on

decision making, which has not received much attention in queueing game literature.
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Distributional assumptions on customers’ delay cost. In the literature on queueing games, cus-

tomers’ delay cost distribution is assumed to be either discrete or continuous. In the first cate-

gory of research, a common assumption is that customers are homogeneous with respect to delay

sensitivity—in other words, that their delay cost rates are identical (see e.g. Naor 1969; Mendelson

1985; Hassin 1986; Chen and Frank 2004; Debo et al. 2008; Hassin and Roet-Green 2017). Other

studies view customers as being heterogeneous as regards delay cost. Plambeck (2004) and Afèche

(2013) assume that there are two customer types, each with a different but constant delay cost

rate. Hassin (1995), Ha (2001) and Ata and Peng (2018) consider multiple types of customers by

partitioning them into a finite number of sets, where each set consists of customers who have the

same (and constant) delay cost rate.

Unlike the works just cited, which study only the discrete types of customers’ delay cost, some

of the literature assumes that customers’ delay cost rates follow a special continuous distribution.

For instance, Zhang et al. (2007), Gilland and Warsing (2009), and Yu et al. (2013) presuppose a

uniform distribution of those rates. Gavirneni and Kulkarni (2016) study an M/G/1 variation of

the two-class non-preemptive priority model in which the customers’ delay cost rate is modeled as a

Burr distribution. For a comprehensive survey of the various heterogeneity assumptions made about

customers’ delay cost rates, see Hassin (2016). Our paper also considers a continuous distribution of

customers’ delay costs. Yet in contrast with the scholars just cited, we assume that the customers’

delay cost follows a general continuous distribution rather than a specific one. Our reason for

adopting this approach is the empirical evidence presented by Lu et al. (2013), who use supermarket

data and find that customers’ delay sensitivity is random and follows a continuous distribution;

see also Akşin et al. (2013), who assume that customers’ unit waiting costs follow a log-normal

distribution whose parameters they estimate based on data from a call center. Our examining of

the various distributions reveals that not all managerial implications described in literature hold

true when the underlying distribution is mis-specified—a finding that underscores the importance

of distributional structure in decision making. Thus robust managerial insights depend on the care

taken to adopt reasonable assumptions about that structure.

Priority service pricing. The priority service pricing problem is a classical topic in queueing

games; representative works include Mendelson and Whang (1990), Hassin (1995), and Kittsteiner

and Moldovanu (2005) (to name just a few). Hassin and Haviv (2003) offer an excellent survey

of the literature on this topic. Our paper segments a continuum of customers into a finite set of

priority levels, a strategy that is closely related to that employed by Gilland and Warsing (2009),

Gavirneni and Kulkarni (2016), and Nazerzadeh and Randhawa (2018).

Gilland and Warsing (2009) consider a priority pricing problem in an M/M/1 queueing system

with two or more priority classes; assuming that customers’ delay cost rates are drawn from a
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uniform distribution and that all customers must be served. They conclude that the revenue-

maximizing price is equal to the social welfare–maximizing price—a conclusion that may fail to

hold more generally (i.e., under other delay cost distributions). Recall that Gavirneni and Kulkarni

(2016) study an M/G/1 queueing system in which there are two priority classes and customers’

delay costs follow a Burr distribution. Our paper considers a similar priority pricing problem but

assumes that those costs follow a general distribution.

Nazerzadeh and Randhawa (2018) also consider a general delay cost distribution as they study

the problem of offering a menu of price and delay options that maximizes an M/M/1 queueing

system’s revenue. One difference between that paper and ours is that, to realize the offered expected

delays, customers will not be served under strict priority policy. These authors show that offering

two service priorities is asymptotically optimal on the square-root scale.

All of the research just cited implicitly assumes that the true expected delay is known to arriving

customers—from which it follows that customers’ joining equilibrium is uniquely determined under

a fixed priority price. In practice, however, the actual (expected) delay is often unknown to arriving

customers and so the system typically makes a delay announcement to guide customers in their

joining decision. Our paper investigates customers’ joining equilibria under a prespecified delay

announcement scheme, a topic that is understudied in previous research on priority service pricing.

Delay announcement. Service systems often provide waiting time information to arriving

customers via delay announcements, which can effectively manage customers’ behavior. Such

announcements have been extensively studied in the queueing literature (see e.g. Whitt 1999;

Armony and Maglaras 2004a, 2004b; Allon and Bassamboo 2011). Guo and Zipkin (2007) con-

sider a queue with balking under three levels of delay information, and they identify conditions

under which the system’s performance is improved by providing more accurate delay information.

Armony et al. (2009) propose two delay announcement schemes for an unobservable G/GI/s+GI

queueing system: FD announcement and DLS announcement (announcing the delay of the last

customer to enter service). They study the performance effect of delay announcements made to

arriving customers and analyze, in a fluid model framework, the equilibrium behavior under each

scheme. These authors find that multiple equilibria can arise if a monotonicity condition is violated.

Ibrahim et al. (2017) consider a single-class M/M/N+M queueing system under DLS announce-

ment and find that this announcement scheme may not always be accurate; they also provide

conditions under which the DLS prediction is asymptotically accurate. Our study differs from that

of Armony et al. in that we consider an M/G/1 queueing system with two priority classes, restrict

our attention to FD announcements, and account for the system’s pricing decision.
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3. Model

We consider a queueing system with a single server and two classes. Customers arrive at the system

according to a Poisson process with rate λ, and the service time B follows a general distribution.

Upon arrival, each customer decides whether to join class 1 by paying an additional fixed price K

after the system announces each class’s long-run expected delay. Customers in class 1 are served

with strict priority, and the customers within each class are served on a first-come-first-served

(FCFS) basis. We assume that the service is non-preemptive: once served, a customer cannot be

“preempted out” prior to service completion. We assume also that the system’s traffic intensity

ρ := λE[B] is less than 1, a condition that guarantees the queueing system’s stability.

Customers are heterogeneous in their evaluation of delay, or their delay cost rate, measured in

dollars per unit time. We assume that delay cost rate, denoted by C, is a positive random variable

with cumulative distribution function (CDF) H(x) and probability density function (PDF) h(x).

The focus of this paper is on customers’ delay cost distribution in Assumption 1 which is general

enough to include many distribution families, such as log-normal distribution.

Assumption 1. The PDF of delay cost rate h(x) is continuous and quasi-concave.2

Queue lengths are not observable to customers. A customer arriving in the system will receive

a delay announcement (w1,w2), where w1 and w2 are the average waiting times in (respectively)

class 1 and class 2. Given this information, the customer decides which class to join by comparing

her expected disutility from joining either class. For a customer whose delay cost rate is c, the

disutility of joining class 1 is u1 = K + cw1;3 that from joining class 2 is u2 = cw2. Hence the

customer will join class 1 if K+cw1 < cw2 or will join class 2 otherwise. Note that, by Assumption 1,

the customer delay cost distribution H is continuous. Hence, the probability that the disutility of

joining class 1 equals to that of joining class 2 is 0. Therefore, our analysis remains valid regardless

of whether these customers join class 1 or class 2. However, if H is discrete then a mixed equilibrium

will arise (Anand et al. 2011).

2 A function h(x) is quasi-concave if it is increasing with x≤ x∗ and decreasing with x≥ x∗ for some x∗.

3 The only customer heterogeneity we consider is that in their delay cost rates, although our model could capture
unobserved heterogeneities or factors if it incorporated a random shock (cf. Ata and Peng 2018). However, doing so
would unduly complicate our paper’s entire analysis. Because we are interested in the delay cost rate distribution’s
effect on customers’ joining equilibrium and system performance, we forgo all concern about other heterogeneities.
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Remark 1 (Customers’ Disutility). Our model employs the notion of customers’ disutil-

ity—rather than the more commonly used utility—to characterize customers’ joining behavior.

The reason is that, if utility is used, then customers may balk (i.e., decline to enter the system)

if they anticipate a negative surplus from joining one of the classes (a fortiori from joining either

class). However, in some systems all customers may need the service; also, customer valuation of

the service (e.g., consular processing) may be so high that balking is not a viable option.

In the next section we show that there may be multiple equilibrium delays for a given priority

price K. One goal of the system manager is to make proper delay announcements—in other words,

announcements likely to result in the equilibrium that is most favorable (from the system’s per-

spective). That topic is the subject of section 4. The system manager is also tasked with setting the

priority service price. We investigate this issue from the perspective of maximizing system revenue

(in section 5) and also from the perspective of maximizing social welfare (in section 6).

4. Customers’ Joining Equilibrium under a Fixed Priority Price

We now discuss customers’ equilibrium behavior under a fixed priority price K. Because K is fixed

in this section, we omit it to simplify the notation whenever no confusion could result. Suppose the

system manager makes a delay announcement (w1,w2). We assume that w1 <w2, for all customers

would otherwise choose class 2 upon arrival. A customer joins class 1 if and only if her delay cost

rate c satisfies the strict inequality c > K/(w2 −w1). So from the system manager’s perspective,

the probability that an arriving customer joins class 1 is given by

p(w1,w2) := P
{
C >

K

w2−w1

}
= 1−H

(
K

w2−w1

)
. (1)

Thus the customers joining class 1 and class 2 form two Poisson processes with respective arrival

rates λp(w1,w2) and λ(1− p(w1,w2)).

Let Wi(w1,w2) be the steady-state delay in class i (i = 1,2), and let W (w1,w2) be the sys-

tem’s steady-state delay following delay announcement (w1,w2). Previous research (Gautam 2012)

has established that, if the service rate is the same across different classes, then the expectation

E[W (w1,w2)] does not depend on the routing policy; we therefore simply write it as E[W ]. It fol-

lows from standard results for an M/G/1 non-preemptive priority queue that the average delay in

each class is given by the following lemma due to Adan and Resing 2002.

Lemma 1. Given a delay announcement (w1,w2), the average system delay is

E[W ] = p(w1,w2)E[W1(w1,w2)] + (1− p(w1,w2))E[W2(w1,w2)] =
λE[B2]

2(1− ρ)
, (2)
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where

E[W1(w1,w2)] =
λE[B2]

2(1− p(w1,w2)ρ)
=

1− ρ
1− p(w1,w2)ρ

E[W ] and (3)

E[W2(w1,w2)] =
λE[B2]

2(1− p(w1,w2)ρ)(1− ρ)
=

1

1− p(w1,w2)ρ
E[W ]. (4)

The service system’s delay announcement will be viewed as trustworthy only if it is consistent

with the actual average delay (Armony et al. 2009). That criterion leads to the following definition

of equilibrium delay.

Definition 1 (Equilibrium Delay). An announced delay (w̃1, w̃2) ∈ R2
+ is an equilibrium

delay of the system provided that E[Wi(w̃1, w̃2)] = w̃i for i= 1,2.

If there exists a number w̃2 such that E[W2(w̃1, w̃2)] = w̃2, then E[W1(w1,w2)] = (1 −

ρ)E[W2(w1,w2)] = (1 − ρ)w̃2. Hence it follows from Definition 1 that ((1− ρ)w̃2, w̃2) is an equi-

librium delay. Conversely, if (w̃1, w̃2) is an equilibrium delay then w̃1 = E[W1(w̃1, w̃2)] = (1 −

ρ)E[W2(w̃1, w̃2)] = (1−ρ)w̃2. Therefore, it suffices to focus on the delay in class 2. For any equilib-

rium delay (w̃1, w̃2), combining (1) and (4) yields

E[W ] = w̃2(1− ρ) + ρH

(
K

ρw̃2

)
w̃2. (5)

If we define the right-hand side (RHS) of (5) as an auxiliary function,

Fe(x) := x(1− ρ) + ρH

(
K

ρx

)
x for x> 0, (6)

then finding equilibria is equivalent to finding positive real roots of Fe(x) =E[W ].

4.1. Existence of Equilibrium Delay

The first important issue concerns the existence and uniqueness of equilibrium delay. We show

in this section that there always exists an equilibrium delay, although it may not be unique. The

number of equilibrium delays depends on the structure of customers’ delay cost distribution. Most

previous research has sought to ensure analytical tractability by assuming that the delay cost rate

is uniformly (or exponentially) distributed. Indeed, the equilibrium delay is unique under that

assumption. However, empirical studies show that the PDF may be quasi-concave. For example,

Akşin et al. (2013) demonstrate that the log-normal distribution, whose density function is quasi-

concave, fits actual delay cost data quite well. It is therefore necessary to investigate equilibrium

delays under a general delay cost rate distribution. We obtain the following result.
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Theorem 1 (Existence of Equilibrium). There exists at least one equilibrium delay.

The proofs of all results are relegated to section A of the Appendix; here we simply offer a sketch

of the main idea. In light of the discussion after Definition 1, there is a one-to-one correspondence

between equilibrium delays and the positive real roots of Fe(x) = E[W ]. Theorem 1 follows by

showing that, for any y > 0, there always exists an x> 0 such that Fe(x) = y.4 Further investigation

into the structure of Fe(x) yields our next theorem, as follows.

Theorem 2 (Multiple Equilibria). If Assumption 1 holds, then there exist at most three equi-

librium delays.

Remark 2. The proof of Theorem 2 shows that, if h(x) is decreasing in x, then the equilibrium

delay is unique. One can use the same argument to show that, if h(x) has a more complicated struc-

ture than the one described in Assumption 1, then there could exist more than three equilibrium

delays.

The following example illustrates that there may, indeed, be more than a single equilibrium

delay.

Example 1. Suppose that C := max{Z,0} for Z ∼ N(µ,σ2); that is, let Z be normally dis-

tributed with mean µ and variance σ2. The parameters are set as follows: µ= 10, σ = 2, ρ= 0.8,

and the priority price is K = 15. Figures 2(a) and 2(b) plot (respectively) the PDF of C and the

auxiliary function Fe defined in (6). Figure 2(b)shows that the number of roots of Fe(x) = E[W ]

varies from 1 to 3 as E[W ] varies from 0 to ∞. If we let Lmin and Lmax denote (respectively) the

local minimum and local maximum of Fe, then the following more specific statements hold.

(i) If Lmin <E[W ]<Lmax, then there are three equilibrium delays.

(ii) If E[W ] =Lmin or E[W ] =Lmax, then there are two equilibrium delays.

(iii) If E[W ]>Lmax or E[W ]<Lmin, then there is a unique equilibrium delay.

The preceding results and example demonstrate that the system’s equilibrium delays might not

be unique, a conclusion at odds with previous research. In Zhou et al. (2014), for instance, there

is a unique equilibrium delay whereas we show that there may be multiple equilibrium delays.

4 We remark that the existence of a pure equilibrium is guaranteed under the non-preemptive service rule. If the
service is preemptive, then a pure equilibrium delay may not exist and a mixed equilibrium delay will arise.



11

Figure 1 (a) Probability Density Function of C in Example 1; (b) Function Fe(·)
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The latter possibility raises two questions. First, which equilibria are stable? Real-world service

systems can be perturbed by stochastic fluctuations, so a stable equilibrium is preferable. Second,

which equilibrium delay is the most favorable? Different equilibrium delays may result in different

system performance levels, and managers are naturally inclined to identify the equilibrium delay

that optimizes performance. We shall provide detailed answers to these questions in sections 4.2

and 5, respectively.

Next we adopt some notation that will prove useful in the sequel. Let We(K) := {(w̃1,i, w̃2,i) : 1≤

i≤ I(K)} be the set of all equilibrium delays under price K such that w̃2,i is strictly increasing

in i, where I(K) is the number of equilibrium delays under that price. It then follows from (3) that

w̃1,i = (1− ρ)w̃2,i for all i= 1,2, . . . , I(K). (7)

Our next lemma follows immediately from the expressions Fe(w̃2) =E[W ] and x(1−ρ)<Fe(x)≤

x for x> 0, which give the lower and upper bounds of w̃2.

Lemma 2. For all i= 1,2, . . . , I(K), we have that (1−ρ)E[W ]≤ w̃1,i <E[W ]≤ w̃2,i <E[W ]/(1−

ρ).

4.2. Stability of Equilibrium Delays

We now propose an iterative method for investigating the stability of these equilibria. Follow-

ing Armony et al. (2009), we assume that the system makes an initial delay announcement

(w1(0),w2(0)) ∈ R2
+, after which the system observes the actual expected steady-state delay

(w1(1),w2(1)) of those customers who have already been served. The system then makes a second

delay announcement and observes the actual expected steady-state delay (w1(2),w2(2)) of those
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customers served under delay announcement (w1(1),w2(1)). This procedure is repeated ad infini-

tum. If the system makes a delay announcement (w1(t),w2(t)) at period t≥ 0, then the probability

that an arriving customer joins class 1 can be written as

p(t) := 1−H
(

K

w2(t)−w1(t)

)
, (8)

which will generate the actual average delay, (w1(t+ 1),w2(t+ 1)), as follows:

w1(t+ 1) =
λE[B2]

2(1− p(t)ρ)
=

(1− ρ)E[W ]

1− p(t)ρ
, (9)

w2(t+ 1) =
λE[B2]

2(1− p(t)ρ)(1− ρ)
=

E[W ]

1− p(t)ρ
. (10)

This delay will be announced at period t + 1. We mention that this iterative algorithm is a

natural way to compute the equilibrium delay, but it does not actually correspond to a natural

evolution of the system—that is, unless there is substantial time between successive iteration steps.

Otherwise, the system would not be able to reach a steady state before the delay announcement

is changed.

Figure 2 illustrates a dynamic process of delay announcements for a case in which there are

three equilibrium delays. We can see that: if the announced delay for joining class 2 at period 1

(i.e., w2(1)) is less than w̃2,1, then w2(t) will increase to w̃2,1 as t increases; if w̃2,1 <w2(1)< w̃2,2,

then w2(t) will decrease to w̃2,1 as t increases; if w̃2,2 < w2(1) < w̃2,3, then w2(t) will increase to

w̃2,3 as t increases; and if w2(1)> w̃2,3, then w2(t) will decrease to w̃2,3 as t increases.

Figure 2 Evolution of the Delay Announcement when there are Multiple Equilibrium Delays
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Proposition 1 characterizes the dynamic behavior of delay announcements.
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Proposition 1. For any fixed priority price K, the following statements hold.

(i) If w2(0)−w1(0)>ρw̃2,I(K), then (w1(t),w2(t))→ (w̃1,I(K), w̃2,I(K)) as t→∞; in particular, if

w2(0)−w1(0)≥ ρE[W ]/(1− ρ) then (w1(t),w2(t))→ (w̃1,I(K), w̃2,I(K)) as t→∞.

(ii) If w2(0)−w1(0)≤ ρw̃2,1, then (w1(t),w2(t))→ (w̃1,1, w̃2,1) as t→∞; in particular, if w2(0)−

w1(0)≤ ρE[W ] then (w1(t),w2(t))→ (w̃1,1, w̃2,1) as t→∞.

(iii) If ρw̃2,i <w2(0)−w1(0)≤ ρw̃2,i+1 for some 1≤ i≤ I(K)− 1, then (w1(t),w2(t))→ (w̃1,i, w̃2,i)

as t → ∞ provided that ρE[W ] < (w2(0) − w1(0))
[
1 − ρ + ρH

(
K/(w2(0) − w1(0))

)]
and

(w1(t),w2(t)) → (w̃1,i+1, w̃2,i+1) as t → ∞ provided that ρE[W ] ≥ (w2(0) − w1(0))
[
1 − ρ +

ρH
(
K/(w2(0)−w1(0))

)]
.

Remark 3. The validity of Proposition 1 does not rely on Assumption 1. If the initial announced

delay gap w2(0)−w1(0) between two classes exceeds ρE[W ]/(1−ρ), then the announced delay will

converge to the largest equilibrium delay. If the initial delay announcement satisfies w2(0)−w1(0)≤

ρE[W ], then the announced delay will converge to the smallest equilibrium delay. The implication

is that the system can always reach the largest or the smallest equilibrium delay by choosing the

proper initial delay announcement—that is, even if the cost distribution H is unknown. We say that

the sequence of delay announcements {(w1(t),w2(t)); t ∈N} reaches an equilibrium delay (w̃1, w̃2)

if (w1(t),w2(t))→ (w̃1, w̃2) as t→∞. In that case, we refer to the equilibrium delay (w̃1, w̃2) as

being reachable.

Remark 4. If there exists a unique equilibrium delay—that is, if I(K) = 1—then the sequence of

announced delays following any initial delay announcement will converge to the unique equilibrium

delay, which must be (globally) stable.

Our next theorem, which is based on Proposition 1, characterizes the stability of equilibrium

delays.

Theorem 3 (Stability of Equilibrium). Consider any equilibrium delay (w̃1,i, w̃2,i), i ∈

{1,2, . . . , I(K)}. If Fe(·) is strictly increasing at point w̃2,i, then the equilibrium delay is (locally)

stable; otherwise, it is unstable.

According to this theorem, an equilibrium (w̃1,i, w̃2,i) is stable if and only if F ′e(w̃2,i) > 0. An

unstable equilibrium is undesirable because even a small perturbation in the delay announcement

may lead to another equilibrium. We can further illustrate Theorem 3 by referencing the conditions

enumerated in Example 1. Here we will, accordingly, again have three cases as follow.
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(i) If Lmin <E[W ]<Lmax, then both the largest and the smallest equilibrium delays are stable.

(ii) If E[W ] = Lmax then the largest (resp. smallest) equilibrium delay is stable (resp. unstable),

and if E[W ] = Lmin then the largest (resp. smallest) equilibrium delay is unstable (resp.

stable).

(iii) If E[W ]>Lmax or E[W ]<Lmin, then any unique equilibrium delay is stable.

5. Maximizing Service System Revenue

In this section we study the optimal priority pricing problem with the objective of maximizing the

service system’s long-run average revenue. Quantities associated with the price K will now be so

marked in order to emphasize that dependence.

If the equilibrium delay is (w̃1, w̃2), then the average revenue of the service system is

λKp(w̃1, w̃2;K) = λK

(
1−H

(
K

ρw̃2

))
,

as follows from (1) and (7). The term on the RHS of this equation is strictly increasing in w̃2.

So given a price K, the largest equilibrium delay (w̃1,I(K), w̃2,I(K)) is the most desirable for a

manager seeking to maximize the system’s average revenue. Recall from Remark 3 that the largest

equilibrium delay can be reached if the initial delay announcement is properly provided.

Remark 5 (Stability of the Largest Equilibrium Delay). A system manager will cer-

tainly want to know whether the largest equilibrium delay (i.e., the most desirable delay) is stable

for a given priority price K. If the PDF of delay cost h(x) is decreasing in x, then the equilibrium

delay is unique and thus stable (see Remark 4). Now we consider a quasi-concave PDF of delay

cost, in which the function Fe takes a structure pictured in Figure 2(b) in view of the proof of

Theorem 2. Let Fmin(K) = Fe(xmin(K);K) and Fmax(K) = Fe(xmax(K);K), where xmin(K) is the

local minimizer of Fe(·;K) and xmax(K) is its local maximizer. Since Fe(x;K) is increasing in K for

any fixed x, it follows that both Fmin(K) and Fmax(K) are strictly increasing in K. We therefore

conclude, based on Figure 2(b) and Theorem 3, that the largest equilibrium delay is unstable if

and only if Fmin(K) = E[W ]. Hence there exists at most one price, denoted by KL, such that the

corresponding largest equilibrium delay is unstable.

In this section, we study the optimal priority price that maximizes the service system’s average rev-

enue. Let p∗(K) := p(w̃1,I(K), w̃2,I(K);K) be the largest probability of joining class 1 under price K.

Our next lemma states that the number of customers who join class 1 will be fewer when the price

is higher, which is consistent with intuition.
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Lemma 3. Under Assumption 1, p∗(K) is both continuous and decreasing in K for K > 0, and

it satisfies

p∗(K) = 1−H
(
K(1− p∗(K)ρ)

ρE[W ]

)
. (11)

Moreover, p∗(K) is strictly decreasing in K > 0 when h has support [0,∞).

Remark 6 (Finite Support). If h has finite support [a, b] and satisfies Assumption 1, then we

can show that: (a) if K ≤ (aρE[W ])/(1−ρ) then p∗(K) = 1; and (b) if K ≥ bρE[W ] then p∗(K) = 0.

We can also show that, if (aρE[W ])/(1− ρ)<K < bρE[W ], then p∗(K) is strictly between 0 and 1

and is strictly decreasing in K. Hence the upper and lower bounds of K are defined by, respectively,

(aρE[W ])/(1− ρ) and bρE[W ].

Lemma 3 suggests that there is a trade-off between the price K and the joining probability p∗(K).

If so, then there could be a price K∗ such that the average revenue r(K) := λKp∗(K) is maximized.

Before discussing the optimal price K∗, we digress somewhat by presenting an example in which

the delay cost rate C follows a two-point distribution. Our aim is to demonstrate that an optimal

price may not exist if Assumption 1 fails to hold.

Example 2. Let C follow a two-point distribution; that is, suppose that P{C = a} = p and

P{C = b} = 1− p for some numbers a, b, and p with 0 ≤ a < b and 0 < p < 1. We consider three

overlapping intervals: I1 = [0, aρE[W ]/(1−ρ)); I2 = [aρE[W ]/(1− (1−p)ρ), bρE[W ]/(1− (1−p)ρ));

and I3 = [bρE[W ],∞). Now, for anyK ≥ 0, ifK is located withinm∈ {1,2,3} of these three intervals

then there are m equilibrium delays. Furthermore, if we define i(K) := min{j ∈ {1,2,3} :K ∈ Ij}
then

p∗(K) =


1 if i(K) = 1,

1− p if i(K) = 2,

0 if i(K) = 3.

It is easy to show that: (a) if ρ< ((1− p)b−a)/((1− p)(b−a)), then r(K) attains its supremum

(λ(1 − p)bρE[W ])/(1 − (1 − p)ρ) as K ↑ (bρE[W ])/(1 − (1 − p)ρ); (b) if ρ > ((1 − p)b − a)/((1 −
p)(b− a)), then r(K) attains its supremum λaρE[W ]/(1− ρ) as K ↑ aρE[W ]/(1− ρ); and (c) if

ρ= ((1− p)b− a)/((1− p)(b− a)), then r(K) attains its supremum as K ↑ (bρE[W ])/(1− (1− p)ρ)

or K ↑ aρE[W ]/(1−ρ). Yet for none of these cases is there an optimal price K∗ such that r(K∗) =

supK≥0{r(K)}.
The main reason for this pathological result is that H, the CDF of the delay cost rate C, is not

continuous and is flat in some intervals. Example 2 shows that the differentiable property of H

plays a crucial role in guaranteeing the existence of the optimal price in the revenue maximization

problem.
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We next analyze the optimal price K∗. To ease the analysis, we transform the price K to p∗(K),

the probability of joining class 1. Note that p∗(K) can attain any value in (0,1]—that is, by

Lemma 3 and since p∗(0) = 1 and p∗(∞) = 0. Hence K(p) := max{K ≥ 0 : p∗(K) = p} is well-defined

for any p∈ (0,1]. In addition, for any K such that p∗(K) = p we have—by (11)—that

H

(
K(1− pρ)

ρE[W ]

)
= 1− p.

This equality yields the following explicit expression for K(p):

K(p) =
H−1(1− p)ρE[W ]

1− pρ
. (12)

Here H−1 is the inverse function of H, defined as H−1(y) := inf{x≥ 0 :H(x)≥ y} for y ∈ [0,1].

Let M(p) := pH−1(1− p)/(1− pρ). Then we have the following result, which characterizes the

relationship between the original optimization problem maxK≥0 r(K) and the transformed opti-

mization problem max0<p≤1M(p).

Theorem 4. Suppose Assumption 1 holds; suppose also that the function M(p) is strictly quasi-

concave in p∈ (0,1] and thus has a unique maximizer, denoted by p∗ ∈ (0,1). Then r(K) is quasi-

concave in K > 0 and has the unique maximizer K∗ =K(p∗).

The conditions given in Theorem 4 may seem restrictive. However, our next proposition shows

that they are satisfied for many distribution families.

Proposition 2. If the delay cost rate C satisfies one of the following conditions, then M(p) is

strictly quasi-concave for p∈ (0,1].

(i) C follows the Burr distribution, with H(x) = 1 − (1 + (x/a)d)−k, x ≥ 0, whose parameters

satisfy kd> 1.

(ii) C follows the Weibull distribution.

(iii) C follows the uniform distribution, with H(x) = (x−a)/(b−a) for x∈ [a, b], whose parameters

satisfy ρ< (b− 2a)/(b− a).

(iv) C follows the log-normal distribution with H(x) = Φ((lnx− µ)/σ), x > 0, whose parameters

satisfy σρ<
√
π/2; here Φ is the CDF of the standard normal distribution.

(v) m2(x) + m′(x) > 0 for all x ≥ 0, where m(x) := h(x)/(1 −H(x)) is the hazard rate of the

distribution function H.
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Note that the exponential distribution satisfies condition (v) in Proposition 2 because its hazard

rate is a positive constant. As a matter of fact, any distribution with an increasing hazard rate

satisfies condition (v). Note also that Theorem 4 and Proposition 2(i) jointly imply not only the

existence and uniqueness of the revenue-maximizing price but also the quasi-concavity of the Burr

distribution’s revenue function when kd> 1, which extends Theorem 2 in Gavirneni and Kulkarni

(2016). If the conditions in Proposition 2 fail then the function M(p) might not be quasi-concave;

see Appendix B.2 for additional details.

We conclude this section with an example to show that the price KL under which the largest

equilibrium delay is unstable might be equal to the revenue-maximizing price K∗.

Example 3. Let C ∼ lognormal(µ,σ2). Then M(p) = p exp{µ+ σΦ−1(1− p)}/(1− p · ρ) and so

p∗ depends only on σ and ρ. Substituting p∗ into (12) now yields K∗ = ρE[W ] exp{µ+ σΦ−1(1−

p∗)}/(1− ρp∗). If the system manager sets price K∗, then

Fe(x;K∗) = x(1− ρ) + ρH

(
K∗

ρx

)
x= x(1− ρ) + ρΦ

(
log(E[W ]/(1− ρp∗)x)

σ
+ Φ−1(1− p∗)

)
x.

Any equilibrium (w̃1, w̃2) satisfies Fe(w̃2;K∗) = E[W ]. That is, v := w̃2/E[W ] satisfies fe(v) = 1,

where

fe(x) := x(1− ρ) + ρΦ

(
log(1/(1− ρp∗)x)

σ
+ Φ−1(1− p∗)

)
x.

The largest equilibrium delay (w̃1,I(K∗), w̃2,I(K∗)) is unstable if and only if v is the local minimum

of fe. Testing different values of σ and ρ in MATLAB reveals that, if σ = 0.24 and ρ= 0.85, then

p∗ ≈ 0.98 and the corresponding v ≈ 6.01—values that correspond exactly to the local minimizer

of fe. The implication is that the corresponding largest equilibrium delay is unstable: K∗ =KL.

Example 3 states that the largest equilibrium delay under the revenue-maximizing price K∗

might be unstable. However, in view of Remark 5, the largest delay under K∗ will be stable in

nearly all cases. If the corresponding largest equilibrium delay for price K∗ is unstable, then we can

lower the priority price slightly to a point where that delay is stable. In other words, the system

manager can obtain the desired stability by sacrificing just a small amount of revenue.

6. Maximizing Social Welfare

In this section we consider the optimal pricing problem from the social planner’s perspective, in

which a priority price is set such that social welfare (i.e., the sum of customer utilities and the

service system’s utility) is maximized. For this problem, the purpose of setting a priority price is

not to maximize the system’s revenue but rather to reduce the overall delay cost by distinguishing
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among customers who are relatively less and more sensitive to delays and then giving priority to

the latter.

To fix ideas, for now we assume that v, the value of receiving a service, is homogeneous across

customers. Given priority price K and a corresponding equilibrium delay (w̃1, w̃2), a customer with

delay cost rate c ≤ K/(w̃2 − w̃1) will join class 2, which incurs average delay cost cw̃2, while a

customer with delay cost rate c > K/(w̃2 − w̃1) will join class 1, which incurs average delay cost

cw̃1. Hence, the social welfare–maximizing price K and the equilibrium delay (w̃1, w̃2) are given by

S(K) :=

∫ K/(w̃2−w̃1)

0

(v− cw̃2)dH(c) +

∫ ∞
K/(w̃2−w̃1)

(v− cw̃1)dH(c)

=

∫ K/(ρw̃2)

0

(v− cw̃2)dH(c) +

∫ ∞
K/(ρw̃2)

(v− c(1− ρ)w̃2)dH(c)

= v− w̃2

(∫ ∞
0

cdH(c)− ρ
∫ ∞
K/(ρw̃2)

cdH(c)

)
, (13)

where the second equality follows from (7). Here the total customer delay cost under priority

price K and equilibrium delay (w̃1, w̃2) is

w̃2

(∫ ∞
0

cdH(c)− ρ
∫ ∞
K/(ρw̃2)

cdH(c)

)
.

Note that

p(w̃1, w̃2;K) = 1−H
(

K

w̃2− w̃1

)
= 1−H

(
K

ρw̃2

)
and

w̃2 =
E[W ]

1− p(w̃1, w̃2;K)ρ
.

So if we put p= p(w̃1, w̃2;K), then

K

ρw̃2

=H−1(1− p), w̃2 =
E[W ]

1− pρ
; (14)

hence the expression for social welfare can be written as

S(K) = v− E[W ]

1− pρ

(∫ ∞
0

cdH(c)− ρ
∫ ∞
H−1(1−p)

cdH(c)

)
. (15)

We also have our next lemma, which states that p(w̃1, w̃2;K) has range [0,1].

Lemma 4. As the price K varies from 0 to ∞, p(w̃1, w̃2;K) can attain any value in [0,1].

This lemma and equation (15) together imply that the problem of maximizing social welfare is

equivalent to the following optimization problem:

min
0≤p≤1

fS(p) :=
1

1− pρ

(∫ ∞
0

cdH(c)− ρ
∫ ∞
H−1(1−p)

cdH(c)

)
, (16)

whose solution can be characterized as follows.
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Theorem 5. Under Assumption 1, the optimization problem (16) admits a unique minimizer

p∗S ∈ (0,1), where p∗S = 1−H(q∗S) and where q∗S is the unique positive root of

gS(q) := q(1− ρ(1−H(q)))−
∫ ∞

0

c ·h(c)dc+ ρ

∫ ∞
q

c ·h(c)dc= 0. (17)

Combining Theorem 5 with (14) allows us to characterize the social welfare–maximizing equilibrium

delay (w̃∗1,S, w̃
∗
2,S) and the optimal price K∗S as follows:

w̃∗2,S =
E[W ]

1− p∗Sρ
, w̃∗1,S = (1− ρ)w̃∗2,S, K∗S =

ρE[W ] ·H−1(1− p∗S)

1− p∗Sρ
. (18)

Note that (w̃∗1,S, w̃
∗
2,S) may not be the largest equilibrium delay under price K∗S. This outcome can

be explained by inspecting (13). Given priority price K, social welfare might not be maximized at

w̃2 = w̃2,I(K) because the function

G(w;K) :=w

(∫ ∞
0

cdH(c)− ρ
∫ ∞
K/(ρw)

cdH(c)

)
is not necessarily monotone in w.

Analogously to the case of maximizing the service system’s revenue, the question arises of whether

the social welfare–maximizing equilibrium delay (w̃∗1,S, w̃
∗
2,S) is stable. According to Theorem 3,

the equilibrium delay (w̃∗1,S, w̃
∗
2,S) is stable if and only if Fe(·;K∗S) is strictly increasing at point

w̃∗2,S. In the case of a power distribution with α= 2 and ρ= 0.9 (see section 7.4), one can easily

calculate that F ′e(w̃
∗
2,S;K∗S) =−0.0659< 0. Hence the social welfare–maximizing equilibrium delay

is not necessarily stable. Even so, we can identify a condition under which that delay is stable.

Proposition 3. If Assumption 1 holds and if the function c · h(c) is decreasing in c, then the

social welfare–maximizing equilibrium delay (w̃∗1,S, w̃
∗
2,S) is stable when the priority price is set

to K∗S.

If (w̃∗1,S, w̃
∗
2,S) is unstable then any small perturbation will drive the system to other stable equi-

librium delays, which would degrade social welfare. It follows that the priority pricing queueing

system examined here is likely not an efficient (much less the best) way to maximize social welfare.

Alternatives such as a threshold policy or a dynamic priority service policy may be more effective

than the static priority policy studied in this paper.
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7. Special Distribution Families and Numerical Study

We now investigate how both the revenue-maximizing price and the social welfare–maximizing

price are affected by different families of delay cost distributions. In particular, we derive these

optimal prices for uniform, exponential, Weibull, and power distributions—after which we conclude

this section with a numerical study.

7.1. Uniform Distribution

Previous research reflects wide adoption of the uniform distribution; see, for example, Zhang et al.

(2007), Gilland and Warsing (2009), and Yu et al. (2013). Let the delay cost rate C follow a uniform

distribution with support [a, b].

We assume that the system manager’s goal is to maximize the system’s long-run average revenue.

It then follows from the first-order optimality condition and the proof of Proposition 2 that

p∗ = min

{
1−

√
(1− bρ(b− a)−1)+

ρ
,1

}
for p∗ as defined in Theorem 4. Hence the revenue-maximizing price is given by

K∗ = max

{
(b− a)

(
1−

√
(1− bρ(b− a)−1)+

)
·E[W ],

aρ

1− ρ
·E[W ]

}
. (19)

Now suppose that the system manager wishes also to maximize social welfare. Solving gS(q∗s) = 0

for gS as defined in (17), we obtain

q∗S =
bρ+ a− b+ (b− a)

√
1− ρ

ρ

and so the social welfare–maximizing price is given by

K∗S =
bρ− b+ a+ (b− a)

√
1− ρ√

1− ρ
·E[W ]. (20)

Note that

F ′e(w̃
∗
2,S;K∗S) = 1− ρ+ ρH(q∗S)− ρq∗S ·h(q∗S)

= 1− ρ+ ρ
q∗S − a
b− a

− ρq∗S
1

b− a

=
b− a− bρ
b− a

.

We conclude that (w̃∗1,S, w̃
∗
2,S) is stable if and only if ρ < (b− a)/b. Because ρ < 1, this equilibrium

delay must be stable when a= 0.

A comparison between (19) and (20) immediately yields the following result.
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Proposition 4. If a= 0 in the case of a uniform distribution, then K∗ =K∗S.

The condition that customers’ delay costs follow a uniform distribution with a= 0 appears often

in the literature (Gilland and Warsing 2009; Yu et al. 2013). Proposition 4 states that, under this

condition, the system manager can set a price at which both the system’s revenue and social welfare

are maximized—provided there are only two priority classes. The same result is obtained also by

Gilland and Warsing (2009, Prop. 3). However, we must point out that this condition typically fails

to hold in practical situations, which results in revenue-maximizing and social welfare–maximizing

prices that differ.

7.2. Exponential Distribution

Now we assume that H(x) = 1− e−κx for x≥ 0, where κ > 0 is the rate parameter. By the first-

order optimality condition, p∗ is the unique root of lnp+ 1− ρ · p= 0 in (0,1) (see Lemma 8(i) in

Appendix B) and the revenue-maximizing price is

K∗ =
ρE[W ]

κ
.

The corresponding optimal revenue is R∗ = λρp∗E[W ]/κ.

It follows from (17) that q∗S is the unique positive root5 of κq− 1 +ρe−κq = 0 and that the social

welfare–maximizing price is

K∗S =
q∗SρE[W ]

1− ρe−κq∗S
=
ρE[W ]

κ
=K∗.

That is: in the case of an exponential distribution and two priority classes, the social welfare–

maximizing price always equals the revenue-maximizing price. Moreover, the equilibrium delay is

unique under any price (by Remark 2), from which it follows that the social welfare–maximizing

equilibrium delay must be stable (by Remark 4).

7.3. Weibull Distribution

The distribution function for a Weibull distribution is H(x; τ, θ) = 1− e−(x/τ)θ for x ≥ 0, where

θ > 0 is the shape parameter and τ > 0 is the scale parameter. We shall use K∗(τ, θ) and K∗S(τ, θ)

to denote (respectively) the revenue-maximizing price and social welfare–maximizing price under

a Weibull distribution. Our next lemma states that both K∗(τ, θ) and K∗S(τ, θ) are radically homo-

geneous in τ .

5 Let e−κq = p; then κq− 1 + ρe−κq =− lnp− 1 + ρp. Then, by Lemma 8(ii), κq− 1 + ρe−κq = 0 has only one positive
root (which we denote by q∗S). Also, p∗ = e−κq

∗
S .
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Lemma 5. For each τ > 0, we have K∗(τ, θ) = τK∗(1, θ) and K∗S(τ, θ) = τK∗S(1, θ).

Next we investigate the relationship between K∗(τ, θ) and K∗S(τ, θ). In view of Lemma 5, it

suffices for this purpose to compare K∗(1, θ) and K∗S(1, θ). Figure 3 shows that, as θ varies, no

relationship between K∗(1, θ) and K∗S(1, θ) dominates.6 Note that θ= 1 corresponds to the case of

an exponential distribution.

Figure 3 Comparison of K∗ and K∗S for Weibull Distribution
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7.4. Power Distribution

We follow Guo and Zipkin (2007) in considering the power distribution, whose PDF is H(x) = xα

for α> 0 and x∈ [0,1]. A distinct feature of the power distribution is that it can capture different

kinds of distribution structures (concave, linear, and convex) as α varies. Using logic similar to

that in section 7.1, we find that the revenue-maximizing price is

K∗ =
(2ρ)1−1/α

(
2ρ− 1−α+

√
(1 +α)2− 4ρα

)1/α

1−α+
√

(1 +α)2− 4ρα
·E[W ]

and that the social welfare–maximizing price is

K∗S =
q∗2S ρ

(1− ρ)α(1− q∗S)
·E[W ];

here q∗S is the unique root of (1 − ρ)(αq + q − α) + ρqα+1 = 0 in (0,1) (see Lemma 8(iii)). We

remark that the social welfare–maximizing equilibrium delay may not be stable as α varies ( see

the paragraph before Proposition 3).

Much as in the case of the Weibull distribution, for the power distribution there is no dominant

relationship between K∗ and K∗S; this claim is evidenced by Figure 4. In Figure 5 it is clear that

6 The system parameters used here (and in Figure 4) are E[B] = 1, E[B2] = 2, and ρ= 0.8.
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both the revenue-maximizing price and the optimal revenue increase with and are also extremely

sensitive to α, or the structure of H(·). The uniform distribution, which is widely assumed in

the literature, corresponds to the special case of α= 1. Hence a manager who wrongly assumes a

uniform distribution may incur a substantial loss of revenue.

Figure 4 Comparison of K∗ and K∗S for Power Distribution
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Figure 5 Power Distribution
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7.5. Numerical Study

We now conduct numerical studies to examine how various delay cost rate distributions affect the

revenue-maximizing price and social welfare–maximizing price. Thus we investigate the effects of

traffic intensity ρ and of delay cost distributions on these two optimal prices. For that purpose, we

assess these effects from two perspectives. First, we use a given distribution family (here, log-normal

distributions) and consider distributional heterogeneity by changing the variance while keeping

the mean fixed. Second, we compare different distribution families. In the following numerical

experiments, we set E[B] = 1 and E[B2] = 2.
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7.5.1. Identical Distribution Family. In this numerical study we focus on the log-normal

distribution: C ∼ lognormal(µ,σ2). We choose distribution parameters such that the mean is 0.75

and the variances are 0.2, 0.4, 0.6, 0.8, and 1.5 (see Appendix C.1 for detailed descriptions of these

parameters).

Effect of traffic intensity ρ on optimal prices. As Figure 6 illustrates, optimal prices are increasing

in the system’s traffic intensity ρ. Therefore, the system manager should raise the priority price in

response to greater congestion.

Figure 6 Optimal Prices for Log-Normal Distribution Family.
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(a) Revenue maximization
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(b) Social welfare maximization

Effect of delay cost distribution on optimal prices. Figure 6 indicates also that the optimal prices

are quite sensitive to delay cost distributions, especially when the traffic intensity ρ is high. Fur-

thermore, optimal prices decrease with increases in the delay cost distribution’s variance. This

can be explained by observing Figure 7, which plots the PDFs and CDFs for log-normal distribu-

tions with the parameters just described. The delay cost distribution becomes more left-skewed as

variance increases, which means that a higher proportion of customers have a low delay cost rate

and so are unwilling to pay additional fee to join the priority class. In this case, then, the system

manager should reduce the price as a means of attracting more customers to join that class.

Effect of traffic intensity ρ and delay cost distribution on the probability of joining the priority

class. Another quantity of interest is the probability of joining the priority class, which is called the

“participation level” in Gavirneni and Kulkarni (2016). Figure 8 plots the probabilities of joining

the priority class for various traffic intensities in the cases of revenue maximization and social

welfare maximization, each of which is sensitive to the distribution parameters. We find that p∗S is

lower than p∗; that is, the social welfare–maximizing price results in a smaller fraction of priority

customers than does the revenue-maximizing price—in line with the observations of Naor (1969)
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Figure 7 PDFs and CDFs for Log-normal Distribution Family.
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(b) Cumulative distribution function

and Gavirneni and Kulkarni (2016). Another noteworthy finding is that higher traffic intensity

induces a larger fraction of customers to join the priority class despite a higher priority service

price being charged.

Figure 8 Probability of Joining the Priority Class for Log-normal Distribution Family.
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(a) Revenue maximization
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(b) Social welfare maximization

7.5.2. Different Distribution Families. Next we investigate and compare the optimal prices

and the probability of joining the priority class under the uniform, exponential, Weibull, power, and

log-normal distribution families. Here we set the parameters such that all five of these distributions

have the same mean (0.75) but different variances; see Table 1 for the specifics.

Figure 9 and Figure 10 plot (respectively) the optimal prices and the probabilities of joining the

priority class for various levels of traffic intensity under these five distributions. We find that the

conclusions drawn in section 7.5.1 are fairly robust in different distribution families. For the five
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Table 1 Distribution Parameters for the Second Numerical Study

Distribution Uniform Exponential Weibull Power Log-normal

Parameters a= 0, b= 3/2 κ= 4/3 τ = 0.8463, θ= 2 α= 3 µ=−0.7985, σ= 1.0107

families we tested, optimal prices and the probability of a customer joins the priority class both

increase with traffic intensity ρ and—especially when ρ is high—are extremely sensitive to delay

cost distribution.

Figure 9 Optimal Price For Different Distribution Families with the Same Mean.
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(a) Revenue maximization
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(b) Social welfare maximization

Figure 10 Probability of Joining the Priority Class for Different Distribution Families with the Same Mean.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uniform distribution
Exponential distribution
Power distribution
Weibull distribution
Log-normal distribution

(a) Revenue maximization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Uniform distribution
Exponential distribution
Power distribution
Weibull distribution
Log-normal distribution

(b) Social welfare maximization

In the parameter settings used for this numerical study, only the mean of the delay cost rate

remains fixed. However, one might argue that optimal prices are actually more sensitive to variance
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of the delay cost rate than to the distribution family. To test that possibility, our next numeri-

cal study focuses on two-parameter distributions—namely, the uniform, Weibull, and log-normal

distributions—and sets the same mean (0.8874) and variance (0.2360) for both. The other distri-

bution parameters for this study are listed in Table 2.

Table 2 Distribution Parameters for the Third Numerical Study

Distribution Uniform Weibull Log-normal

Parameters a= 0.0460, b= 1.7288 τ = 1, θ= 1.9 µ=−0.2506, σ= 0.5120

It is clear from Figure 11 that, when the system is relatively congested, the optimal prices are

not primarily determined by the first two moments of the delay cost distribution. That finding

confirms the value of carefully examining the distribution of customers’ delay costs before any

pricing decisions are made.

Figure 11 Optimal Prices for Different Distributions with the Same First Two Moments.
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(b) Social welfare maximization

Finally, we evaluate how a mis-specified distribution affects system’s revenue. For this purpose,

we provisionally assume that customers’ delay cost follows a log-normal distribution. Now suppose

that the system manager (wrongly) believes this delay cost to be uniformly distributed. In that

event, the manager will set the priority price K∗uniform = arg maxK≥0 runiform(K) rather than the

true optimal price K∗lognormal = arg maxK≥0 rlognormal(K), where runiform(K) and rlognormal(K) are

the system’s revenue under price K given that customers’ delay cost follows uniform and log-

normal distributions respectively. Then the relative revenue gap, defined as [(rlognormal(K
∗
lognormal)−

rlognormal(K
∗
uniform))/rlognormal(K

∗
lognormal)]× 100%, quantifies the relative revenue loss if the system

manager mistakes a log-normal distribution for a uniform one. One can similarly consider the

case in which the system manager wrongly regards customers’ delay cost distribution as Weibull.
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Figure 12 plots the relative revenue losses for these two distributions, where the parameters in

Table 2 are used to make the mean and variance equal. These comparisons demonstrate that the

revenue loss due to a misspecified distribution can be significant when traffic intensity is high.

Figure 12 Relative Revenue Loss when Customers’ Delay Cost Follows a Log-normal Distribution
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8. An Extension: Multiple Priority Classes

This section extends our previous two–priority-class queueing model to a model of multiple priority

classes. We shall consider N different priority classes, indexed via N := {1,2, . . . ,N}, such that

class i is strictly prioritized over class j for any i < j. The system manager’s objective is to set a

priority price menu K := (Ki; i ∈N ), where Ki is the price charged for joining class i, such that

the resulting long-run revenue (or social welfare) is maximized. Just as in the two–priority-class

queueing model, we let KN = 0 and assume that all customers eventually join the service system.7

We continue to assume that the queues are not observable to customers. Hence the system will

devise a delay announcement menu w := (wi; i∈N ) for arriving customers, where wi is the average

waiting time for class-i customers. The joining decision of each customer is based on minimizing

her disutility from the corresponding average delay cost plus the charged priority price. Therefore,

a customer whose delay cost rate is c will join class i provided that

i= arg min
j∈N

{Kj + cwj}. (21)

According to the service principle, w1 < w2 < · · · < wN . It should therefore suffice to consider

the case K1 >K2 > · · ·>KN , since if Ki ≤Ki+1 for some i then all customers will prefer class i to

class i+ 1.

One could use (21) to make the same argument as that in section 4. Yet here we adopt the

alternative approach of Nazerzadeh and Randhawa (2018) because it facilitates the characterization

of arrival rates and leads to a simpler optimization problem.

7 If KN 6= 0 then, for all i∈N , we let K′i :=Ki−KN and regard K′i as the priority price charged for joining class i.
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Figure 13 Effective Cost Function of a Four-Class System
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To illustrate this approach, we first look at Figure 13, which plots the four maps c 7→Ki + cwi

(i = 1,2, . . . ,4) for some price–delay menu (K,w). The solid line represents the effective cost of

joining the system and thus also characterizes customers’ optimal joining behavior. It is clear from

this graph that, for a customer with delay cost rate c: if c < c2 then it is optimal to join class 4; if

c2 ≤ c < c1, it is optimal to join class 2; and if c≥ c1 then it is optimal to join class 1. Because no

customers will join class 3, (K3,w3) can be removed from the price–delay pair and this four-class

system will, in effect, have only three classes.

These considerations suggest that the system could present arriving customers with a delay

threshold menu (c,w) rather than with a price–delay menu. We define the threshold set as c :=

(ci; i ∈N ∪ {0}) for c0 =∞≥ c1 ≥ . . .≥ cN−1 ≥ cN = 0. So for each i= 1, . . . ,N , a customer whose

delay cost rate is in the interval [ci, ci−1) will join class i. Moreover, the threshold ci, i= 1,2, . . . ,N−
1 can be determined by solving Ki + ciwi =Ki+1 + ciwi+1. Therefore,

Ki =
N−1∑
j=i

cj(wj+1−wj), i= 1,2, . . . ,N − 1. (22)

In the sequel, we replace K with c. Then the probability of joining class i can be written as

pi(c) :=H(ci−1)−H(ci). (23)

Hence it follows from standard results for the M/G/1 non-preemptive priority queue (see e.g. Adan

and Resing 2002) that the average delay for class-i customers is

E[Wi] =
λE[B2]

2
(
1− ρ

∑i−1

j=1 pj(c)
)(

1− ρ
∑i

j=1 pj(c)
) =

λE[B2]

2
(
1− ρH̄(ci−1)

)
(1− ρH̄(ci))

, (24)

where ρ= λE[B].
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8.1. Equilibrium Delay

Given a priority price menu K, a delay announcement menu w is an equilibrium delay if E[W ] =w

for W = (Wi; i ∈ N ). We can use (24) to determine the equilibrium delay w via the equilibrium

threshold set c. It follows from (22) and (24) that the equilibrium threshold set c satisfies

ci ·
λρE[B2](H̄(ci+1)− H̄(ci−1))

2(1− ρH̄(ci−1))(1− ρH̄(ci))(1− ρH̄(ci+1))
=Ki−Ki+1, i= 1,2, . . . ,N − 1. (25)

We can now present the following result, which is an extension of Theorem 1 for the case of

multiple priority classes. Note that—as in the two-class case covered by Theorem 2—the equilibrium

delay may not be unique.

Theorem 6. Suppose that the CDF of delay cost rate H is continuous. Then there exists at

least one equilibrium delay.

The main idea of proving Theorem 6 is as follows. Fix any c1 > 0. Solving (25) with i= 1 will

identify the corresponding c2 (if it exists). Then solving (25) iteratively with i= k (k= 2, . . . ,N−1)

yields the corresponding c3, . . . , cN . An equilibrium delay corresponds to a solution sequence {ci; i∈

N} with cN = 0. Now, to prove the existence of an equilibrium delay, it suffices to show that the

solution sequence is continuous with respect to c1. In fact, one can find all the equilibrium delays

by varying c1.

8.2. Maximizing Service System Revenue under Multiple Priority Classes

Next we consider a priority pricing problem in which the manager seeks to maximize the system’s

long-term average revenue by offering a price–delay menu when there are N priority classes. We

denote that revenue by λ
∑N−1

i=1 Kipi(K), where pi(K) is the probability of joining class i under

price set K with its corresponding equilibrium delay announcement. So given (22) and (23), the

system manager wishes to solve the following optimization problem:

max
c

λ
N−1∑
i=1

[
(H(ci−1)−H(ci))

N−1∑
j=i

cj(wj+1−wj)

]
(26)

s.t. wi =
λE[B2]

2(1− ρH̄(ci−1))(1− ρH̄(ci))
, i= 1,2, . . . ,N, (27)

c0 =∞≥ c1 ≥ . . .≥ cN−1 ≥ cN = 0.

If we interchange the order of summation in (26), use (27), and put di = H̄(ci), then this problem

can be simplified to
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max
d=(di;i∈N∪{0})

λ2E[B2]ρ

2

N−1∑
i=1

H−1(1− di) · di
di+1− di−1

(1− ρdi−1)(1− ρdi)(1− ρdi+1)
(28)

s.t. d0 = 0≤ d1 ≤ . . .≤ dN−1 ≤ dN = 1.

However, (28) is not, in general, a convex programming problem—a fact that renders the analysis

rather difficult. We shall therefore resort to the numerical study undertaken in section 8.4, a

(local) optimum can be identified numerically with the aid of either a genetic or a gradient descent

algorithm. Note that (28) can also be solved under some specific distributions, as shown by the

following result (for the uniform distribution).

Proposition 5. Suppose that the delay cost rate C ∼U(0, b). Then the optimal solution to (28)

is given by

d∗i =
1− (1− ρ)i/N

ρ
, i= 0,1, . . . ,N,

and so the revenue-maximizing prices are

Ki =
N−1∑
j=i

b[(1− ρ)1/N − (1− ρ)]

ρ

[
λE[B2]

2(1− ρ)(2j+1)/N
− λE[B2]

2(1− ρ)(2j−1)/N

]
, i= 0,1, . . . ,N.

In this case, the service system’s optimal revenue is

λ2E[B2]b

2ρ2

[
(2− ρ)ρ

1− ρ
−
[
(1− ρ)−(N−1)/N − (1− ρ)(N−1)/N + (N − 1)((1− ρ)−1/N − (1− ρ)1/N)

]]
.

It is worth noting that, if C ∼ U(a, b) with a > 0, then Proposition 5 no longer holds. For a

detailed discussion, see Remark 8 in Appendix A.

8.3. Maximizing Social Welfare under Multiple Priority Classes

Here we consider the social welfare maximization problem described in section 6. When there are

more than two priority classes, the system manager must solve a different optimization problem

as follows:

min
c

N∑
i=1

wi

∫ ci−1

ci

xdH(x)

s.t. wi =
λE[B2]

2(1− ρH̄(ci−1))(1− ρH̄(ci))
, i= 1,2, . . . ,N,

c0 =∞≥ c1 ≥ · · · ≥ cN−1 ≥ cN = 0.
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If we put di = H̄(ci) and replace the variable x in the integral with y= H̄(x), then this problem

can be reduced to

min
d=(di;i∈N∪{0})

λE[B2]

2

N∑
i=1

∫ di
di−1

H−1(1− y)dy

(1− ρdi−1)(1− ρdi)
(29)

s.t. d0 = 0≤ d1 ≤ · · · ≤ dN−1 ≤ dN = 1.

This problem, too, is (in general) not a convex programming; hence we shall examine it mainly

by way of numerical examples. However, (29) can be simplified considerably for some special

distributions, as our next proposition demonstrates for the case of a uniformly distributed delay

cost rate.

Proposition 6. Suppose that the delay cost rate H ∼U(a, b). Then the optimal solution to (29)

is given by

d∗i =
1− (1− ρ)k/N

ρ
, i= 0,1, . . . ,N,

in which case the social welfare–maximizing prices are

Ki =
N−1∑
j=i

b(1− ρ)1/N − b(1− ρ) + a

ρ

[
λE[B2]

2(1− ρ)(2j+1)/N
− λE[B2]

2(1− ρ)(2j−1)/N

]
, i= 0,1, . . . ,N.

We can also calculate the optimal total delay cost as

λE[B2]

2ρ

[
b(ρ− 1) + a

1− ρ
+
b− a
2ρ

N((1− ρ)−1/N − (1− ρ)1/N)

]
.

It follows from Propositions 5 and 6 that the revenue-maximizing prices are equal to the social

welfare–maximizing prices when the delay cost follows a uniform distribution U(a, b) with a= 0;

this result is in line with that of Gilland and Warsing (2009, Prop. 3). By Remark 8, however,

these optimal prices will not be equal if a> 0.

We conclude this discussion by using Proposition 6’s results to assess how the number of priority

classes affects the total customers’ delay cost. The same parameter settings are used here as in

section 7.5 (viz., E[B] = 1 and E[B2] = 2). Since ρ = λE[B], it follows that the optimal total

customers’ delay cost under N priority classes can be written as Cs(N) = (b(ρ− 1) + a)/(1− ρ) +

(b− a)/2ρ ·N((1− ρ)−1/N − (1− ρ)1/N). We can then easily obtain the three equalities Cs(1) =

−b + (2b − ρ(b − a))/2(1 − ρ), Cs(2) = −b + a/(1 − ρ) + (b − a)/
√

1− ρ, and limN→∞Cs(N) =

−b+a/(1−ρ)− (b−a) ln(1−ρ)/ρ. Moreover, Cs(N) is strictly decreasing in N . Figure 14 plots the

value of Cs(N) (N = 1,2,∞), as ρ varies, while using the values given in Table 1 for a and b. This

graph shows that increasing the number of priority classes leads to less total delay cost, especially

when ρ is close to 1. Yet when ρ < 0.7, there is negligible benefit to introducing more than two

priority classes.
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Figure 14 Value of Cs(N) for N = 1,2,∞ as a Function of ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

8.4. Effect of Number of Priority Classes

We now use numerical examples to examine how the number N of priority classes affects the

system’s revenue and total delay cost. Toward that end, we put ρ= 0.9 and use the same parame-

ters given for the distribution families (uniform, power, exponential, and log-normal) discussed in

section 7.5. (Results for ρ= 0.8 are presented in Appendix C.2.)

Figure 15 plots the service system’s optimal revenue and total waiting cost with respect to the

number of priority classes for each of the four distribution families we tested. By increasing the

number of priority classes, the service provider can more effectively segment customers based on

their delay cost rates—thereby exploiting greater price discrimination to increase revenue. At the

same time, such finer segmentation allows each customer to be more closely targeted to their needs;

hence the total delay cost declines (equivalently, social welfare improves) with a greater number of

priority classes.

The curves in Figure 15 flatten out rather quickly, which indicates that most of the benefit the

service system can gain from a complex pricing scheme (or an infinite number of priority classes in

the extreme case) can be gained by offering a relatively small number of priority classes. In fact, it

is seldom practical to offer either a continuum of prices or a large number of prices because doing

so would unnecessarily complicate not only customer decisions but also system announcements of

equilibrium delays.

9. Conclusion

The main takeaway from our study is that customers’ delay cost distribution plays a key role

in a service system’s pricing strategies. Hence that distribution should be carefully estimated

before a system manager makes any pricing decisions. Different delay cost distributions can lead to
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Figure 15 Maximal Revenue and Minimal Delay Cost with Respect to the Number of Priority Classes
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(a) Uniform Distribution
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(b) Power Distribution
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(c) Exponential Distribution
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(d) Log-normal Distribution

completely different pricing strategies. In this paper, customers’ choice behavior is discussed under

a fixed price; we find that there might be multiple equilibria, the number of which depends on

the structure of customer’s delay cost distribution. In addition, we investigate how the customer

response to a system’s delay announcement evolves and then identify a condition under which

these delay equilibria are stable. Our study of optimal pricing strategies—those that maximize the

service system’s long-run average revenue or social welfare—reveals that these optimal prices are

highly sensitive to the delay cost distribution. Finally, we extend our results of two priority classes

to multiple classes and investigate the implications of offering a small number of priority classes.

Because the distribution H of customers’ delay costs is seldom known in practice, an important

research question remains: How can the optimal priority price be identified when that distribution is

unknown? Given a delay announcement (w1,w2) and a priority price K, one can use historical data

(on customers’ joining decisions) only to estimate the single quantileH((K/(w2−w1)). Determining

the entire distribution H(·) requires that the system manager vary w1, w2, and K—but while
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bearing in mind two effects. First, announced delays w1 and w2 should be consistent with the actual

delay. If the system manager varies (w1,w2) frequently, customers will be aware of that and will no

longer trust the system, which will hinder the system’s efficient operations. Second, varying price

of K will incur a revenue loss. Therefore, the priority price and corresponding delay should be

varied in a smart way so that the loss of revenue and goodwill is minimized. It is worth mentioning

that in the absence of customers’ choice equilibrium behavior, this is, in fact, an optimal pricing

problem without knowing the demand function. This type of problem has been studied in the

dynamic pricing literature, by using online learning method (see Besbes and Zeevi (2009, 2015)

and the references therein). However, their results cannot directly apply to our problem due to a

different problem setting. Hence, a dedicated analysis is required if H is unknown.

We conclude by identifying several directions for future research. First, as just mentioned, an

online learning method could be used to achieve better knowledge of delay cost distributions.

Second, we have assumed that a delay’s cost is (stochastically) linear in its delay. Yet the delay cost

may, in practice, have a more complicated form—such as those exhibited by the convex–concave

delay costs examined by Ata and Olsen (2009) and Akan et al. (2012). Finally, additional insights

could follow from considering other delay announcement schemes, such as the state-dependent

announcement studied by Armony and Maglaras (2004b).
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APPENDIX

The appendix consists of three sections. Appendix A provides the proofs of main results, Appendix

B gives some auxiliary results and Appendix C presents supporting materials for numerical studies.

A. Proofs of Main Results

Proof of Theorem 1. Suppose that (w̃1, w̃2) is an equilibrium delay. Then, it follows from Defi-

nition 1, (3) and (4) that

w̃1 =
λE[B2]

2(1− p(w̃1, w̃2)ρ)
, w̃2 =

λE[B2]

2(1− p(w̃1, w̃2)ρ)(1− ρ)
.

Hence, we have

w̃1 = (1− ρ)w̃2. (30)

It follows from (1), (2), and (30) that

w̃2 =
λE[B2]

2(1− p(w̃1, w̃2)ρ)(1− ρ)
=

E[W ]

1− p(w̃1, w̃2)ρ

=
E[W ]

1−
(

1−H
(

K
w̃2−w̃1

))
ρ

=
E[W ]

1−
(

1−H
(

K
ρw̃2

))
ρ

=
E[W ]

1− ρ+ ρH
(

K
ρw̃2

) .
In view of (6), the equilibrium delay satisfies Fe(w̃2) =E[W ].

It follows from Lemma 6 in Appendix B that there exists a number w̃′2 > 0 such that

Fe(w̃
′
2) = E[W ]. Let w̃′1 = (1− ρ)w̃′2. It is straightforward to verify that (w̃′1, w̃

′
2) is an equilibrium

delay. Thus, there exists at least one equilibrium delay. �

Proof of Theorem 2. As discussed in section 4, equilibrium delays have a one-to-one map to

the roots of Fe(x) =E[W ]. Using the chain rule, we have

F ′e(x) = 1− ρ+ ρH

(
K

ρx

)
+ ρx ·h

(
K

ρx

)
·
(
− K

ρx2

)
= 1− ρ+ ρH

(
K

ρx

)
− K
x
·h
(
K

ρx

)
. (31)

We claim that

(a) If h(x) is decreasing in x, then F ′e(x) is decreasing in x and the equilibrium delay is unique.

(b) If h(x) is quasi-concave in x, then F ′e(x) is quasi-convex in x. In this case, there might be one,

two, or three equilibrium delays.

Proof of Claim (a). Let x1 <x2. It follows from (31) that

F ′e(x2)−F ′e(x1) = ρH

(
K

ρx2

)
− K

x2

·h
(
K

ρx2

)
− ρH

(
K

ρx1

)
+
K

x1

·h
(
K

ρx1

)
= −ρ

∫ K
ρx1

K
ρx2

h(y)dy− K

x2

·h
(
K

ρx2

)
+
K

x1

·h
(
K

ρx1

)
≤ −ρ

(
K

ρx1

− K

ρx2

)
h

(
K

ρx1

)
− K

x2

·h
(
K

ρx1

)
+
K

x1

·h
(
K

ρx1

)
= 0,



39

where the second equality holds as H(x)−H(y) =
∫ x
y
h(z)dz for any x, y, and the first inequality

follows since h(x) is decreasing in x. Hence, F ′e(x) is decreasing in x.

It follows from (31) that F ′e(x)→ 1− ρ > 0 as x→∞. Hence, F ′e(x)> 0 for all x > 0, i.e., Fe(x)

is increasing in x and thus the equilibrium delay is unique.

Proof of Claim (b). Since h(x) is quasi-concave in x, there exists a changeover point x0 ≥ 0 such

that h(x) is increasing in x for x≤ x0 and decreasing in x for x≥ x0. Using a similar argument as in

the proof of Claim (a), we can show that F ′e(x) is decreasing in x for x≤K/(ρx0), and increasing

in x for x≥K/(ρx0). Hence, F ′e(x) is quasi-convex in x.

If F ′e(K/(ρx0))> 0, then F ′e(x)> 0 for all x> 0. Hence, there exists a unique solution to Fe(x) =

E[W ], and thus the equilibrium delay is unique.

Next, we consider the case of F ′e(K/(ρx0)) < 0. Note that F ′e(0
+) := limx↓0F

′
e(x) > 0 (see

Lemma 7 in Appendix B), F ′e(x)→ 1− ρ> 0 as x→∞ . Due to the quasi-convexity of F ′e(x) in x,

there exist two numbers x1 ∈ (0,K/(ρx0)] and x2 ∈ [K/(ρx0),∞) such that F ′e(x)> 0 if x∈ (0, x1),

F ′e(x)≤ 0 if x∈ [x1, x2] and F ′e(x)> 0 if x∈ (x2,∞), i.e., Fe(x) is increasing if x∈ (0, x1), decreasing

if x ∈ [x1, x2], and increasing if x ∈ (x2,∞). See Figure 2(b) for an illustration. Hence, if E[W ] is

larger than Fe(x1) or less than Fe(x2), there exists a unique equilibrium delay; if E[W ] is equal to

Fe(x1) or Fe(x2), there exist two equilibrium delays; and if E[W ] is larger than Fe(x2) and less

than Fe(x1), there exist three equilibrium delays. �

Proof of Proposition 1. For any t≥ 1, we have w1(t) = (1− ρ)w2(t) by virtue of (9) and (10).

Hence, p(t) = H̄(K/(ρw2(t))). It holds that

w2(t+ 1) =
λE[B2]

2(1− p(t)ρ)(1− ρ)
=

E[W ]

1− ρ+ ρH
(

K
ρw2(t)

) . (32)

Define

d(w) :=
E[W ]

1− ρ+ ρH
(
K
ρw

) .
Obviously, d(w) is increasing in w. It follows from (32) that

w2(t+ 1) = d(w2(t)), for all t≥ 1. (33)

Moreover, w̃2 = d(w̃2) for any equilibrium delay (w̃1, w̃2).

First, we claim that under any initial delay announcement (w1(0),w2(0))∈R2
+,

(w1(t),w2(t))→ (w̃1, w̃2) as t→∞ for some equilibrium delay (w̃1, w̃2). (34)

If w2(0)≤ w2(1), then w2(1) = d(w2(0))≤ d(w2(1)) = w2(2). By a straightforward induction on

t, we know that w2(t) is increasing in t. Moreover, it follows from (32) that w2(t)≤ E[W ]/(1− ρ)
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for t ≥ 1. Hence, as t→∞, w2(t)→ w∗2 for some w∗2 and thus w1(t) = (1− ρ)w2(t)→ (1− ρ)w∗2.

Letting t→∞ in (33) yields w∗2 = d(w∗2). Hence, ((1− ρ)w∗2,w
∗
2) is an equilibrium delay. Similarly,

if w2(1)<w2(0), then w2(2) = d(w2(1))≤ d(w2(0)) =w2(1), which suggests that w2(t) is decreasing

in t. Obviously, w2(t)≥ E[W ] in view of (32). Hence, w2(t)→ w∗2 for some w∗2. Letting t→∞ in

(33), we conclude that ((1− ρ)w∗2,w
∗
2) is also an equilibrium delay. Therefore, (34) holds in either

case.

Next, we prove the claimed properties (i)–(iii) separately.

(i) If w2(0)−w1(0)≥ ρw̃2,I(K), then it follows from (8) and (10) that

w2(1) =
E[W ]

1− p(0)ρ
=

E[W ]

1− ρ+ ρH
(

K
w2(0)−w1(0)

) ≥ E[W ]

1− ρ+ ρH
(

K
ρw̃2,I(K)

) = w̃2,I(K),

where the last equality holds since Fe(w̃2,I(K)) = E[W ]. Then w2(2) = d(w2(1)) ≥ d(w̃2,I(K)) =

w̃2,I(K), which implies w2(t) ≥ w̃2,I(K) for all t ≥ 1. It follows from (34) that (w1(t),w2(t)) con-

verges to an equilibrium delay. Since w2(t)≥ w̃2,I(K) for all t≥ 1 and (w̃1,I(K), w̃2,I(K)) is the largest

equilibrium delay, it must hold that (w1(t),w2(t))→ (w̃1,I(K), w̃2,I(K)) as t→∞.

The second claim in (i) follows immediately from Lemma 2.

The proof of (ii) is quite similar to that of (i), and thus omitted for brevity.

(iii) If ρw̃2,i <w2(0)−w1(0)≤ ρw̃2,i+1, then we have w̃2,i <w2(1)≤ w̃2,i+1 according to (8) and

(10). With a similar argument as that of (i), we can show that w̃2,i <w2(t)≤ w̃2,i+1.

Note that it follows from (8), (10) and (32) that

w2(1) =
E[W ]

1− ρ+ ρH
(

K
w2(0)−w1(0)

) ,
w2(2) =

E[W ]

1− ρ+ ρH
(

K
ρw2(1)

) .
Hence, w2(2)<w2(1) is equivalent to ρw2(1)<w2(0)−w1(0), i.e., ρE[W ]< [w2(0)−w1(0)][1− ρ+

ρH( K
w2(0)−w1(0)

)]. Therefore, if ρE[W ]< [w2(0)−w1(0)][1−ρ+ρH( K
w2(0)−w1(0)

)], then w2(2)<w2(1).

As in the proof of (34), w2(t) will be decreasing in t and thus (w1(t),w2(t))→ (w̃1,i, w̃2,i) as t→∞.

If ρE[W ]≥ [w2(0)−w1(0)][1− ρ+ ρH( K
w2(0)−w1(0)

)], then w2(2)≥w2(1). In this case, w2(t) will be

increasing in t and thus (w1(t),w2(t))→ (w̃1,i+1, w̃2,i+1) as t→∞. �

Proof of Theorem 3. We perform a perturbation analysis by considering the effect of a small

deviation from the equilibrium delay (w̃1,i, w̃2,i). Suppose that the announced delay is now (w̃′1, w̃
′
2)

with w̃′2 = w̃2,i + ε, where |ε| is sufficiently small.

First, we consider the case in which Fe(·) is strictly increasing at w̃2,i. If ε > 0, then Fe(w̃
′
2)>

Fe(w̃2,i) =E[W ]. It follows from Proposition 1 (i) and (iii) that the announced delay will converge
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to (w̃1,i, w̃2,i). If ε < 0, then Fe(w̃
′
2)< Fe(w̃2,i) = E[W ]. It follows from Proposition 1 (ii) and (iii)

that the announced delay will converge to (w̃1,i, w̃2,i). Hence, in this case, the equilibrium delay

(w̃1,i, w̃2,i) is stable.

Next, we consider the case in which Fe(·) is not strictly increasing at w̃2,i. We distinguish three

subcases: (i) Fe(·) is strictly decreasing at w̃2,i; (ii) Fe(·) has a local minimizer at w̃2,i; and (iii)

Fe(·) has a local maximizer at w̃2,i.

Subcase 1: Fe(·) is strictly decreasing at w̃2,i. If ε > 0, then Fe(w̃
′
2) < E[W ]. It follows from

Proposition 1 (iii) that the announced delay will converge to (w̃1,i+1, w̃2,i+1) 6= (w̃1,i, w̃2,i). If ε < 0,

then Fe(w̃
′
2)> E[W ]. It follows from Proposition 1 (iii) that the announced delay will converge to

(w̃1,i−1, w̃2,i−1).

Subcase 2: Fe(·) has a local minimizer at w̃2,i. If ε > 0, then Fe(w̃
′
2) > E[W ]. It follows from

Proposition 1 (iii) that the announced delay will converge to (w̃1,i, w̃2,i). If ε < 0, then Fe(w̃
′
2) >

E[W ]. It follows from Proposition 1 (iii) that the announced delay will converge to (w̃1,i−1, w̃2,i−1).

Subcase 3: Fe(·) has a local maximizer at w̃2,i. If ε > 0, then Fe(w̃
′
2) < E[W ]. It follows from

Proposition 1 (iii) that the announced delay will converge to (w̃1,i+1, w̃2,i+1). If ε < 0, then Fe(w̃
′
2)<

E[W ]. It follows from Proposition 1 (iii) that the announced delay will converge to (w̃1,i, w̃2,i).

In either of the above three cases, the equilibrium delay (w̃1,i, w̃2,i) is unstable. �

Proof of Lemma 3. Choose any initial delay announcement (w1(0),w2(0)) ∈ R2
+ such that

w2(0) − w1(0) ≥ ρE[W ]/(1 − ρ). Then, it follows from Proposition 1 that (w1(t),w2(t)) →
(w̃1,I(K), w̃2,I(K)) and thus p(t;K)→ p∗(K) as t→∞ (here we write p(t;K) instead of p(t) to

demonstrate the dependence of p(t) on K). Moreover, we have

p(t+ 1;K) = 1−H
(

K

ρw2(t+ 1)

)
= 1−H

(
K(1− p(t;K)ρ)

ρE[W ]

)
, (35)

where the second equality uses (10). Note that p(0;K) = 1−H(K/(w2(0)−w1(0))) is decreasing in

K. By induction on t and (35), it is straightforward to show that {p(t;K); t∈N} is a monotonically

decreasing sequence such that p(t;K) is continuous and decreasing in K for all t ≥ 0. Hence, it

follows from Dini’s theorem and uniform limit theorem that p(t;K)→ p∗(K) uniformly as t→∞,

and p∗(K) is continuous and decreasing in K. Moreover, letting t→∞ in (8) yields (11).

We show that p∗(K) cannot be a constant in any nonempty interval. If it fails to hold,

there exist numbers K1 < K2 and p ∈ [0,1] such that p∗(K) = p for all K ∈ [K1,K2]. It

follows from (11) that p = 1 − H(K(1 − p · ρ)/(ρE[W ])) and thus H(x) = 1 − p for all x ∈
[K1(1− p · ρ)/(ρE[W ]),K2(1− p · ρ)/(ρE[W ])], which contradicts with the assumption that H has

support [0,+∞). Hence, p∗(K) cannot be a constant in any nonempty interval and thus p∗(K) is

strictly decreasing in K. Using the same argument, one can show Remark 6. �
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Proof of Theorem 4. Letting p∗(K) = p and noting that p∗(K) can take any value in (0,1], the

problem maxK≥0 r(K) is equivalent to maxp∈(0,1] pK(p), i.e., maxp∈(0,1]M(p) · ρE[W ].

If M(p) is quasi-concave in p ∈ (0,1] with its maximizer p∗, then r(K) attains its maximum at

K∗ =K(p∗).

If h has support [0,∞), then for each K, K(p∗(K)) =K. It follows from Lemma 3 that r(K) is

strictly quasi-concave in K > 0 and has a unique maximizer K∗ =K(p∗).

Note that under Assumption 1, the support of h takes the form [a, b], where a≥ 0 and b≤∞. It

follows from Lemma 3 and Remark 6 that r∗(K) takes value λK if K ≤ (aρE[W ])/(1− ρ), and is

strictly quasi-concave in K if (aρE[W ])/(1− ρ)<K < bρE[W ], and takes value 0 if K ≥ bρE[W ].

Hence, r(K) is quasi-concave in K > 0, and has a unique maximizer. �

Proof of Proposition 2. We prove each item one at a time.

(i) By simple algebraic manipulation, we have M(p) = pa(p−1/k − 1)1/d/(1− p · ρ) for p ∈ (0,1).

Hence, its first-order derivative is given by

a(p−1/k− 1)1/d−1(1− p1/k + pρ/kd− 1/kd)

(1− pρ)2 · p1/k
.

Let g(p) := 1−p1/k+pρ/kd−1/kd. Then we have g(0) = 1−1/kd > 0 and g(1) = 1/kd ·(ρ−1)< 0.

Note that g′′(p) = (k− 1)p1/k−2/k2. Hence, if k ≥ 1, then g(p) is convex in p ∈ (0,1) and if k < 1,

then g(p) is concave in p ∈ (0,1). By considering k ≥ 1 and 0< k < 1 separately, one can see that

g(p) = 0 has exactly one root p∗ ∈ (0,1) such that g(p)> 0 for p∈ (0, p∗) and g(p)< 0 for p∈ (p∗,1),

which implies that M(p) is strictly quasi-concave in p∈ (0,1).

(ii) A Weibull distribution function takes the form H(x; τ, θ) = 1− e−(x/τ)θ , x≥ 0. In this case,

M(p) = pτ(− lnp)1/θ/(1− p · ρ) for p∈ (0,1), and thus its first-order derivative is

(− lnp)1/θ−1τ(ρp− θ lnp− 1)

θ(1− pρ)2
. (36)

Let g(p) := ρp− θ lnp− 1. Then, g(0+) := limx↓0 g(x) =∞ and g(1) = ρ− 1< 0. Moreover, g′(p) =

ρ − θ/p. Hence g(p) is first strictly decreasing in p from 0 to θ/ρ, and then strictly increasing

from θ/ρ to ∞. Hence, g(p) = 0 has exactly one root in (0,1], which implies that M(p) is strictly

quasi-concave in p∈ (0,1].

(iii) In this case, M(p) = p(b− (b− a)p)/(1− p · ρ) for p∈ (0,1). Its first-order derivative is

(b− 2(b− a)p+ ρ(b− a)p2)/(1− p · ρ)2. (37)

Let g(p) := b− 2(b− a)p+ ρ(b− a)p2. Then g′(p) =−2(b− a)(1− ρp)< 0. Note that g(0) = b > 0,

g(1) = 2a − b + ρ(b − a). Hence, M(p) is strictly quasi-concave in p ∈ (0,1] if and only if ρ <

(b− 2a)/(b− a).
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(iv) In this case, M(p) = pH−1(1−p)/(1−p ·ρ) = peµ+σΦ−1(1−p)/(1−p ·ρ), and thus its first-order

derivative is

M ′(p) =
eσΦ−1(1−p)+µ

(
1− pσ(1−pρ)

φ(Φ−1(1−p))

)
(1− p · ρ)2

, (38)

where φ is the probability density function of the standard normal distribution.

Let f(x) := φ(x)−σ(1−Φ(x))(1− ρ+ ρΦ(x)). We claim that

There exists a unique number x0 such that f(x)< 0 for x< x0 and f(x)> 0 for x> x0. (39)

If this is true, then it follows from (38) that M ′(p)< 0 for p > 1−Φ(x0) then and M ′(p)> 0 for

p < 1−Φ(x0). Hence, M(p) is quasi-concave with maximizer 1−Φ(x0).

It remains to prove (39). First, we have

f(−∞) := lim
x→−∞

f(x) =−σ(1− ρ)< 0, f(∞) := lim
x→∞

f(x) = 0. (40)

Note that f(x) = (1−Φ(x)) · [φ(x)/(1−Φ(x))−σ(1−ρ+ρΦ(x))]> (1−Φ(x)) · [φ(x)/(1−Φ(x))−σ].

Hence, it follows from Lemma 10 that there exists a positive number x1 such that

f(x)> 0 for x≥ x1. (41)

It follows from the continuity of f in x that there exists a root x0 to f(x) = 0. If the root is unique,

then (39) holds. Below we argue by contradictory to show the uniqueness of the root of f .

Suppose it fails to hold. It follows from the continuity of f , (40) and (41) that there exist

numbers x2, x3, x4 such that x2 <x3 <x4, f(x2) = f(x3) = f(x4) = 0 and f ′(x2)> 0, f ′(x3)< 0 and

f ′(x4)> 0. By mean value theorem there exist numbers y1 ∈ (x2, x3), y2 ∈ (x3, x4) and y3 ∈ (x4,+∞)

such that f ′(y1) = f ′(y2) = f ′(y3) = 0. Hence, g(x) := x+σ(2ρ(1−Φ(x))−1) = 0 has three roots y1,

y2 and y3. Since g(−∞) =−∞ and g(∞) =∞, there exist two numbers z1 ∈ (y1, y2), z2 ∈ (y2, y3)

such that g′(z1) = g′(z2) = 0. Note that g′(x) = 1 − 2σρφ(x) ≥ 1 − 2σρ/
√

2π > 0. Hence, g(x) is

strictly increasing in x, which contradicts with the derived result that g(x) = 0 has three district

roots.

(v) It follows from the implicit function theorem that if H(x) = p, then (H−1)′(p) = 1/H ′(x) =

1/h(x) = 1/h(H−1(p)). Hence, we have

M ′(p) =
H−1(1− p)− p(1− p · ρ)(H−1)′(1− p)

(1− p · ρ)2

=
H−1(1− p)− p(1− p · ρ)/h(H−1(1− p))

(1− p · ρ)2
.
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Letting x = H−1(1 − p), we define g(x) := x − (1 −H(x)) · (1 − ρ + ρH(x))/h(x). Then, g(0) =

−(1− ρ)/h(0)< 0 and g(x)→∞ as x→∞. Moreover, it follows from the definition of m(x) that

1−H(x) = exp(−
∫ x

0
m(y)dy). Hence, we have

g(x) = x− 1− ρe−
∫ x
0 m(y)dy

m(x)
, g′(x) = (1− ρe−

∫ x
0 m(y)dy) ·

(
1 +

m′(x)

m2(x)

)
> 0.

Therefore, there exists a number x∗ such that g(x)< 0 for x∈ [0, x∗) and g(x)> 0 for x∈ (x∗,∞).

Let p∗ = 1 − H(x∗). Then, M(p) is strictly increasing in p ∈ [0, p∗) and strictly decreasing in

p∈ (p∗,1]. �

Proof of Lemma 4. Note that

p(w̃1, w̃2;K) = 1−H
(
K(1− p(w̃1, w̃2;K)ρ)

ρE[W ]

)
. (42)

With a similar argument as in the proof of Lemma 3, we can show that p(w̃1, w̃2;K) is also

continuous in K. Since 1 ≥ 1 − p(w̃1, w̃2;K)ρ ≥ 1 − ρ, we have p(w̃1, w̃2; 0) = 1 − H(0) = 1 and

limK→∞ p(w̃1, w̃2;K) = 0 in view of (42). This implies that p(w̃1, w̃2;K) can attain any value in

(0,1] as K varies from 0 to ∞. �

Proof of Theorem 5. Let H−1(1 − p) = q, then p = 1 − H(q). Since H is continuous, q can

take any value in [0, q̄], where q̄ :=H−1(1) might be ∞. Hence, the optimization problem (16) is

equivalent to

min
0≤q≤q̄

FS(q) :=
1

1− ρ(1−H(q))

(∫ ∞
0

c ·h(c)dc− ρ
∫ ∞
q

c ·h(c)dc

)
.

We have

F ′S(q) = ρh(q) ·

(
q(1− ρ(1−H(q)))−

∫∞
0
c ·h(c)dc+ ρ

∫∞
q
c ·h(c)dc

)
(1− ρ(1−H(q)))2

= ρh(q) · gs(q)

(1− ρ(1−H(q)))2
. (43)

Note that gS(0) =−(1− ρ)
∫∞

0
c ·h(c)dc < 0 and

gS(q̄) = q̄−
∫ ∞

0

c ·h(c)dc+ ρ

∫ ∞
q̄

c ·h(c)dc= q̄−
∫ q̄

0

c ·h(c)dc

= q̄

∫ q̄

0

h(c)dc−
∫ q̄

0

c ·h(c)dc=

∫ q̄

0

(q̄− c)h(c)dc > 0,

where the second equality follows from
∫∞
q̄
c ·h(c)dc= 0. Moreover,

g′S(q) = 1− ρ(1−H(q))≥ 1− ρ> 0, for all q≥ 0.
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Hence, there exists a unique root q∗S ∈ (0, q̄) to gS(q) = 0 in [0,∞), such that gS(q) < 0 for

q ∈ (0, q∗S), and gS(q)> 0 for q ∈ (q∗S, q̄). In view of (43), we know that FS(q) is strictly decreasing

in q for q ∈ (0, q∗S), and strictly increasing in q for q ∈ (q∗S, q̄), i.e., it has a unique minimizer q∗S.

Hence, (16) admits a unique minimizer p∗S = 1−H(q∗S)∈ (0,1). �

Proof of Proposition 3. It suffices to show that Fe(·) is strictly increasing at point w̃∗2,S. We

have

F ′e(w̃
∗
2,S) = 1− ρ+ ρH

(
K∗S
ρw̃∗2,S

)
− K∗S
w̃∗2,S

·h
(

K∗S
ρw̃∗2,S

)
= 1− ρ+ ρH(q∗S)− ρq∗S ·h(q∗S),

where the second equality follows from K∗S/(ρw̃
∗
2,S) = q∗S in view of (18). Note that

gS(q∗S) = q∗S(1− ρ(1−H(q∗S)))−
∫ ∞

0

c ·h(c)dc+ ρ

∫ ∞
q∗
S

c ·h(c)dc= 0.

Hence, we obtain

F ′e(w̃
∗
2,S) =

∫∞
0
c ·h(c)dc− ρ

∫∞
q∗
S
c ·h(c)dc

q∗S
− ρq∗S ·h(q∗S)

>
ρ
∫∞

0
c ·h(c)dc− ρ

∫∞
q∗
S
c ·h(c)dc− ρ(q∗S)2 ·h(q∗S)

q∗S

=
ρ
∫ q∗S

0
c ·h(c)dc− ρ

∫ q∗S
0
q∗S ·h(q∗S)dc

q∗S

=
ρ
∫ q∗S

0
(c ·h(c)− q∗S ·h(q∗S))dc

q∗S
≥ 0,

where the last inequality follows from the condition that c · h(c) is decreasing in c. Hence, the

equilibrium delay (w̃∗1,S, w̃
∗
2,S) is stable. �

Proof of Lemma 5. We attach symbol τ to demonstrate the dependence of these functions on τ .

In this case, we have M(p; τ) = pτ(− lnp)1/θ/(1−p ·ρ) for p∈ (0,1). Hence, its first-order derivative

with respect to p is given by
(− lnp)1/θ−1τ(ρp− θ lnp− 1)

θ(1− pρ)2
.

Therefore, p∗(τ) is the unique root in (0,1) to ρp− θ lnp− 1 = 0 (see Lemma 8 (iii)), which is

independent of τ ∗. The revenue-maximizing price is

K∗(τ, θ) =K(p∗; τ) = τ · (− lnp∗)1/θ−1ρE[W ]

θ
,
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where the second equality uses (12). Hence, K∗(τ, θ) = τK∗(1, θ).

It follows from (17) and Lemma 9 that q∗S(τ) is the unique root in (0,∞) to∫ ∞
0

e−( cτ )θdc− ρ
∫ ∞
q

e−( cτ )θdc− q= 0.

Letting c/τ = c̃, the above equation can be written as∫ ∞
0

e−c̃
θ

dc̃− ρ
∫ ∞
q/τ

e−c̃
θ

dc̃− q

τ
= 0.

Hence, q∗S(τ)/τ is a positive root of∫ ∞
0

e−c
θ

dc− ρ
∫ ∞
q

e−c
θ

dc− q= 0,

which is equal to q∗S(1) by Lemma 9. Hence, we have q∗S(τ) = τq∗S(1). The social-welfare-maximizing

price is

K∗S(τ, θ) =
q∗S(τ)ρE[W ]

1− ρe−(
q∗
S
(τ)

τ )θ
=
τq∗S(1)ρE[W ]

1− ρe−(q∗
S

(1))θ
= τK∗S(1, θ). �

Proof of Theorem 6. Consider any equilibrium delay c (if it exists) with c1 = x for some x> 0.

It follows from (25) with i= 1 and c0 =∞ that

H̄(c2)

1− ρH̄(c2)
=

2(K1−K2)(1− ρH̄(x))

λρE[B2]x
. (44)

Now we try to find a c2 ∈ [0, x] to satisfy (44). Note that H̄(c2)/(1− ρH̄(c2)) is decreasing in c2

and c1 = x≥ c2 ≥ 0. Hence, we have

H̄(x)

1− ρH̄(x)
≤ H̄(c2)

1− ρH̄(c2)
≤ 1

1− ρ
.

Define

x2 := inf

{
x> 0 :

2(K1−K2)(1− ρH̄(x))

λρE[B2]x
<

1

1− ρ

}
,

x̄2 := inf

{
x> 0 :

2(K1−K2)(1− ρH̄(x))

λρE[B2]x
≤ H̄(x)

1− ρH̄(x)

}
,

where we use the convention inf ∅=∞. Since 2(K1−K2)(1− ρH̄(x))/(λρE[B2]x)→∞ as x→ 0+

and 2(K1 −K2)(1 − ρH̄(x))/(λρE[B2]x)→ 0 as x→∞, we know that x2 > 0 and is finite. By

continuity of H, we have x̄2 > x2. We mention that here x̄2 might be ∞. It follows from the

continuity of H that for any x∈ [x2, x̄2], there exists a solution, denoted by s2(x), to (44), i.e.,

H̄(s2(x))

1− ρH̄(s2(x))
=

2(K1−K2)(1− ρH̄(x))

λρE[B2]x
.

Moreover, it follows from the continuity of H and the definition of x2 and x̄2 that we can choose

s2 such that s2(x) is continuous in x∈ [x2, x̄2] with s2(x2) = 0 and s2(x̄2) = x̄2.
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Next, we find a c3 such that (25) with i = 2 is satisfied given that c1 = x and c2 = s2(x). For

x∈ [x2, x̄2], it follows from (25) with i= 2 that

H̄(c3)− H̄(x)

1− ρH̄(c3)
=

2(K2−K3)(1− ρH̄(x))(1− ρH̄(s2(x)))

λρE[B2]s2(x)
. (45)

We define

x3 := inf

{
x∈ [x2, x̄2] :

2(K2−K3)(1− ρH̄(x))(1− ρH̄(s2(x)))

λρE[B2]s2(x)
<

1− H̄(x)

1− ρ

}
,

x̄3 := inf

{
x∈ [x2, x̄2] :

2(K2−K3)(1− ρH̄(x))(1− ρH̄(s2(x)))

λρE[B2]s2(x)
≤ H̄(s2(x))− H̄(x)

1− ρH̄(s2(x))

}
∧ x̄2,

where we use a∧ b to denote min(a, b).

Similarly, one can show that for any x ∈ [x3, x̄3], there exists a solution, denoted by s3(x), to

(45). Moreover, s3(x) is continuous in x∈ [x3, x̄3] with s3(x3) = 0. For the value of s3(x̄3), there are

two separate cases: the set in the definition of x̄3 is nonempty or empty. If it is nonempty, we have

s3(x̄3) = x̄3 ≤ x̄2. If it is empty, we have x̄3 = x̄2, in which s3(x̄3) = s3(x̄2)≤ x̄2.

Using the above procedure, we can show that for any k = 2,3, . . . ,N , there exists a nonempty

interval [xk, x̄k]⊂ [xk−1, x̄k−1] such that if x∈ [xk, x̄k], there exists a solution, denoted by sk(x), to

(25) with i= k− 1. Moreover, sk(x) is continuous in x∈ [xk, x̄k] with sk(xk) = 0.

Since any equilibrium delay c satisfies cN = 0, (xN , s2(xN), . . . , sN(xN)) is a desired equilibrium

delay. �

Remark 7. Theorem 6 still holds even if H is not continuous. Please refer to Theorem 1 for

the case of two priority classes and the proof of it. However, the argument will be more involved.

Hence, the assumption of continuous H is made, for the sake of analytical simplicity.

Proof of Proposition 5. First, we consider a general case that C ∼ U(a, b), i.e., H(x) = (x −
a)/(b− a) for x∈ [a, b]. The problem (28) becomes

max
d

λ2E[B2]ρ

2

N−1∑
i=1

[(b− a)(1− di) + a]di
di+1− di−1

(1− ρdi−1)(1− ρdi)(1− ρdi+1)

s.t. d0 = 0≤ d1 ≤ . . .≤ dN−1 ≤ dN = 1.

By letting 1− ρdi = ei, the above problem can be further simplified to

max
e

λ2E[B2]

2ρ

N−1∑
i=1

(
2b− 2a− bρ

ρ
+
bρ− b+ a

ρei
− (b− a)ei

ρ

)
·
(

1

ei+1

− 1

ei−1

)
(46)

s.t. e0 = 1≥ e1 ≥ . . .≥ eN−1 ≥ eN = 1− ρ.

Fix i∈ {1,2, . . . ,N−1} and fix ej for all j 6= i. Then if 2≤ i≤N−2, then the problem (46) becomes

min
ei

ei

(
1

ei+1

− 1

ei−1

)
+
ei−1− ei+1

ei
s.t. ei−1 ≥ ei ≥ ei+1,
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whose optimal solution is
√
ei−1ei+1.

For i= 1, the problem (46) becomes

min
e1

e1

(
1

e2

− 1

e0

)
+

bρ−b+a
(b−a)e0

+ 2b−2a−bρ
b−a − e2

e1

s.t. e0 = 1≥ e1 ≥ e2,

whose optimal solution is
√
e0e2 by noting that e0 = 1. Hence, the optimal solution e∗ (if it exists)

satisfies the following chain rule

e∗k+1

e∗k
=

e∗k
e∗k−1

, k= 1,2, . . . ,N − 2.

Let e∗1 = ξ, then we have e∗k = ξk for k= 0,1, . . . ,N − 1.

For i=N − 1, the problem (46) becomes

min
eN−1

eN−1

(
1

eN
− 1

eN−2

)
+
eN−2− bρ−b+a

(b−a)eN
− 2b−2a−bρ

b−a

eN−1

(47)

s.t. eN−2 ≥ eN−1 ≥ eN = 1− ρ.

Let A(ρ) := (bρ− b+ a)/((b− a)(1− ρ)) + (2b− 2a− bρ)/(b− a). It is straightforward to verify

that 1− ρ≤A(ρ).

Now we consider the case that a= 0. We have A(ρ) = 1−ρ= eN , which implies e∗N−1 =
√
e∗N−2e

∗
N .

Hence, we have ξ = (1− ρ)1/N , e∗k = (1− ρ)k/N and thus d∗k = (1− (1− ρ)k/N)/ρ, for k= 0,1, . . . ,N .

Plugging these values into (46) yields

λ2E[B2]b

2ρ2

[
(2− ρ)ρ

1− ρ
−
[
(1− ρ)−(N−1)/N − (1− ρ)(N−1)/N + (N − 1)((1− ρ)−1/N − (1− ρ)1/N)

]]
,

which is the optimal revenue of the service system. The revenue-maximizing prices are obtained

by using (22), (24), wi =E[Wi] and 1− ρH̄(ci) = ei for 0≤ i≤N . �

Remark 8 (Solution to the Problem (28) when a> 0). In view of (47), we need to con-

sider the following two cases:

Case 1: e∗N−2 < A(ρ). Then, e∗N−1 = e∗N = 1 − ρ and thus we have e∗k = (1 − ρ)k/(N−1) for k =

0,1, · · · ,N − 2. The condition e∗N−2 <A(ρ) can be written as (1− ρ)(N−2)/(N−1) <A(ρ).

Case 2: e∗N−2 ≥A(ρ). The unconstrained solution of (47) is given by

euN−1 =

√
(e∗N−2−A(ρ))(1− ρ)e∗N−2

eN−2− (1− ρ)
.

In this case, by considering the relationship between euN−1, e∗N−2 and e∗N , we have the following

three subcases.
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Subcase 1: euN−1 ≤ e∗N . Then we have e∗N−1 = e∗N = 1 − ρ and thus e∗k = (1 − ρ)k/(N−1) for

k = 0,1, . . . ,N − 2. The condition euN−1 ≤ e∗N can be written as [(1 − ρ)(N−2)/(N−1) − A(ρ)](1 −
ρ)(N−2)/(N−1) ≤ (1− ρ)[(1− ρ)(N−2)/(N−1)− (1− ρ)].

Subcase 2: euN−1 ≥ e∗N−2. Then, we have e∗N−1 = e∗N−2 and thus ξ = 1, which implies that e∗k = 1

for k = 0,1, . . . ,N − 1. The condition euN−1 ≥ e∗N−2 then can be written as (1−A(ρ))(1− ρ) ≥ ρ,

which can not hold as A(ρ)≥ 1− ρ and ρ> 0.

Subcase 3: euN−1 ∈ (e∗N , e
∗
N−2). Then, we have e∗N−1 = euN−1. Hence, we have e∗k = ξk for k =

0,1, . . . ,N − 1, where ξ satisfies (1− ρ)1/(N−1) < ξ < 1 and ξ2N−2− (1− ρ)ξN − (1− ρ)ξN−2 + (1−
ρ)A(ρ) = 0.

By summarizing the above results, we have the following characterization of the optimal e∗:

(i) If [(1− ρ)(N−2)/(N−1)−A(ρ)](1− ρ)(N−2)/(N−1) ≤ (1− ρ)[(1− ρ)(N−2)/(N−1)− (1− ρ)], then e∗k =

(1−ρ)k/(N−1) for k= 0,1, . . . ,N −2 and e∗N−1 = 1−ρ; (ii) Otherwise, e∗k = ξk for k= 0,1, . . . ,N −1,

where ξ is the root to x2N−2− (1− ρ)xN − (1− ρ)xN−2 + (1− ρ)A(ρ) = 0 in ((1− ρ)1/(N−1),1).

Proof of Proposition 6. The optimization problem (29) becomes

min
d

λE[B2]

2ρ

N∑
i=1

(
1

1− ρdi
− 1

1− ρdi−1

)
·
(
b− (b− a)

2
(di + di−1)

)
(48)

s.t. d0 = 0≤ d1 ≤ . . .≤ dN−1 ≤ dN = 1.

By letting 1− ρdi = ei, the above problem can be further simplified to

min
e

λE[B2]

2ρ

N∑
i=1

(
1

ei
− 1

ei−1

)
·
(
b(ρ− 1) + a

ρ
+

(b− a)(ei + ei−1)

2ρ

)
(49)

s.t. e0 = 1≥ e1 ≥ . . .≥ eN−1 ≥ eN = 1− ρ.

Fix i∈ {1,2, . . . ,N − 1} and fix ej for all j 6= i. Then the problem (49) becomes

min
ei

ei

(
1

ei+1

− 1

ei−1

)
+
ei−1− ei+1

ei
s.t. ei−1 ≥ ei ≥ ei+1,

whose optimal solution is
√
ei−1ei+1. That is, the optimal e∗ satisfies the following chain rule

e∗k+1

e∗k
=

e∗k
e∗k−1

, k= 1,2, . . . ,N − 1.

Since e∗0 = 1 and e∗N = 1− ρ, we have e∗k = (1− ρ)k/N and thus

d∗k =
1− (1− ρ)k/N

ρ
, for k= 0,1, . . . ,N.

Plugging these values into (48) yields

λE[B2]

2ρ

[
b(ρ− 1) + a

1− ρ
+
b− a
2ρ

N((1− ρ)−1/N − (1− ρ)1/N)

]
.



50

The social-welfare-maximizing prices are obtained by using (22), (24), wi = E[Wi] and

1− ρH̄(ci)) = ei for 0≤ i≤N . �

B. Auxiliary Results
B.1. Auxiliary Lemmas

Lemma 6. For any y > 0, there exists a number x> 0 such that Fe(x) = y, where Fe(x) is defined

in (6).

Proof. For any function f : R+→ R, we use ∆−f(x) to denote f(x)− f(x−) and ∆+f(x) to

denote f(x+) − f(x), where f(x−) := limy↑x f(y) and f(x+) := limy↓x f(y). Below we show the

following claims for any x0 > 0:

(a) If H(x) is continuous in x at K/(ρx0), then Fe(x) is continuous in x at x0;

(b) If ∆−H(K/(ρx0))> 0, then ∆+Fe(x0) =−ρx0∆−H(K/(ρx0))< 0;

(c) ∆−Fe(x0) = 0;

(d) Fe(0
+) = 0;

(e) Fe(x)→∞ as x→∞.

Therefore, if there is a jump in Fe, then (b) and (c) jointly imply that it must be a downward jump.

Hence, Lemma 6 follows immediately in view of (d) and (e).

First, we prove (a). For arbitrary ε > 0, it follows from the continuity of H at K/(ρx0) that there

exists a number δH > 0, such that∣∣∣∣H(x)−H
(
K

ρx0

)∣∣∣∣< ε

3ρx0

, whenever

∣∣∣∣x− K

ρx0

∣∣∣∣< δH .
Choose

δ= min

 ε

3
,
x0

2
,
ρx2

0δH
2K

,
2ε

ρ
(
H
(

K
ρx0

)
+ ε

3ρx0

)
 .

Then for any x with |x−x0|< δ, we have x> x0− δ≥ x0/2> 0. Moreover,∣∣∣∣Kρx − K

ρx0

∣∣∣∣= K|x−x0|
ρ ·x ·x0

<
2K|x−x0|

ρx2
0

<
2Kδ

ρx2
0

≤ δH .

Hence, we have

|Fe(x)−Fe(x0)| ≤ (1− ρ)|x−x0|+ ρ

∣∣∣∣H(Kρx
)
x−H

(
K

ρx0

)
x0

∣∣∣∣
≤ (1− ρ)|x−x0|+ ρ

∣∣∣∣H(Kρx
)
−H

(
K

ρx0

)∣∣∣∣x0 + ρH

(
K

ρx

)
|x−x0|

≤ |x−x0|+ ρx0

∣∣∣∣H(Kρx
)
−H

(
K

ρx0

)∣∣∣∣
+ρ

(
H

(
K

ρx0

)
+

∣∣∣∣H(Kρx
)
−H

(
K

ρx0

)∣∣∣∣) · |x−x0|
2

<
ε

3
+ ρx0 ·

ε

3ρx0

+ ρ

(
H

(
K

ρx0

)
+

ε

3ρx0

)
· δ
2

= ε.
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Therefore, Fe(x) is continuous in x at x0.

The proof of (b) and (c) is straightforward by the definition of Fe and the fact that the distribution

function H is right-continuous with left limits by its definition.

(d) follows by virtue of 0≤H(·)≤ 1, and (e) follows since 0<ρ< 1. �

Lemma 7. Suppose that Assumption 1 holds. Then, F ′e(x)→ 1 as x→ 0+.

Proof. Obviously, H (K/(ρx))→ 1 as x ↓ 0. By virtue of (31), we only need to prove that

h(K/(ρx))/x→ 0 as x ↓ 0, or equivalently, h(y)y→ 0 as y→∞.

Note that the changeover point of h , denoted by x0, must be finite. We show that for any ε > 0,

we have h(y)y < ε for sufficiently large y. For any δ ∈ (0,1), there exists a number x2 ≥ x0 such

that H̄(x2)< ε/2. For sufficiently large y such that y > x2 and h(y)< ε/(2x2), we have

H̄(x2) =

∫ ∞
x2

h(z)dz ≥ h(y) · (y−x2),

and thus yh(y)≤ h(y)x2 + H̄(x2)< ε. Hence, h(y)y→ 0 as y→∞. �

Lemma 8. For any ρ ∈ (0,1), there exists a unique root to f(x) = 0 in (0,1), where f is one of

the following functions:

(i) f(x) = lnx+ 1− ρx;

(ii) f(x) = (1− ρ)(αx+x−α) + ρxα+1 for α> 0;

(iii) f(x) = ρx− θ lnx− 1 for θ > 0;

Proof. We prove each part of the lemma separately.

(i) Note that f(0+) = −∞ and f(1) = 1− ρ > 0. Since f ′(x) = 1/x− ρ, we know that f(x) is

first strictly increasing in x from 0 to 1/ρ, and then strictly decreasing in x from 1/ρ to ∞. Hence,

f(x) = 0 has only one root in (0,1).

(ii) Note that f(0) =−α(1−ρ)< 0 and f(1) = 1. Since f ′(x) = (α+1)(1−ρ+ρxα)> 0, we know

that f(x) is strictly increasing in x from 0 to 1. Hence, f(x) = 0 has only one root in (0,1).

(iii) Note that f(0+) = +∞ and f(1) = ρ− 1< 0. Since f ′(x) = ρ− θ/x, we know that f(x) is

first strictly decreasing in x from 0 to θ/ρ, and then strictly increasing from θ/ρ to ∞. Hence,

f(x) = 0 has only one root in (0,1). �

Lemma 9. For any ρ ∈ (0,1), there exists a unique root to
∫∞

0
e−( cτ )θdc− ρ

∫∞
x
e−( cτ )θdc− x= 0

in (0,∞), for θ > 0 and τ > 0.
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Proof. Let f(x) :=
∫∞

0
e−( cτ )θdc− ρ

∫∞
x
e−( cτ )θdc− x. Then f(0) = (1− ρ)

∫∞
0
e−( cτ )θdc > 0 and

f(∞) =−∞. Since f ′(x) = ρe−(x/τ)θ − 1< 0, we know that f(x) is strictly decreasing in x from 0

to ∞. Hence, f(x) = 0 has only one root in (0,∞). �

Lemma 10. Let λ(x) := φ(x)/(1−Φ(x)) be the hazard rate of the standard normal distribution.

Then, λ(x)>x.

Proof. Define f(x) = φ(x) − x(1 − Φ(x)). It suffices to show that f(x) > 0. Note that

f ′(x) = φ′(x) + xφ(x)− (1−Φ(x)) = −(1−Φ(x)) < 0. Hence, f(x) > 0 follows immediately from

f(∞) = 0. �

B.2. Revenue-Maximizing Price when Proposition 2’s Conditions Fail

To find the revenue-maximizing price in each case, we need to solve the optimization problem

supp∈[0,1]M(p) and find the maximizer p∗ (if it exists). Then, the revenue-maximizing price K∗ will

be K(p∗), where K is defined in (12).

Uniform Distribution. Let C ∼U(a, b) with (b− 2a)/(b− a)≤ ρ. Following the proof of Proposi-

tion 2 (iii), we have

M(p) =
p(b− (b− a)p)

1− p · ρ
, M ′(p) =

b− 2(b− a)p+ ρ(b− a)p2

(1− p · ρ)2
.

Again, we let g(p) := b − 2(b − a)p + ρ(b − a)p2. Then g′(p) = −2(b − a)(1 − ρp) < 0. Note that

g(0) = b > 0, g(1) = 2a− b+ ρ(b− a)≥ 0 in view of ρ≥ (b− 2a)/(b− a). Hence, M(p) is increasing

in p ∈ (0,1], which attains its maximum at p∗ = 1. Besides, it follows from (12) that the revenue-

maximizing price is K∗ =K(p∗) = aρE[W ]/(1− ρ).

The above calculation implies at optimality all customers will join class 1. We provide an expla-

nation here. Note that ρ≥ (b− 2a)/(b− a) holds only if a > 0 and ρ is rather large, which means

that each customer has a minimum positive delay cost rate and the system is rather congested.

For any arriving customer, if she joins class 2, she will be delayed for a substantially large time

(since ρ is large and class 1 is given strict priority), and thus incur a large delay cost (since her

delay cost rate is not small). Hence, she will prefer to join class 1.

Burr distribution. The CDF is H(x) = 1− (1 + (x/a)d)−k with k, d > 0, kd≤ 1 and thus

M(p) =
pa(p−1/k− 1)1/d

1− p · ρ
.

If kd< 1, then we have

lim
p→0+

p(p−1/k− 1)1/d = lim
r→∞

r

(rd + 1)k
=∞,
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where the first equality follows by letting r= (p−1/k−1)1/d. Hence, we have M(0+) := limp↓0M(p) =

∞, which implies at optimality almost all customers will join class 2. Note that

K(p) =
a(p−1/k− 1)1/d

1− p · ρ
· ρE[W ]→∞, as p→ 0+.

We provide an explanation here. Note that 1−H(x) = (1 + (x/a)d)−k is of order 1/xdk. Hence,

the delay cost rate is distributed with “heavy tail”. For a large priority price K, it follows from (12)

that there will be a fraction of order 1/Kdk customers joining class 1. Hence, the revenue will be

of order K1−dk for large K, which induces the system to set price as high as possible since dk < 1.

If kd= 1, we distinguish two cases: k < 1 versus k≥ 1.

Case 1: k < 1. Recall the proof of Proposition 2 (i). Now we have g(0) = 0, g(1) < 0. Since

g′(p) = (ρ− d · p1/k−1)/kd, g′(0)> 0. Moreover, g′′(p)< 0 for p∈ (0,1). Hence, g(p) = 0 has exactly

one root p∗ ∈ (0,1) such that g(p)> 0 for p∈ (0, p∗) and g(p)< 0 for p∈ (p∗,1), which implies that

M(p) is strictly quasi-concave in p∈ (0,1).

Case 2: k≥ 1. Then we have g′(0)< 0. Hence, g′(p)< 0 for all p∈ (0,1), which implies that M(p)

is decreasing in p∈ (0,1). In this cases, M(p) takes its supremum M(0+) = a when ρ→ 0+.

C. Supporting Materials for Numerical Studies
C.1. Formulas of the Mean and Variance

For the five distribution families considered in the main paper, we have explicit formulas of their

means and variances, which are summarized in Table 3.

Table 3 Formulas for Mean and Variance of the Various Distributions

Distribution Parameters Mean Variance

Uniform a, b (a+ b)/2 (b− a)2/12

Exponential κ κ κ2

Weibull τ, θ τΓ(1 + 1/θ) τ 2[Γ(1 + 2/θ)− (Γ(1 + 1/θ))2]

Power α 1/(α+ 1) 1/(α+ 2)− 1/(α+ 1)2

Log-normal µ,σ eµ+σ2/2 (eσ
2 − 1)e2µ+σ2

For single-parameter distributions (exponetial and power), the mean and variance can not be set

arbitrarily. Hence, in the second numerical study of section 7.5.2, we only consider two-parameter

distributions. Using the formulas presented in Table 3, we can determine the parameters for the

two-parameter distributions given the mean E[C] and the variance var[C]:

Uniform distribution. We have a=E[C]−
√

3var[C], b=E[C]+
√

3var[C]. Note that a≥ 0 only

if (E[C])2 ≥ 3var[C].
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Weibull distribution. We have no close-form expression as in uniform or log-normal distribution.

Hence, we will choose τ and θ first to set the value of mean and variance.

Log-normal distribution. We have

µ= ln(E[C])− 1

2
ln

(
1 +

var[C]

E[C]2

)
, σ2 = ln

(
1 +

var[C]

E[C]2

)
.

Recall that in section 7.5.1, we set the parameters such that the mean is 0.75 and the variances are

0.2,0.4,0.6,0.8,1.5 respectively. Hence, the corresponding parameters (µ,σ) are (-0.4398, 0.5516),

(-0.5563, 0.7329), (-0.6507, 0.8520), (-0.7300, 0.9406), and (-0.9373, 1.1399). The corresponding

conditions in Proposition 2 are ρ< 2.2721, ρ< 1.7107, ρ< 1.4710, ρ< 1.3325 and ρ< 1.0995, which

are all satisfied as ρ< 1.

C.2. Additional Numerical Examples

Figure 16 plots the optimal service system’s revenue and total waiting cost with respect to the

number of priority classes for four cases under ρ= 0.8. In comparison with Figure 15 under ρ= 0.9,

we find that the value of providing more number of priority classes increases as the traffic intensity

ρ becomes larger. This is consistent with the finding in Figure 14, which only considers uniform

distribution.
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Figure 16 Optimal Revenue and Delay Cost with Respect to the Number of Priority Classes When ρ= 0.8
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(a) Uniform Distribution
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(b) Power Distribution
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(c) Exponential Distribution
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(d) Log-normal Distribution
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