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Abstract

Many key economic and financial series are bounded either by construction or through

policy controls. Conventional unit root tests are potentially unreliable in the presence of

bounds, since they tend to over-reject the null hypothesis of a unit root, even asymptotically.

So far, very little work has been undertaken to develop unit root tests which can be applied

to bounded time series. In this paper we address this gap in the literature by proposing unit

root tests which are valid in the presence of bounds. We present new augmented Dickey-Fuller

type tests as well as new versions of the modified ‘M ’ tests developed by Ng and Perron

(2001, Econometrica 69, pp. 1519-1554) and demonstrate how these tests, combined with a

simulation-based method to retrieve the relevant critical values, make it possible to control size

asymptotically. A Monte Carlo study suggests that the proposed tests perform well in finite

samples. Moreover, the tests outperform the Phillips-Perron type tests originally proposed in

Cavaliere (2005, Econometric Theory 21, 907-945). An illustrative application to U.S. interest

rate data is provided.

1 Introduction

In his latest contribution Clive Granger (2010) suggests that the analysis of time series which,

despite being non-stationary, are bounded, is a topic which deserves further attention. Specifically,

he argues that the unsolved issue is how a concept such as I(1) can be extended to bounded

processes.
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According to Granger (2010), ‘a limited process is one that has bounds either below (at zero,

say) or above (full capacity) or both’. Indeed, many important economic and financial series are

bounded in this sense. Examples are expenditure and budget shares, unemployment rates, nominal

interest rates, target zone exchange rates. Although limited time series cannot be integrated in

the usual sense, see the discussion in Granger (2010), in many theoretical and applied studies they

are modelled as pure I(1) processes.

Cavaliere (2005) is the only attempt to explain how the concept of I(1) can coexist with the

constraints of a bounded process. He shows that in the presence of (one or two) bounds, the well

known Phillips-Perron (1988) [PP] unit root test statistics are characterized by a quite different

asymptotic behavior. In general, the limiting null distributions depend upon nuisance parameters

related to the position of the bounds: the tighter the bounds, the more shifted to the left the

distributions of the unit root statistics. As a consequence, unit root tests based on standard

asymptotic critical values become oversized. Only when the bounds are sufficiently far away,

conventional unit root methods behave according to the standard asymptotic theory. Cavaliere

(2005) also proposes a two-stage procedure where the nuisance parameters related to the bounds

are first estimated. These estimates are then employed to retrieve bound-robust (asymptotic)

critical values which can be applied to the standard PP tests.

Although it allows to obtain asymptotically valid tests, the approach proposed in Cavaliere

(2005) suffers from the well-known finite sample size problems affecting PP unit root tests as well

as most of the tests based on sum-of-covariances estimators of the long-run variance. More robust

approaches, such as tests based on spectral estimators of the long run variance (Ng and Perron,

1995, 2001) or the well-known Said-Dickey-Fuller [ADF] tests, could be applied. Unfortunately,

no theory for such tests is available for bounded time series.

In this paper we aim at filling this gap by proposing a new approach to unit root testing in

bounded time series, which leads to tests being asymptotically valid and possessing good finite

sample properties. By focusing on the ADF tests as well as on the autocorrelation-robust ‘M ’

unit root tests of Perron and Ng (1996), Stock (1999) and Ng and Perron (2001) – although

the approach we outline can equally well be applied to any of the commonly used unit root

statistics – we propose a numerical solution to the inference problem. Specifically, direct simulation

methods – based on new consistent estimators of the nuisance parameters related to the bounds

– are employed to obtain approximate p-values from the asymptotic null distributions of the

standard unit root statistics. A variety of algorithms are also suggested to account for potential
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autocorrelation and heteroskedasticity in the error terms. In addition, we demonstrate that the

simulation-basedADF and M tests possess good finite sample properties, outperforming the PP

tests considered in Cavaliere (2005).

As for the test discussed in Cavaliere (2005), our tests can be applied to series which have

either one bound (above, or below, such as for the much discussed case of nominal interest rates)

or two bounds. Moreover, we allow the errors to be general linear processes driven by martingale

difference innovations, hence allowing for conditional heteroskedasticity e.g. of the ARCH type.

The paper is organized as follows. The next section introduces bounded integrated processes

and discusses the main assumptions. In Section 3 the asymptotic distributions of the ADF and

M test statistics are derived and their dependence on nuisance parameters related to the position

of the bounds is established. The simulation-based unit root tests that account for the presence of

bounds are presented in Section 4. The finite sample properties are investigated in Section 5. A

brief illustrative application to US interest rates is reported in Section 6. Section 7 concludes. All

proofs are collected in the Appendix. The following notation is used through out the paper. ‘⌊·⌋’

denotes the integer part of its argument; ‘
w→’ denotes weak convergence and ‘

p→’ convergence in

probability, in each case as the sample size diverges to positive infinity; ‘x := y’ (‘x =: y’) indicates

that x is defined by y (y is defined by x); D := D[0, 1] is the space of right continuous with left

limit (càdlàg) processes on [0, 1], equipped with the Skorohod metric; ∥x∥ denotes the standard

Euclidean norm of a column vector x; the norm of a matrix B is defined as ∥B∥ = sup∥x∥<1 ∥Bx∥,

and I (·) is the indicator function.

2 Bounded unit root processes

This section introduces the reference class of bounded non-stationary processes. We consider

processes that behave similarly to random walks but, at the same time, are bounded either above

or below, or both. Processes belonging to this class will be referred to as ‘bounded I(1)’ or

‘bounded unit root’ processes, BI(1) hereafter. Bounded I(1) processes are discussed in Cavaliere

(2005) and Granger (2010).

A bounded time series Xt, with (fixed) bounds at b, b (b < b), is a stochastic process satisfying

Xt ∈ [b, b] almost surely for all t. This requires that, at each t, the increment ∆Xt lies within

the interval [b −Xt−1, b −Xt−1]. Focusing on the case of a constant deterministic component, a

simple and relatively general way to extend the notion of bounded processes to the unit root case
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is to assume that (see Cavaliere, 2005)

Xt = θ + Yt (2.1)

Yt = αYt−1 + ut, α = 1 (2.2)

initialized at Y0 = Op (1). The term ut is further decomposed as follows:

ut = εt + ξ
t
− ξt , (2.3)

where εt is a (weakly dependent) zero-mean unbounded process and ξ
t
, ξt are non-negative pro-

cesses such that ξ
t
> 0 if and only if Yt−1 + εt < b − θ and, similarly, ξt > 0 if and only if

Yt−1 + εt > b− θ. Since any truncated, censored or reflected random variable can be represented

as in (2.3) for some unbounded εt (see the discussion in Cavaliere, 2005), this assumption is quite

general.

A BI(1) process reverts because of the bounds only. It behaves as a unit root process when it is

far away from the bounds. Conversely, in the neighborhood of the bounds it differs from standard

I(1) processes because of the presence of the terms ξ
t
and ξt, which force Xt to lie between b and

b. In the stochastic control literature, see Harrison (1985), ξ
t
and ξt are referred to as ‘regulators’,

as they control the path of Xt by keeping it between b and b.

Throughout the paper we assume that εt is a general linear process [LP] of the form

εt = C (L) vt (2.4)

where vt is a martingale difference sequence [MDS] and C (z) :=
∑∞

j=0 cjz
j . We make use of the

following standard assumption on εt, see e.g. Chang and Park (2002, pp.433–4).

Assumption A: A1. (a) {vt,Ft} is a MDS with respect to some filtration Ft, such that E(v2t ) =

σ2 < ∞, (b) T−1
∑T

t=1 v
2
t

p→ σ2, and (c) E|vt|r < ∞ for some r ≥ 4; A2. The lag polynomial

satisfies C(z) ̸= 0 for all |z| ≤ 1 and
∞∑
j=0

js|cj | < ∞ for some s ≥ 1.

In addition, we consider two further conditions related to the bounds. The first is a technical

condition needed to prevent {Xt} from ‘jumping’ too much at the bounds. The second condition

allows to treat the positions of the upper and of the lower bounds as nuisance parameters. More-

over, under B2 the presence of the bounds does not annihilate the ∼ T 1/2 order of magnitude of

the random walk component of the data (see below).
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Assumption B: B1. supt=1,...,TE|ξ
t
|r < ∞ and supt=1,...,TE|ξt|r < ∞, with r given in A1;

B2. (b− θ) /
(
λT 1/2

)
= c + o (1) and (b − θ)/

(
λT 1/2

)
= c + o (1), where c ≤ 0 ≤ c, c ̸= c, and

λ2 := σ2C (1)2 denotes the long-run variance of εt.

Some remarks are due.

Remark 2.1. Under Assumption A, C (z)−1 =: α (z) = 1−
∑∞

j=1 αjz
j is well defined. By letting

ξ∗
t
:= α(L)ξ

t
and ξ

∗
t := α(L)ξt we can write

ut = C(L)vt + ξ
t
− ξt = C(L)v∗t , v

∗
t := vt + ξ∗

t
− ξ

∗
t . (2.5)

The differenced process ∆Xt therefore admits the LP representation ∆Xt = C(L)v∗t . Different

from the standard I(1) case, v∗t depends both on the innovations εt and the (current and past)

regulators, ξ
t
and ξt.

Remark 2.2. As is standard, via the Beveridge-Nelson [BN] representation (cf. Phillips and Solo,

1992) εt can be written as εt = C(1)vt + ε̃t−1 − ε̃t, with ε̃t =
∑∞

j=0 c̃jvt−j (c̃j :=
∑∞

i=j+1 ci) being

well defined in the Lr sense. Consequently, Xt can be decomposed as

Xt = θ + C(1)

t∑
i=1

vi +

t∑
i=1

(ξ
i
− ξi) + ε̃0 − ε̃t . (2.6)

Eq. (2.6) implies that the non-stationary component of the BI(1) process can be decomposed into

a standard random walk,
∑t

i=1 vi, and the cumulated regulators,
∑t

i=1(ξi−ξi). Under Assumption

B2, these two terms are of the same order (∼ T 1/2). Therefore, the behavior of Xt is influenced

by the regulators not only at short horizons, but in the long run as well. Notice also that, due to

the presence of the cumulated regulators, standard convergence tools for I(1) processes (such as

FCLTs) are not expected to hold in general.

Remark 2.3. For the unit root tests which will be discussed later it is useful to notice that an au-

toregressive [AR] approximation can be given to ut. Since (2.5) implies the AR(∞) representation

α(L)ut = v∗t , we may write

ut =

k∑
i=1

αiut−i + vt,k , vt,k := v∗t +

∞∑
i=k+1

αiut−i .

As in Chang and Park (2002, p.434), the moment restrictions on vt, ξt, ξt and the decaying rate

for the coefficients of C (z) (cf. Assumptions A and B) imply that the approximation error, i.e.

vt,k − v∗t , satisfies E|vt,k − v∗t |r = o (k−rs), even in the presence of the regulators ξ
t
,ξt.
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Remark 2.4. Assumption B2 relates the position of the bounds b and b (relatively to the location

parameter θ) to the sample size T . As noted in Granger (2010, p.4), ‘the qualifying feature of an

I(1) process is the strong relationship between now and the distant past, so that corr(Xt, Xt−k) = 1

for any k’. Under Assumption B2, this fundamental property is not altered by the presence of the

bounds. Additionally, it is a key condition: (i) for establishing the asymptotic behavior of any

unit root test statistics in the presence of bounds, see Cavaliere (2005), and (ii) for constructing

proper unit root tests that take account of the bounds without making any parametric assumption

on the behavior of Xt near the bounds.

Remark 2.5. One-sided bounds can be treated as a special case by setting c = ∞ (lower bound

only) or c = −∞ (upper bound only). By construction, c = ∞ (c = −∞) implies that the upper

regulator ξt (the lower regulator ξ
t
) equals zero, almost surely, for all t.

Remark 2.6. Since under B2 the bound parameters b and b depends on T , Xt formally constitutes

a triangular array of the type {XTt : t = 0, 1, ..., T ; T = 0, 1, ...}. The double index notation is

not essential and bounded integrated processes will be simply denoted as {Xt}. �

3 Unit root asymptotics for bounded processes

In this section we discuss how the presence of bounds affects the asymptotic null distribution of

the well-known augmented (Said-)Dickey-Fuller tests and of the M unit root tests.

For a given sample {Xt}T0 , the ADF statistics are based on the OLS regression

X̂t = αX̂t−1 +

k∑
i=1

αi∆X̂t−i + εt,k (3.7)

and are defined as

ADFα :=
T (α̂− 1)

α̂ (1)
, ADF t :=

α̂− 1

s (α̂)

where α̂ (1) := 1−
∑k

i=1 α̂i, with α̂i denoting the OLS estimator of αi in (3.7) and s(α̂) the usual

OLS standard error of α̂. Here X̂t denotes the OLS residuals from the regression of Xt on a

constant term. Alternatively X̂t can be taken as the pseudo GLS de-meaned series, see Elliott,

Rothenberg and Stock (1996).

The M statistics are defined as

MZα :=
T−1X̂2

T − T−1X̂2
0 − s2AR (k)

2T−2
∑T

t=1 X̂
2
t−1

, MSB :=

(
T−2

T∑
t=1

X̂2
t−1/s

2
AR (k)

)1/2
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andMZt := MZα×MSB,1 where s2AR (k) is an autoregressive estimator of the (non-normalized)

spectral density at frequency zero of {ut}. Specifically,

s2AR (k) := σ̂2/α̂ (1)2 (3.8)

where α̂ (1) is as defined above and σ̂2 is the OLS variance estimator from the ADF regression

(3.7). For all tests the lag truncation parameter is required to satisfy the following assumption

(Lewis and Reinsel, 1985).

Assumption K. As T → ∞, 1/k + k2/T → 0.

It is well known that if Assumptions A and B hold on (2.1)-(2.2) and if Xt is unbounded (i.e.,

b = −b = ∞), the asymptotic (null) distributions of the ADF and M statistics are as follows (see

Ng and Perron, 2001; Chang and Park, 2002):

ADFα,MZα
w→ 1

2

(
FB (1)2 − FB (0)2 − 1

)(∫ 1

0
FB (s)2 ds

)−1

=: ζ1

MSB w→
(∫ 1

0
FB (s)2 ds

)1/2

=: ζ2 (3.9)

ADF t,MZt
w→ ζ3 =: ζ1ζ2

with FB := B −
∫ 1
0 B (r) dr, B being a standard Brownian motion. In the case of the ADF and

MZ tests, the unit root null is rejected for large negative values of the statistics, while a test

based on MSB rejects for small values of the statistic.

In Theorem 1 below we now provide representations for the asymptotic null distributions of

the test statistics considered in the presence of bounds. A key role in the asymptotic distributions

of the statistics is played by the process Bc
c , a Brownian motion, regulated at c, c. The regulated

Brownian motion [RBM] behaves like a standard BM except in the neighborhood of the bounds,

where it is forced to revert; see Harrison (1985) or Cavaliere (2005) for a technical definition.

Theorem 1 Let {Xt}T0 be generated as in (2.1) with α = 1, under Assumptions A and B. Then:

(i) T−1/2Y⌊T ·⌋ := T−1/2
∑⌊T ·⌋

t=1 ut
w→ λBc

c (·) in D; (ii) if Assumption K also holds, s2AR (k)
p→

λ2 := σ2C (1)2, ADFα,MZα
w→ 0.5(FBc

c
(1)2 − FBc

c
(0)2 − 1)(

∫ 1
0 FBc

c
(s)2 ds)−1 =: ζ

c,c
1 , MSB w→

(
∫ 1
0 FBc

c
(s)2 ds)1/2 =: ζ

c,c
2 , and ADF t,MZt

w→ ζ
c,c
3 =: ζ

c,c
1 ζ

c,c
2 , where FBc

c
:= Bc

c −
∫ 1
0 Bc

c(s)ds.

The following remarks collect some of the implications of Theorem 1.

1As in Müller and Elliott (2003), we include the term −T−1X̂2
0 in the numerator of MZα and MZt, so that

the ADFα (ADF t) and the MZα (MZt) statistics have the same limiting distributions.
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Remark 3.1. The results in Theorem 1 differ from standard I(1) asymptotics mainly because

the limiting process is not a standard Brownian motion, but a regulated Brownian motion. The

sample paths of the limiting process are therefore bounded between c and c, with the well known

case of no bounds following as a special case by setting −c and c equal to infinity.

Remark 3.2. Under Assumption B, the usual spectral estimator of the long run variance is

still consistent for λ2, the long-run variance of εt. However, this result alone does not guarantee

that the unit root statistics have the usual Dickey-Fuller type distributions. Specifically, the

asymptotic distributions ζ
c,c
i , i = 1, 2, 3, are non-standard and depend on the nuisance parameters

c, c. Therefore, inference based on the usual quantiles is generally invalid. Only for bounds

sufficiently far away the quantiles of the distributions in Theorem 1 are well approximated by

the quantiles of ζi, i = 1, 2, 3. Conversely, unit root tests based on standard critical values are

oversized, with the degree of oversizing depending on the two parameters c, c (the narrower the

limits, the higher the degree of oversizing).

Remark 3.4. When pseudo-GLS de-meaning is used and Xt is unbounded, the results in (3.9)

hold with FB replaced by B. Similarly, in the bounded case Theorem 1 can be generalized to tests

based on pseudo-GLS de-trending. In the case of GLS de-meaned data, results for the ADF and

M tests are as those given in Theorem 1 but with Bc
c replacing FBc

c
.

Remark 3.5. The results given in Theorem 1 can be readily extended to the near-integrated

case, α := 1− κ/T , 0 < κ < ∞ in (2.1)-(2.2). It is straightforward to demonstrate that Theorem

1 continues to hold but with Bc
c replaced by the Ornstein-Uhlenbeck [OU] process, Jκ (s) :=∫ s

0 exp (−κ (s− r)) dB (r), regulated at c, c (see also Cavaliere, 2005, Theorem 4). Consequently,

the asymptotic local power function of the unit root tests will also be affected by the bounds. �

4 Testing for unit roots in the presence of bounds

As discussed in the previous section, standard unit root inference is affected by the presence of

bounds since the null asymptotic distributions of the commonly employed test statistics are non-

standard and lead to oversized tests. Hence, in the presence of bounds, where the null hypothesis

is rejected on the basis of standard critical values, it is not possible to assess whether the rejection

depends on the absence of a unit root or, conversely, on the presence of the bounds only.

Despite the fact that the asymptotic distributions of the unit root test statistics depend on

the two nuisance parameters c and c, see Theorem 1, in this section we are able to propose a

simulation-based approach which allows to obtain proper asymptotic p-values for unit root tests
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when the time series of interest is bounded. Both one-sided and two-sided bounds are covered.

The derivation of unit root tests for bounded time series takes two steps. First (Section 4.1), we

construct two simple, consistent estimators of the nuisance parameters c and c. Second (Sections

4.2 and 4.3), we define a simulation-based approach which draws on such estimators and can be

used to retrieve the relevant p-values. Extensions to cases of (unconditionally) heteroskedastic

shocks are discussed in Section 4.4.

4.1 Consistent estimation of the bound parameters

Since the bounds b, b are assumed to be known, consistent estimation of the nuisance parameters

c, c is actually feasible. To this aim, it suffices to define the following estimators

ĉ :=
b−X0

sAR (k)T 1/2
, ĉ :=

b̄−X0

sAR (k)T 1/2
(4.10)

where s2AR (k) is the spectral AR estimator of the long run variance as defined in Section 2. The

main result on the consistency of ĉ and ĉ is given in the next lemma, which generalizes Corollary

5 of Cavaliere (2005) to the present framework.

Lemma 1 Let the assumptions of Theorem 1 hold. Then, ĉ
p→ c, ĉ

p→ c.

Hence, given that the bounds (b, b) are known, the two nuisance parameters of the limiting

distributions in Theorem 1, c and c, can be consistently estimated via ĉ and ĉ, respectively. These

estimators are the two key ingredients for our simulation-based tests.

Remark 4.1. Notice that in (4.10) the deterministic term θ is implicitly estimated under the

null, as advocated in e.g. Schmidt and Phillips (1992). If θ were estimated by standard OLS,

i.e. by replacing X0 of (4.10) by T−1
∑T

t=1Xt, the resulting estimators of c, c would become

inconsistent. �

4.2 Simulation-based tests

In this section we show how direct simulation methods can be used to retrieve p-values from the

limiting null distributions of the standard ADF and M statistics given in Theorem 1.

As noted in Section 3, the limiting distributions depend on the regulated Brownian motion,

Bc
c . Our method is based on the construction of a càdlàg process B∗

n that satisfies B∗
n

w→ Bc
c with

probability tending to one. We can then approximate quantiles from the non-pivotal limiting null
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distributions in Theorem 1 by simple numerical simulation methods based on approximating the

limiting process Bc
c through the càdlàg process B∗

n. The simulation-based versions of the ADF

and M tests, which we denote generically as ADF ∗ and M∗ in what follows, only require the

computation of the standard ADF and M statistics of Section 3 and of the associated Monte

Carlo [MC] p-values. Taking the ADFα test to illustrate, the simulation-based test is constructed

according to the following algorithm.

Algorithm 1 Step ( i). Let ε∗t be an i.i.d.(0, 1) sequence (independent of (X0, ..., XT ));

Step ( ii). For some n ≥ T , let X∗
t , t = 1, ..., n be recursively defined as

X∗
t :=


ĉ if X∗

t−1 + n−1/2ε∗t > ĉ

ĉ if X∗
t−1 + n−1/2ε∗t < ĉ

X∗
t−1 + n−1/2ε∗t otherwise

(4.11)

with initial condition X0 = 0. The corresponding càdlàg process is X∗
n (s) := X∗

⌊ns⌋, s ∈ [0, 1].

Step ( iii). Compute the MC statistics

ADF∗
α :=

X̃∗
n (1)

2 − X̃∗
n (0)

2 − 1

2
∫ 1
0 X̃∗

n (s)
2 ds

, X̃∗
n (s) := X∗

n (s)−
∫ 1

0
X∗

n (u) du

Step ( iv). Define the MC p-value as p∗n := G∗
n (ADFα), where G∗

n denotes the cumulative dis-

tribution function of ADF∗
α, conditional on ĉ, ĉ. Similarly, for any significance level η, cvη that

solves G∗
n (cvη) = η is the Monte Carlo critical value.

The following theorem holds as T diverges.

Theorem 2 Let {Xt}T0 be generated as in (2.1) with α = 1, under Assumptions A, B and K.

Then, as T → ∞: (i) X∗
n

w→ Bc
c in probability, and (ii) ADF∗

α
w→ ζ

c,c
1 in probability. Finally, (iii)

p∗n
w→ U [0, 1].

Theorem 2(i)-(ii) shows that for T diverging to infinity, the simulated process X∗
n is distributed

as the limiting process Bc
c of Theorem 1(i) and that the MC statistic ADF∗

α is asymptotically

distributed as ADFα under the unit root null hypothesis. Consequently, see (iii), even if the unit

root statistics are not pivotal in the presence of bounds, the ADF∗
α test has correct (asymptotic)

size. That is, for any chosen significance level η, as T diverges it holds that P (p∗n ≤ η) → η and a

test which rejects the null hypothesis when p∗n ≤ η has asymptotic size equal to η. Some remarks

are due.
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Remark 4.2. Algorithm 1 works under fairly general conditions, as it only requires two consistent

estimators of c and c. The term n, which can be interpreted as the discretization step used for

approximating the limiting regulated Brownian motion, only needs to be bounded below by T .

In principle, Algorithm 1 can be applied to any unit root test with null limiting distribution

depending on the regulated Brownian motion Bc
c .

Remark 4.3. As is standard with simulation-based tests, the MC p-value p∗n can be computed

with any desired degree of accuracy by generating B (conditionally) independent samples {X∗
T :b},

b = 1, ..., B, and by computing ADF∗
α:b as above on each sample. The simulated p-value is then

computed as p̃∗n := B−1
∑B

b=1 I (ADF∗
α:b < ADFα), and is such that p̃∗n

a.s.→ p∗n as B → ∞. An

asymptotic standard error is given by (p̃∗n(1− p̃∗n)/B)1/2; cf. Hansen (1996, p.419).

Remark 4.4. In Theorem 2, any number of steps n used to construct the process X∗
n such that

n ≥ T is admissible. Given that the simulation-based approach is used to retrieve p-values from

the asymptotic distribution of the test statistics, it appears natural to consider a large number

of steps. However, setting n = T generally provides better approximations to the finite sample

distribution of the test statistic, see Section 5 below.

Remark 4.5. The procedure outlined above can be applied in the one bound case as well. In the

case of a single lower (upper) bound, it suffices to set ĉ = +∞ (̂c = −∞). �

4.3 Re-coloured simulation-based tests

Because the limiting distribution of ADFα does not depend on serial correlation nuisance pa-

rameters, the MC errors ε∗t (see Step (i) of Algorithm 1) are uncorrelated and the MC statistic

ADF∗
α in Algorithm 1 does not require a correction for serial correlation. However, an improved

finite sample approximation in the presence of serially correlated errors might be anticipated from

replacing ADF∗
α in step (iii) with the analogue, say ADF∗∗

α , of the original ADFα statistic,

computed from the OLS regression

X̂∗
t = αX̂∗

t−1 +
k∑

i=1

αi∆X̂∗
t−i + e∗t

with X̂∗
t the de-meaned counterpart of X∗

t . The p-value in Step (iv) is then computed using the

cdf of ADF∗∗
α , say G∗∗

n (). The results in Theorem 2 would be unaltered.

In a further attempt to improve finite sample performance in the case of correlated shocks, the

basic MC approach outlined above can be extended to include a re-colouring (or sieve) component,
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without altering the large sample theory given in Theorem 2. As in Ferretti and Romo (1996),

Chang and Park (2003) and Cavaliere and Taylor (2009), inter alia, this involves re-building

stationary serial correlation into the MC innovations. This can be done by using the estimated

stationary lag dynamics obtained from fitting the ADF regression

X̂t = αX̂t−1 +

krc∑
i=1

αi∆X̂t−i + εt,krc , (4.12)

where krc is the lag truncation used for the purposes of re-colouring. Accordingly, with α̂krc(z) :=

1−
∑krc

i=1 α̂iz
i, the recursion in Step (ii) of Algorithm 1 can be replaced by the re-coloured recursion

X∗
t :=


ĉ if X∗

t−1 + n−1/2u∗t,krc > ĉ

ĉ if X∗
t−1 + n−1/2u∗t,krc < ĉ

X∗
t−1 + n−1/2u∗t,krc otherwise

(4.13)

where u∗t,krc is the re-coloured innovation process defined through the difference equation

α̂krc(L)

α̂krc(1)
u∗t,krc = ε∗t , t = 1, ..., T , (4.14)

initialized at 0.2 The scheme in (4.13)-(4.14) differs from that in Algorithm 1 in that the estimated

AR lag polynomial, α̂krc(L), is incorporated into the algorithm to re-colour the MC innovations ε∗t .

Obviously, since the simulated errors are autocorrelated, the ADF∗∗
α statistic should be considered

in step (iii) of the algorithm.

Remark 4.6. Notice that krc need not diverge to infinity with the sample size, nor it has to be

equal to the truncation lag k used in the original ADF regression, since the re-colouring device

is motivated from purely finite sample concerns. The results established in Theorem 2 also apply

when re-coloured MC errors are used, provided krc = o
(
T 1/2

)
.

Remark 4.7. In small samples there is the possibility that the estimated lag polynomial could

have one or more explosive roots. We found that the performance of the algorithm was improved

if any such root was shrunk to have modulus less than unity. In our experiments reported in

Section 5 below we scaled such estimated roots to have modulus equal to .99. �
2Notice that the α̂krc(1)

−1 factor appearing on the left hand side of (4.14) ensures that u∗
t,krc

has unit long run
variance. This normalization guarantees that X∗

n (·) := X∗
⌊n·⌋ converges weakly to Bc

c (·) in probability, as required.
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4.4 Extension to heteroskedastic shocks

Assumption A1 allows for cases where the innovation process {vt} in (2.4) is a (second order)

stationary martingale difference sequence. This assumption therefore allows for certain forms of

conditional heteroskedasticity. Unconditional heteroskedasticity, as considered by Cavaliere and

Taylor (2007, 2008), can alter the large sample results given in this paper. Precisely, under the

decomposition vt := σtzt with zt an i.i.d.(0, 1) process (with bounded fourth order moment) and

σt satisfying σt := ω (t/T ) > 0 for all t = 1, ..., T , where ω (·) ∈ D is deterministic, Cavaliere and

Taylor (2007) show that T−1/2Y⌊T ·⌋ := T−1/2
∑⌊T ·⌋

t=1 ut = T−1/2C(1)
∑⌊T ·⌋

t=1 εt + op (1)
w→ λωM (·)

where, for ω̄ := (
∫ 1
0 ω

2)1/2, λ2
ω := ω̄2C (1)2 and M is the continuous time Martingale M (·) :=

ω̄−1
∫ ·
0 ωdB (B being a standard Brownian motion). It can be shown that, in this case, Theorem

1 is no longer appropriate. Rather, the limiting distribution of T−1/2Y⌊T ·⌋ and of the unit root

statistics are as given in Theorem 1 but with the regulated Brownian motion Bc
c replaced by

a Martingale process, regulated at c and c, say M c
c .

3 Consequently, the simulation-based tests

earlier proposed are no longer valid, as they do not allow to replicate the time-varying behavior

of the unconditional variance of the shocks.

Nevertheless, a simple way of accounting for (possible) unconditional heteroskedasticity can be

achieved by using a wild-bootstrap type construction of the simulated innovations, ε∗t . Specifically,

instead of generating ε∗t as an i.i.d. process, we can set ε∗t := ε̂t,krczt, where zt is an i.i.d. N(0, 1)

sequence (independent of the original sample) and ε̂t,krc are the residuals from the ADF regression

(4.12); see Cavaliere and Taylor (2008, 2009). Given the preceding results, it can reasonably be

conjectured that the large sample results of Theorem 2 remain valid even under unconditional

heteroskedasticity of the type described here. Although a full asymptotic analysis of this case is

beyond the scope of this paper, extensive simulation results support this view.

It is worth noting, however, that the type of heteroskedasticity which can be allowed using the

wild bootstrap approach does not cover cases where the volatility of the innovations is related to the

levels of the process. For instance, EMS target zone exchange rates tend to be more volatile as the

exchange rate approaches the bound; conversely, for nominal interest rates volatility is positively

related to the levels. Unfortunately, most studies in unit root and co-integration seem to neglect

this possible relation between levels and volatility and – to our knowledge – no asymptotic theory

is available for these processes in the non-stationary case (for a small class of level-dependent

heteroskedastic, but stationary, processes, see e.g. Ling, 2002). Nevertheless, in a Monte Carlo

3This process can be constructed as a regulated Brownian motion, see Harrison (1985) or Cavaliere (2005), but
with the standard Brownian motion replaced by the M .
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study, Rodrigues and Rubia (2005) show that level-dependent heteroskedasticity does not seem to

affect the size of the unit root tests. In the bounded case, a number of Monte Carlo experiments

(available from the authors upon request) show that the size of our tests are also only marginally

affected by level-dependent heteroskedasticity.

5 Finite sample simulations

In this section we use MC methods to analyze the finite sample size of the bound-corrected unit

root tests of Section 4 for a variety of bounded integrated processes.

Data are generated as in (2.1)-(2.2) for T = 100, 500 under the unit root hypothesis α = 1,

where we set Y0 = θ = 0 without loss of generality. Both the case of two (symmetric) bounds

(c = −c =: c > 0), and a single lower bound (c = ∞, −c =: c > 0) are considered. All experiments

are conducted using 10, 000 replications and using the rndKMn function of Gauss 9.0.4

Following Cavaliere (2005) and Ng and Perron (2001), the errors vt in (2.4) are generated

as i.i.d. N (0, 1). The (conditional) distribution of ut = ∆Xt is then obtained by reflecting5 the

distribution of εt := C (L) vt at b−Xt−1 and b̄−Xt−1. Results for different truncation mechanisms

do not alter the result reported in this section.

In Section 5.1, to analyze the effects of the presence of the bounds uncontaminated by serial

dependence, we set C (L) = 1 in (2.4) and, correspondingly, k = 0 in (3.8). The analysis is then

extended in Section 5.2 to allow for weak dependence in εt. In this case, the number of lags in the

spectral AR estimator of the long run variance (3.8) is chosen according to the MAIC lag length

selection criterion of Ng and Perron (2001) with k ≤ ⌊12(T/100)0.25⌋.

Three different version of the simulation-based unit root tests are employed. In the first

version we consider the ADF ∗ and M∗ tests constructed according to Algorithm 1, where we set

the discretization step n to 20, 000.6 The second version differs from the first since we set n = T , so

that the simulated test statistic reflects exactly the corresponding length of the original sample.

Although the two variants are asymptotically equivalent, we aim at assessing whether using a

lower discretization step improves the finite sample size of the test. Finally, in the autocorrelated

case we also consider the effect of adding the re-coloured device described in Section 4 to the

4The Gauss procedure for computing the simulation-based p-values is available from the authors upon request,
or can be downloaded from the web page http://www2.stat.unibo.it/cavaliere/lts-adf/.

5Specifically, we set ξ
t
:= 2 (b− (Xt−1 + ut)) I (Xt−1 + ut < b) and ξt := 2

(
(Xt−1 + ut)− b̄

)
I
(
Xt−1 + ut > b̄

)
.

6Since the case n = 20, 000 is computationally burdensome, we implemented this algorithm as follows. We applied
Algorithm 1 with n = 20, 000, B = 50, 000 and setting ĉ = −ĉ = c (−ĉ = c in the single bound case), with c taking
values on the grid 0.01, 0.02, ..., 10. For each c, the corresponding critical values were stored. Simulation-based
critical values were then retrieved through a linear interpolation of the stored critical values.
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algorithm. For all variants, the MC errors ε∗t are N (0, 1). Moreover, each test rejects the null

hypothesis when the corresponding simulated p-value is below the nominal asymptotic 5% level.

p-values are computed as in Remark 4.3 with B = 499. For space constraints, only results for the

OLS de-trended statistics are reported.

5.1 Uncorrelated errors

Table 1 reports the empirical rejection frequency [ERF], under the null hypothesis α = 1 in (2.1)-

(2.2), of the simulation-based ADF ∗ and M∗ tests of Section 4.2. The tests based on n = 20, 000

are denoted by ‘a’ while tests based on n = T are denoted by ‘b’. In order to evaluate the impact

of (neglected) bounds on the size of standard unit root tests, we also report the ERF for the

standard ADF and M tests.

[Table 1 about here]

The upper panel of Table 1 reports the ERF of the various tests in the two-bound case (the case

of no bounds corresponds to the ‘∞’ entry), while single bound case is reported in the lower panel.

Consider first the standard ADF andM tests, where the bounds are neglected. In the presence

of bounds, they are generally oversized, relative to the benchmark case of no bounds (c = ∞).

For instance, the ERFs of the ADFα and MZα tests, which are quite accurate for c = ∞ and

T = 500, increase to 30% and 29% when there are two bounds with c = 0.4 and T = 500. The

ADF t and MZt tests are also oversized in the presence of two bounds, with ERF around 20% in

the two-bound case with c = 0.4 and T = 500. The MSB test appears to be the worst affected (its

ERF is up to 34%). Significant over-sizing can also be observed in the one-bound case, where in

the case of a process starting at the lower bound (c = 0), most tests have ERFs between 18% and

21%. These results show that in the presence of bounds, standard unit root tests can over-reject

the unit root null hypothesis.

Turning to the simulation-based tests, the results in Table 1 show that the size accuracy of

the tests is extremely good. In the two-bounds case, for all values of c considered the ADF ∗ and

M∗ tests based on n = 20, 000 (columns ‘a’ in the table) are as accurate as the standard ADF

and M test in the unbounded case. For instance, in the unbounded case, the ERF of the ADF∗
t

and the ADF t tests is only slightly above 5% for both T = 100 and T = 500. Conversely, for

c = 0.4 the ERF of ADF∗
t is still about 5% (specifically, 5.4% for T = 100 and 4.7% for T = 500),

whereas the standard ADF t test has ERF above 20% for both T = 100 and T = 500. Some of the
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simulation-based tests, in particular the M∗ tests, appear to be marginally undersized, especially

in the one-bound case; however, the overall performance is largely satisfactory, even when the

bounds are tight.

Improved size properties are obtained by considering the simulation-based tests with discretiza-

tion step n = T (columns ‘b’ in the table). Almost all the ADF ∗ and M∗ tests have ERFs very

close to 5%. Even the M∗ tests, which appear to be slightly undersized for n = 20, 000, have

ERFs close to 5% when n = T . The superiority of the ADF ∗ and M∗ tests with n = T can be

observed both in the two-bound and in the one-bound cases. Finally, it is worth noting that the

tests based on n = T generally outperform the asymptotic tests discussed in Cavaliere (2005).

5.2 Autocorrelated errors

The properties of the ADF ∗ and M∗ tests under the unit root null hypothesis are now examined

for εt following a linear process. Two cases are considered. First, εt is a stationary AR(1)

process, i.e. εt = ϕεt−1 + νt, so that C (L) =
(
1 + ϕL+ ϕ2L2 + ...

)
in (2.4). The term νt is i.i.d.

N (0, (1− ϕ)2) and the AR parameter ϕ ∈ {−0.5, 0.5}. Second, εt is MA (1), i.e. εt = θνt−1 + νt,

so that C (L) = 1 + θL in (2.4). In this case νt is i.i.d. N(0, 1/(1 + θ2)) with θ ∈ {−0.5; 0.5}. In

all cases the long-run variance of {εt} is unity.

Together with the ADF ∗ and M∗ tests of Section 4.2 with n = 20, 000 and n = T , we also

report the simulation-based tests employing the re-colouring device of Section 4.3. For the latter

tests, the re-colouring lag truncation parameter is krc = k.7

[Tables 2 & 3 about here]

Results for the two-bound case are reported in Table 2. In the presence of autocorrelated errors,

the standard ADF and M tests are generally oversized. For instance, when c = 0.4 and T = 500,

ADF t and MZt have ERFs around 13% for positively autocorrelated errors, and around 30% for

negatively correlated errors. The highest ERF (71%) is obtained through ADFα with negative

MA errors, c = 0.4, and T = 100.

With AR(1) errors, the ADF ∗ and M∗ tests based on n = 20, 000 (columns ‘a’ in the table)

are slightly undersized for both positive and negative ϕ, particularly when the bounds are tight

(it is worth recalling that in the presence of autocorrelated errors, when there are no bounds the

7As in Cavaliere and Taylor (2009), in unreported simulations we also set krc = 4. The corresponding sizes were
quite close to those obtained for krc = k; however, tests based on krc = k are generally preferable.
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automatic data-dependent lag selection rule employed make all unit root tests slightly conserva-

tive).

Setting n = T in Algorithm 1 (columns ‘b’ in the table) improves the finite sample performance

of almost all tests, in particular for T = 100. For instance, when the bounds are very close

(c = 0.4), MSB∗ has ERF 0.2% for T = 100 and ϕ = −0.5, while the ERF increases to 2.5%

when the discretization step is n = T . This effect characterizes almost all tests considered.

Massive size improvements are obtained when the re-colouring device is added to Algorithm

1 (columns ‘c’ in the table). Now, even for moderate sample sizes, the performance of the tests

are largely satisfactory, with almost all tests having ERF close to 5%, even for small values of c.

Taking again the case of MSB∗ to illustrate, for T = 100, ϕ = −0.5 and c = 0.4, the ERF grows

from 0.2% to 4% when the proposed re-colouring device is used.

The results for the case of MA errors are comparable to those obtained for AR errors. The

proposed simulation-based tests perform particularly well, in particular when the re-colouring

device is used. There is evidence of oversizing for ϕ = −0.5, but only for c = 0.4 and T = 100.

Also in this case the re-colouring device basically improves all tests.

The results for one single (lower) bound, reported in Table 3, confirm those obtained for the

case of two bounds. The proposed simulation-based tests seem to control size properly even in

the presence of autocorrelated disturbances. For some parameter configurations, tests without

re-colouring device tend to be undersized. However, tests based on re-colouring appear to be

largely satisfactory for all the error processes and all values of the bound parameter c considered.

6 Empirical illustration

In this section we illustrate the methods discussed in this paper with a short application to nominal

interest rate dynamics. Well-known examples are e.g. econometric models for the term structure

(see Campbell and Shiller, 1987, for an early reference), tests of the so-called Fisher hypothesis

(Rose, 1988), joint tests of PPP and UIP (Johansen and Juselius, 1992). In this framework, unit

root (and cointegration) tests on nominal interest rates have been extensively applied. Despite the

existence of a vast literature on the time series properties of nominal interest rates, it is somewhat

surprising that most of the papers do not emphasize that nominal interest rates are non-negative

and hence cannot be I(1) in the usual sense8. Focusing on tests for a unit root, in this section we

shed some light on this issue by explicitly taking the lower bound at zero into account.

8An exception is Nicolau (2002).
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We consider monthly data of 3-month U.S. Treasury Bill (T-bill) rate from January 1957 to

September 2008 (T = 621), see Figure 1. Data are obtained from the International Financial

Statistics CD-Rom (2008) of the International Monetary Fund.

[Figure 1 & Table 4 about here]

In the left panel of Table 4, the standard ADF and M tests are reported along with the corre-

sponding (standard) asymptotic p-values. For all tests, the lag truncation parameter k, selected

according to the MAIC criterion of Ng and Perron (2001) with k ≤ ⌊12(T/100)0.25⌋, equals 16; the

corresponding estimate of the long run variance is s2AR (k) = 0.63. All statistics were computed

on OLS de-meaned data. Results for pseudo GLS de-meaned data do not differ and are omitted

for brevity.

Without exceptions, all standard tests strongly reject the unit root hypothesis. All p-values are

below 1%, with the strongest rejection obtained from MZα and MSB tests (the corresponding

p-values are about 0.3%). Although this result seems to point against the presence of a unit root

in nominal interest rates data, it may actually be affected by the fact that the lower bound at

zero may actually increase the empirical rejection frequencies of standard unit root tests. This is

confirmed by looking at the estimate of the bound parameter c. Using ĉ of Section 4.1, we obtain

ĉ = −0.16. According to the simulation results in Table 1,9 the ERF of a nominal 5% asymptotic

test based on ADFα or MZα is not less than 17% when the bound parameter c is −0.20 (or

above) and T = 500 . Similarly, the ADF t, MZt and MSB tests have ERFs exceeding 14%, 13%

and 19%, respectively.10 Hence, because of the lower bound at zero, on the basis of standard unit

root tests it is not possible to assess whether the rejection of the unit root hypothesis is due to

the presence of the bound (i.e., the DGP is a bounded unit root process) or whether the rejection

should be taken as evidence of no unit roots (i.e., the DGP is a bounded process with no unit

roots).

Tests of the unit root hypothesis where the effect of the bounds is properly taken into account

can be performed using the simulation-based approach of Section 4. In the right panel of Table 4

we report the simulation-based p-values for the ADF ∗ andM∗ tests of Section 4.2 with n = 20, 000

(column ‘a’) and n = T (column ‘b’). Moreover, we also report the re-coloured simulation-based

p-values of Section 4.3 (columns ‘c’), where we set krc = k.

9Although the results in Table 1 refer to the case of white noise errors, they still provide a clear indication of
the tendency of standard unit root tests to be seriously oversized when there is a lower bound at −0.16.

10This is in agreement with the findings in Cavaliere (2005, figure 5), where for c ∈ [−0.20, 0] the asymptotic size
of most unit root tests at the nominal 5% (asymptotic) level is about 20%.
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The proposed simulation-based tests reverse the conclusion of standard unit root tests. It can

immediately be noticed that all p-values become much higher when the lower bound at zero is

taken into account. This evidence favours the maintenance of the unit root hypothesis. The tests

based on the re-colouring device (the most reliable in finite samples, according to the Monte Carlo

experiment in Section 5), have p-values in the range 0.08–0.12.

Several points can be made out of this analysis. First of all, the presence of bounds affects

the outcome of standard unit root tests, as predicted by the asymptotic theory. This can be

immediately seen from the inspection of the p-values obtained with and without taking account of

the bound: when the bound is considered, all p-values increase remarkably. Second, standard unit

root tests are not useful for understanding whether the rejection of the unit root null hypothesis

should be attributed to the presence of the bound or to the absence of a unit root. In the special

case considered in this section, standard unit root tests lead to the conclusion that the interest

rate considered is not a unit root process. Conversely, when the bound is accounted for, this

conclusion is reversed. Interestingly, this result is not at odd with the conclusions in Aı̈t-Sahalia

(1996), who suggests (using high frequency data) that the US interest rate is likely to behave as

a unit root process most of the time, but it reverts toward its mean when it reaches low values.

7 Conclusions

When applied to bounded time series, conventional unit root tests have to be treated with care.

This paper shows that the popular ADF unit root tests as well as the so-called M tests can be

unreliable when applied to bounded time series. Specifically, the asymptotic distributions of the

corresponding test statistics depend on nuisance parameters related to the position of the bounds;

the null distributions are shifted to the left. As a consequence, the rejection of the unit root

hypothesis based on standard p-values might be due to the fact that the time series of interest is

actually bounded.

To rectify this problem, in this paper we discuss a new approach for computing p-values (and

critical values) for unit root tests in time series which are bounded above, below, or both. Our

approach combines the standard ADF and M statistics with a simulation-based approach to

constructing the relevant p-values. It allows to test statistically whether a bounded time series

reverts because of the presence of the bounds alone or because it does not have a unit root.

Numerical evidence suggests that our proposed simulation-based procedure works extremely well

in finite samples, in particular when it is used in conjunction with a re-colouring device. Moreover,
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the new tests outperforms the Phillips-Perron type tests analyzed in Cavaliere (2005).

Although the class of processes considered here is rather general, some important features of

bounded time series are still left aside for future research. Throughout it has been assumed that

the bounds are fixed. Hence, cases such as target zone exchange rates under realignments of the

central parity are not covered. Nevertheless, our analysis can be generalized to cases of time-

varying (known) bounds; see Cavaliere (2000) for linearly trending bounds and Carrion-i-Silvestre

and Gadea (2010) for the case of exogenous changes in the bound location. Specifically, most of

the results given in this paper continue to hold when the bounds are time varying and satisfy

(bt − θ) /
(
λT 1/2

)
= f (t/T ) + o (1) and (bt − θ)/

(
λT 1/2

)
= f̄ (t/T ) + o (1), with f ≤ 0 and f̄ ≥ 0

being càdlàg functions on [0,1].

This paper deals with the (most likely) case that the bounds are known. However, even for

unknown bounds the framework developed in this paper can provide useful insights. Where it

is known that the time series of interest is regulated, but levels at which regulation occurs are

unknown, a reasonable range for the bounds can often be inferred from historical observations

and/or from the relevant economic theory. Moreover, by using our approach one can determine a

minimum range under which the ADF and M tests do not suffer from oversizing, see Herwartz

and Xu (2008) for the analysis of current account imbalances. The minimum range is defined by

‘break even’ bounds which approximately equalize the p-value of the unit root test considering

bounds and the p-value obtained ignoring bounds. Unreasonably large break-even bounds signifies

that neglecting the bounds when testing for a unit root might be misleading. In addition, it is

possible to construct a (conservative) test for the unit root hypothesis by taking the minimum of

the simulation-based p-values over a grid of admissible bound locations.

It is worth emphasizing that only a constant deterministic term is allowed in the paper and

extension to more general deterministic components is not straightforward. For instance, the

presence of a linear trend has strong implications for bounded variables, as the trend might imply

that, as T increases, the series is absorbed at one of the bounds or, in the one-bound case, that

it drifts away from the bound (with the latter becoming irrelevant). Given our main assumption

that the location of the bounds is related to T 1/2, local linear trends of the form θt = θ + τt

with τ := κT−1/2 (κ being a fixed constant) represent a reasonable solution to introduce linear

trends in bounded time series. Alternatively, piecewise-constant deterministic terms can also be

considered, see Carrion-i-Silvestre and Gadea (2010). Both extensions are not trivial and beyond

the scope of the present paper.
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Finally, given that all the results discussed here hold for univariate time series only, an impor-

tant and necessary extension is to generalize the proposed simulation-based tests to the case of

multiple time series and co-integration tests. Suggestions for this step – currently under investi-

gation by the authors – are given in Granger (2010).
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A Appendix

This appendix is organized as follows. Section A.1 introduces some preliminary asymptotic results.

Section A.2 contains the proofs of Theorem 1 and of the related lemmas. Section A.3 reports the

proofs of the simulation-based results of Theorem 2.

A.1 Preliminary Lemmata

Let v∗t := vt + ξ∗
t
− ξ

∗
t and w∗

t :=
∑t

i=1 v
∗
i , with ξ∗

t
, ξ

∗
t as defined in Section 2. Furthermore, let

r∗t := ξ∗
t
− ξ

∗
t . The following results hold as T diverges.

Lemma A.1 Under the assumptions of Theorem 1, (σ2T )−1/2w∗
⌊T ·⌋

w→ Bc
c(·), in D.

Proof. By the BN decomposition of Remark 2.2,

T−1/2

⌊T ·⌋∑
t=1

ut = C(1)T−1/2

⌊T ·⌋∑
t=1

v∗t + T−1/2ũ0 − T−1/2ũ⌊T ·⌋, (A.1)
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with ũt =
∑∞

j=0 c̃jv
∗
t−j (c̃j :=

∑∞
i=j+1 ci). Since, under Assumptions A and B, supt |ũt| = op(T

1/2),

we have that T−1/2
∑⌊T ·⌋

t=1 ut − C(1)T−1/2
∑⌊T ·⌋

t=1 v∗t
p→ 0. From Theorem 1 in Cavaliere (2005) it

holds that (λ2T )−1/2
∑⌊T ·⌋

t=1 ut
w→ Bc

c(·). Hence, λ−1C(1)T−1/2
∑⌊T ·⌋

t=1 v∗t
w→ Bc

c(·). The proof is

completed by noticing that λ−1C(1) = σ−1. �

Lemma A.2 Under the assumptions of Theorem 1, T−1
∑T

t=1 v
∗2
t

p→ σ2.

Proof. First, notice that

1

T

T∑
t=1

v∗2t =
1

T

T∑
t=1

(vt + r∗t )
2 =

1

T

T∑
t=1

v2t +
1

T

T∑
t=1

(r∗t
2 + 2vtr

∗
t ).

where T−1
∑T

t=1 v
2
t

p→ σ2 by Assumption A1(b) and T−1
∑T

t=1(r
∗
t
2 + 2vtr

∗
t ) = op(1). To show the

latter result it suffices to notice that

∣∣∣∣∣ 1T
T∑
t=1

(r∗t
2 + 2vtr

∗
t )

∣∣∣∣∣ ≤ 1

T

T∑
t=1

∣∣r∗t 2 + 2vtr
∗
t

∣∣ ≤ 1

T
{max |2vt|+max |r∗t |}

T∑
t=1

2 |r∗t | = op(1),

as max |vt|, max |r∗t | are of op(T
1/2), and

∑T
t=1 |r∗t | = Op(T

1/2) under Assumption B. �

Lemma A.3 Under the assumptions of Theorem 1, T−1/2
∑T

t=1 r
∗
t = Op(1).

Proof. It follows as T−1/2
∑T

t=1 r
∗
t = T−1/2

∑T
t=1 v

∗
t − T−1/2

∑T
t=1 vt = Op(1) according to

Lemma A.1 and a standard FCLT (Phillips and Solo, 1992). �

A.2 Proof of Theorem 1 and related Lemmas

Proof of Theorem 1. Throughout, to simplify the proof it is assumed (without loss of gener-

ality) that vt = ξ∗
t
= ξ

∗
t = 0 for all t ≤ 0 and that no deterministics are included in the model and

in the estimation. Furthermore, we sketch the proof for the ADF t and ADFα statistics; results

for the other statistics follow similarly.

Let Zt,k := (∆Xt−1, ...,∆Xt−k)
′, β: = (α1, ..., αk)

′ and recall that the ADF regression is

Xt = αXt−1 + β′Zt,k + vt,k

with vt,k = v∗t +
∑∞

i=k+1 αi∆Xt−i = v∗t +
∑∞

i=k+1 αiut−i. The proof for ADF t is as follows. First,

under the null hypothesis α = 1, using Lemma A.2 and Lemmas A.4, A.5 below, we can proceed
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as in Chang and Park (2002) to prove that

ADF t = σ−1

(
T−2

T∑
t=1

w∗2
t−1

)−1/2(
T−1

T∑
t=1

w∗
t−1v

∗
t

)
+ op (1)

with w∗
t and v∗t as previously defined. Then, Lemma A.1, the continuous mapping theorem [CMT]

and Lemma A.2 imply

T−1
T∑
t=1

w∗
t−1v

∗
t =

1

2T
w∗2
T − 1

2T

T∑
t=1

v∗2t
w→ σ2

2

(
Bc

c(1)
2 − 1

)
T−2

T∑
t=1

w∗2
t−1

w→ σ2

∫ 1

0
Bc

c(s)
2ds

which completes the proof for ADF t. Similarly,

ADFα =
T (α̂− 1)

α̂(1)
=

(
T−2

T∑
t=1

w∗2
t−1

)−1(
T−1

T∑
t=1

w∗
t−1v

∗
t

)
+ op (1) .

Lemma A.5 then implies the consistency of α̂(1), which completes the proof of the above equation.�

Lemma A.4 Under the assumptions of Theorem 1, (a) T−1
∑T

t=1Xt−1vt,k = C(1)T−1
∑T

t=1w
∗
t−1v

∗
t+

op(1); (b) T−2
∑T

t=1X
2
t−1 = C(1)2T−2

∑T
t=1w

∗
t−1

2 + op(1); (c) T−1
∑T

t=1 v
2
t,k = T−1

∑T
t=1 v

∗
t
2 +

op(1).

Proof. Part (a). We have that

T∑
t=1

Xt−1vt,k =

T∑
t=1

Xt−1v
∗
t +

T∑
t=1

Xt−1(vt,k − v∗t )

=
T∑
t=1

(C(1)w∗
t−1 + ũ0 − ũt−1)v

∗
t +

T∑
t=1

(C(1)w∗
t−1 + ũ0 − ũt−1)(vt,k − v∗t )

= C(1)

T∑
t=1

w∗
t−1v

∗
t +

T∑
t=1

ũ0v
∗
t −

T∑
t=1

ũt−1v
∗
t +

C(1)

T∑
t=1

w∗
t−1(vt,k − v∗t ) +

T∑
t=1

ũ0(vt,k − v∗t )−
T∑
t=1

ũt−1(vt,k − v∗t )

= C(1)
T∑
t=1

w∗
t−1v

∗
t +R1 +R2 +R3 +R4 +R5.

By showing R1 = Op(T
1/2) and R2+ R3 +R4 +R5 = op(T ), the statement (a) follows.

First, R1 =
∑T

t=1 ũ0v
∗
t = ũ0(

∑T
t=1 vt+

∑T
t=1 r

∗
t ) = Op(T

1/2) due to Lemma A.3 and a standard

25



FCLT. Second,

R2 =
T∑
t=1

ũt−1v
∗
t =

T∑
t=1

∞∑
j=0

c̃jv
∗
t−1−jv

∗
t =

T∑
t=1

∞∑
j=0

c̃j(vt−1−j + r∗t−1−j)(vt + r∗t )

=

T∑
t=1

∞∑
j=0

c̃jvt−1−jvt +

T∑
t=1

∞∑
j=0

c̃j(vt−1−jr
∗
t + r∗t−1−jvt + r∗t−1−jr

∗
t ) = op(T ).

Since
∑∞

j=0 c̃jvt−1−jvt is a MDS with finite variance, it can be shown that
∑T

t=1

∑∞
j=0 c̃jvt−1−jvt =

op(T ). Also,

∣∣∣∣∣∣
T∑
t=1

∞∑
j=0

c̃j(vt−1−jr
∗
t + r∗t−1−jvt + r∗t−1−jr

∗
t )

∣∣∣∣∣∣ ≤
T∑
t=1

∞∑
j=0

|c̃j |
∣∣vt−1−jr

∗
t + r∗t−1−jvt + r∗t−1−jr

∗
t

∣∣
≤

T∑
t=1

∞∑
j=0

|c̃j | 3 |r∗t | {max |vt|+max |r∗t |} =

∞∑
j=0

|c̃j | {max |vt|+max |r∗t |}
T∑
t=1

3 |r∗t | = op(T )

since max |vt| and max |r∗t | are of op(T
1/2),

∑∞
j=0 |c̃j | < ∞ and

∑T
t=1 |r∗t | = Op(T

1/2).

Before investigating R3, consider first vt,k − v∗t =
∑∞

j=k+1 αjut−j =
∑∞

j=k+1 ck,jv
∗
t−j , where∑∞

j=k+1 c
2
k,j ≤ a

∑∞
j=k+1 α

2
j = o(k−2s). Then we have that

R3 =
T∑
t=1

w∗
t−1(vt,k − v∗t ) =

T∑
t=1

t−1∑
i=1

v∗i

∞∑
j=k+1

ck,jv
∗
t−j =

∞∑
j=k+1

ck,j

T∑
t=1

v∗t−j

t−1∑
i=1

v∗i

= o(k−s)Op(T
1/2)Op(T

1/2) = op(Tk
−s)

given Assumption A2 and Lemma A.1. Next,

R4 =

T∑
t=1

ũ0(vt,k − v∗t ) =

T∑
t=1

ũ0

∞∑
j=k+1

ck,jv
∗
t−j = ũ0

∞∑
j=k+1

ck,j

T∑
t=1

v∗t−j

= o(k−s)Op(T
1/2) = op(T

1/2k−s)

R5 =

T∑
t=1

ũt−1(vt,k − v∗t ) =

T∑
t=1

 ∞∑
j=0

c̃jv
∗
t−1−j

 ∞∑
j=K+1

ck,jv
∗
t−j


=

∞∑
j=0

∞∑
j=k+1

c̃jck,j

T∑
t=1

v∗t−1−jv
∗
t−j ,
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where

T∑
t=1

v∗t−1−jv
∗
t−j =

T∑
t=1

(vt−1−j + r∗t−1−j)(vt−j + r∗t−j)

=

T∑
t=1

(vt−1−jvt−j) +

T∑
t=1

(vt−1−jr
∗
t−j + r∗t−1−jvt−j + r∗t−1−jr

∗
t−j) = op(T )

since
∑T

t=1 vt−1−jvt−j = op(T ) as vt−1−jvt−j is a MDS with finite variance. Besides,
∑T

t=1(vt−1−jr
∗
t−j+

r∗t−1−jvt−j + r∗t−1−jr
∗
t−j) = op(T ) according to similar arguments as those for R2. Furthermore,

∣∣∣∣∣∣
∞∑
j=0

∞∑
j=k+1

c̃jck,j

∣∣∣∣∣∣ ≤
∞∑
j=0

∞∑
j=k+1

|c̃jck,j | =
∞∑
j=0

|c̃j |
∞∑

j=k+1

|ck,j | = o(k−s).

Therefore, R5 = op(Tk
−s). The proof of statement (a) is then complete.

Part (b). According to the BN representation,

1

T 2

T∑
t=1

X2
t−1 =

1

T 2

T∑
t=1

(
C(1)w∗

t−1+ũ0 − ũt−1

)2
= C(1)2

1

T 2

T∑
t=1

w∗2
t−1 +

1

T 2

T∑
t=1

(
ũ20 − ũ2t−1 − 2ũ0ũt−1 + 2C(1)w∗

t−1ũ0 − 2C(1)w∗
t−1ũt−1

)
= C(1)2

1

T 2

T∑
t=1

w∗2
t−1+op(1),

since ũt−1 = op(T
1/2) and w∗

t−1 =Op(T
1/2) as shown in Lemma A.1.

Part (c). The result can be obtained by applying

∣∣∣∣∣∣
(

1

T

T∑
t=1

v2t,k

)1/2

−

(
1

T

T∑
t=1

v∗t
2

)1/2
∣∣∣∣∣∣ ≤

[
1

T

T∑
t=1

(vt,k−v∗t )
2

]1/2
.

The right hand side of the previous inequality satisfies

E

[
1

T

T∑
t=1

(vt,k−v∗t )
2

]
= E

 1

T

T∑
t=1

 ∞∑
j=k+1

ck,jv
∗
t−j

2 = E

 1

T

T∑
t=1

 ∞∑
j=k+1

ck,j(vt−j + r∗t−j)

2
= E

 1

T

T∑
t=1

 ∞∑
i=k+1

∞∑
j=k+1

ck,ick,j(vt−ivt−j + r∗t−ir
∗
t−j + 2vt−ir

∗
t−j)


≤ 1

T

T∑
t=1

(
E(vt−ivt−j) + sup

{
E(r∗t−ir

∗
t−j) + 2E(vt−ir

∗
t−j)

}) ∞∑
i=k+1

∞∑
j=k+1

ck,ick,j
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Note that
∑∞

i=k+1

∑∞
j=k+1 ck,ick,j =

(∑∞
j=k+1 ck,j

)2
= o(k−2s). Furthermore, E(vt−ivt−j) +

sup
{
E(r∗t−ir

∗
t−j) + 2E(vt−ir

∗
t−j)

}
< ∞ due to the stated moment conditions on ε∗t and r∗t . There-

fore, E
[
T−1

∑T
t=1 (vt,k−v∗t )

2
]
= o(k−2s), and T−1

∑T
t=1 (vt,k−v∗t )

2 = op(k
−2s). The statement (c)

is then proved. �

Lemma A.5 Under the assumptions of Theorem 1, as T → ∞, (a) ||(T−1
∑T

t=1 Zt,kZ
′
t,k)

−1|| =

Op(1); (b) ||
∑T

t=1 Zt,kXt−1|| = Op(Tk
1/2); (c) ||T−1

∑T
t=1 Zt,kvt,k|| = op(k

−1/2).

Proof. Part (a). Let γi := E(εtεt−i) and Γk := (γi−j)
k
i,j=1. Denoting T−1

∑T
t=1 Zt,kZ

′
t,k as

Γ̂k, we have
∥∥∥Γ̂−1

k

∥∥∥ ≤
∥∥∥Γ̂−1

k − Γ−1
k

∥∥∥ +
∥∥Γ−1

k

∥∥ . Note
∥∥Γ−1

k

∥∥ is uniformly bounded above by a

positive constant F for all k (see e.g. equation (2.14) in Berk (1974)). As the next step, we show

that
∥∥∥Γ̂−1

k − Γ−1
k

∥∥∥ = op(1) under Assumption K, which completes the statement. First, defining

ϵt,k := (εt−1, ..., εt−k)
′ and Rt,k := (rt−1, ..., rt−k)

′ with rt = ξ
t
− ξt, we have

∥∥∥Γ̂k − Γk

∥∥∥ ≤

∥∥∥∥∥T−1
T∑
t=1

ϵt,kϵ
′
t,k − Γk

∥∥∥∥∥+
∥∥∥∥∥T−1

T∑
t=1

(ϵt,kR
′
t,k +Rt,kϵ

′
t,k +Rt,kR

′
t,k)

∥∥∥∥∥ = op(1).

Since E
(∥∥∥T−1

∑T
t=1 ϵt,kϵ

′
t,k − Γk

∥∥∥)2 ≤ constantk2/(T − k) as can be seen e.g. from equations

(2.10) and (2.11) in Berk (1974),
∥∥∥T−1

∑T
t=1 ϵt,kϵ

′
t,k − Γk

∥∥∥ = Op(k/T
1/2) = op(1) under As-

sumption K. Second, T−1
∑T

t=1 εt−irt−j and T−1
∑T

t=1 rt−irt−j are both of Op(T
−1/2). Taking∑T

t=1 εt−irt−j to illustrate, we have that for any a > 0, P (
∣∣∣∑T

t=1εt−irt−j

∣∣∣ > a) ≤ a−1HT supt,i,j E |εt−irt−j |,

where HT is the number of times when rt−j is non zero. Since supE |εt−irt−j | is finite under A1

and B1, the desired result holds as HT = O(T 1/2) (this follows by the FCLT on the regulators).

Hence,

∥∥∥∥∥T−1
T∑
t=1

(ϵt,kR
′
t,k +Rt,kϵ

′
t,k +Rt,kR

′
t,k)

∥∥∥∥∥ ≤
√

k2(Op(T−1/2)2 = Op(k/T
1/2) = op(1)

under Assumption K. Then, from

∥∥∥Γ̂−1
k − Γ−1

k

∥∥∥ =
∥∥∥Γ̂−1

k (Γk − Γ̂k)Γ
−1
k

∥∥∥ ≤
∥∥∥Γ̂−1

k

∥∥∥∥∥∥Γk − Γ̂k

∥∥∥∥∥Γ−1
k

∥∥ ≤
(∥∥∥Γ̂−1

k − Γ−1
k

∥∥∥+ F
)∥∥∥Γk − Γ̂k

∥∥∥F,
we have Mk,T ≤

∥∥∥Γk − Γ̂k

∥∥∥ = op(1) with Mk,T :=
∥∥∥Γ̂−1

k − Γ−1
k

∥∥∥ /(∥∥∥Γ̂−1
k − Γ−1

k

∥∥∥+ F
)
F . Thus,∥∥∥Γ̂−1

k − Γ−1
k

∥∥∥ = F 2Mk,T / (1− FMk,T ) = op(1), which completes the statement (a).

Part (b). To show this statement we can use exactly the same arguments for Lemma 3.2 (b) in
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Chang and Park (2002) and the fact that

T∑
t=1

(ut−iut−j − γi−j) =

T∑
t=1

(
εt−iεt−j − γi−j

)
+

T∑
t=1

(εt−irt−j + rt−iεt−j + rt−irt−j) = Op(T
1/2).

Part (c). Note that
∥∥∥∑T

t=1 Zt,kvt,k

∥∥∥ ≤
∥∥∥∑T

t=1 Zt,k(vt,k − v∗t )
∥∥∥+ ∥∥∥∑T

t=1 Zt,kv
∗
t

∥∥∥. For q = 1, ..., k,

E

∣∣∣∣∣
T∑
t=1

ut−q(vt,k − v∗t )

∣∣∣∣∣
2

=
T∑
t=1

T∑
r=1

E
∣∣ut−q(vt,k − v∗t )ur−q(u

∗
k,r − v∗r )

∣∣
=

T∑
t=1

T∑
r=1

E

∣∣∣∣∣∣
( ∞∑

i=0

civ
∗
t−q−i

) ∞∑
j=k+1

ck,jv
∗
t−j

( ∞∑
m=0

cmv∗r−q−m

)( ∞∑
n=k+1

ck,nv
∗
r−n

)∣∣∣∣∣∣
≤

T∑
t=1

T∑
r=1

 ∞∑
i=0

∞∑
j=k+1

∞∑
m=0

∞∑
n=k+1

|cick,jcmck,n|E
∣∣v∗t−q−iv

∗
t−jv

∗
r−q−mv∗r−n

∣∣
≤ sup

t
E |v∗t |

4
T∑
t=1

T∑
r=1

 ∞∑
i=0

|ci|
∞∑

j=k+1

|ck,j |
∞∑

m=0

|cm|
∞∑

n=k+1

|ck,n|


= T 2

( ∞∑
i=0

|ci|

)2
 ∞∑

j=k+1

|ck,j |

2

supE |v∗t |
4 = O(T 2k−2s),

as vt and r∗t have bounded fourth moments and
∑∞

j=k+1 |ck,j | = op(k
−s). Therefore,

E

∥∥∥∥∥
T∑
t=1

Zt,k(vt,k − v∗t )

∥∥∥∥∥
2

= E

(
T∑
t=1

ut−1(vt,k − v∗t )

)2

+ · · ·+ E

(
T∑
t=1

ut−k(vt,k − v∗t )

)2

= O(T 2k1−2s),

and
∥∥∥∑T

t=1 Zt,k(vt,k − v∗t )
∥∥∥ = Op(Tk

1/2−s). Because Tk1/2−s = o
(
Tk−1/2

)
due to Assumption K,∥∥∥∑T

t=1 Zt,k(vt,k − v∗t )
∥∥∥ = Op(Tk

−1/2).

Furthermore, we have
∥∥∥∑T

t=1 Zt,kv
∗
t

∥∥∥ =

√(∑T
t=1 ut−1v∗t

)2
+ ...+

(∑T
t=1 ut−kv

∗
t

)2
. It can be

shown that

T∑
t=1

ut−qv
∗
t =

T∑
t=1

εt−qvt +

T∑
t=1

εt−qr
∗
t +

T∑
t=1

rt−qr
∗
t +

T∑
t=1

rt−qvt = Op(T
1/2), for q = 1, ..., k.

Since E
(∑T

t=1 εt−qvt

)2
=
∑T

t=1E(ε2t−qv
2
t ) ≤ sup{E(ε2t )}

∑T
t=1E(v2t ) = T sup{E(ε2t )}σ2 = O(T ),

we have
∑T

t=1 εt−qvt = Op(T
1/2). Similarly,

∑T
t=1 rt−qvt = Op(T

1/2) because E
(∑T

t=1 rt−qvt

)2
=∑T

t=1E(r2t−qv
2
t ) ≤ sup{E(r2t )}

∑T
t=1E(v2t ) = T sup{E(r2t )}σ2 = O(T ). Since

∑T
t=1 εt−qr

∗
t and∑T

t=1 rt−qr
∗
t are also Op(T

1/2), we have that
∑T

t=1 ut−qv
∗
t = Op(T

1/2) and
∥∥∥∑T

t=1 Zt,kv
∗
t

∥∥∥ =
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Op(k
1/2T 1/2). Because k1/2T 1/2 is O(Tk−1/2) under Assumption K,

∥∥∥∑T
t=1 Zt,kv

∗
t

∥∥∥ = Op(Tk
−1/2)

and the proof is complete.

A.3 Proof of Theorem 2 and related results

Proof of Lemma 1. It follows from the consistency property of s2AR (k), which can be established

using the consistency of σ̂ and α̂(1), see the proof of Theorem 1. �

Proof of Theorem 2. Part (i). The proof of Theorem 2(i) consists of two steps. First, we show

how to construct a càdlàg process X̃∗
n such that X̃∗

n
w→ Bc

c in probability. Second, we show that

X̃∗
n and X∗

n are ‘close’, in the sense that sups∈[0,1] |X̃∗
n (s) − X∗

n (s) |
p→ 0. Taken together, these

two results imply that X∗
n

w→ Bc
c in probability, as required.

For the first part, in order to define X̃∗
n it suffices to consider the following construction, for

t = 1, ..., n:

X̃∗
t :=


c if X̃∗

t−1 + n−1/2ε∗t > c

c if X̃∗
t−1 + n−1/2ε∗t < c

X̃∗
t−1 + n−1/2ε∗t otherwise

with initial condition X0 = 0 and ε∗t as in (4.11). By setting X̃∗
n (s) := X̃∗

⌊ns⌋, since n → ∞ we can

proceed as in the proof of Theorem 6 of Cavaliere (2005) to obtain that X̃∗
n

w→ Bc
c . This completes

the first part.

To show that sups∈[0,1] |X̃∗
n (s)−X∗

n (s) | = maxt=0,1,..,n |X̃∗
t −X∗

t | = op (1) we can make use of

an inductive argument to prove that for all t = 0, ..., n, |X̃∗
t −X∗

t | ≤ |̂c− c|+ |̂c− c|. By Lemma 1

and the normality assumption on ε∗t , this implies that sups∈[0,1] |X̃∗
n (s)−X∗

n (s) | ≤ |̂c−c|+ |̂c−c|,

as required. We consider the one-bound case only, i.e. we set c, ĉ = ∞; the proof for the two-

bound case is substantially identical. Furthermore, we let (without loss of generality) ĉ > c. For

t = 0, the relation is trivially satisfied. Now, suppose that the relation holds at time t − 1, i.e.

|X̃∗
t−1−X∗

t−1| ≤ |̂c− c|. To prove that the relation holds at time t as well it is useful to distinguish

the following cases.

(a) X∗
t−1 + n−1/2ε∗t ≥ ĉ and X̃∗

t−1 + n−1/2ε∗t ≥ c. In this case we have that

|X∗
t − X̃∗

t | = |X∗
t−1 + n−1/2ε∗t − (X̃∗

t−1 + n−1/2ε∗t )| = |X∗
t−1 − X̃∗

t−1| ≤ |̂c− c|,

as required.

(b) X∗
t−1+n−1/2ε∗t ≥ ĉ and X̃∗

t−1+n−1/2ε∗t < c. This implies ε∗t < 0, X∗
t−1 ≥ X̃∗

t−1, and X∗
t ≥ X̃∗

t .
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Therefore,

X∗
t − X̃∗

t = X∗
t−1 + n−1/2ε∗t − c = X∗

t−1 − X̃∗
t−1 +

(
X̃∗

t−1 + n−1/2ε∗t − c
)

≤ X∗
t−1 − X̃∗

t−1 ≤ ĉ− c.

(c) X∗
t−1 + n−1/2ε∗t < ĉ and X̃∗

t−1 + n−1/2ε∗t ≥ c. Both X∗
t ≥ X̃∗

t and X∗
t < X̃∗

t are possible. In

the former case, X∗
t − X̃∗

t = ĉ− X̃∗
t ≤ ĉ− c. The latter case implies X∗

t−1 < X̃∗
t−1, and thus,

X̃∗
t −X∗

t = (X̃∗
t−1 + n−1/2ε∗t )− ĉ = X̃∗

t−1 −X∗
t−1 +X∗

t−1 + n−1/2ε∗t − ĉ

≤ ĉ− c+X∗
t−1 + n−1/2ε∗t − ĉ = X∗

t−1 + n−1/2ε∗t − c ≤ ĉ− c.

(d) X∗
t−1 + n−1/2ε∗t < ĉ and X̃∗

t−1 + n−1/2ε∗t < c. Then X∗
t = ĉ and X̃∗

t = c, which obviously

implies that |X∗
t − X̃∗

t | ≤ |̂c− c|.

Taken together (a)–(d) implies that |X∗
t − X̃∗

t | ≤ |̂c− c| at time t, hence completing the proof.

Part (ii). It follows from Part (i) using standard continuous mapping arguments.

Part (iii). It suffices to follow the proof of Theorem 5 in Hansen (2000). �

Table 1: Finite-sample null rejection probabilities white noise model, one-bound at −c and two
bounds at −c and c cases

c T ADFα ADF∗
α ADF t ADF∗

t MZα MZ∗
α MZt MZ∗

t MSB MSB∗

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

Two symmetric bounds
∞ 100 4.2 4.2 5.3 5.3 5.3 5.0 3.0 3.0 5.3 3.0 3.0 4.9 3.0 3.0 5.2

500 5.0 5.0 5.2 5.6 5.6 5.3 4.8 4.8 5.2 5.0 5.0 5.4 4.5 4.5 5.2
0.8 100 9.3 4.4 6.2 11.2 5.8 5.6 7.0 2.8 6.2 7.1 3.2 5.6 4.5 2.4 5.8

500 11.6 4.9 5.5 11.3 5.2 5.4 11.1 4.5 5.5 10.4 4.7 5.4 7.8 4.1 5.4
0.6 100 15.7 4.3 6.5 14.5 5.9 6.1 12.5 2.6 6.5 9.2 2.7 5.9 11.4 2.4 7.0

500 18.4 4.4 5.3 14.6 4.8 5.3 17.8 4.0 5.3 13.4 4.0 5.3 17.2 4.1 5.5
0.4 100 26.1 3.4 5.9 20.5 5.4 5.6 21.4 1.4 5.9 12.7 1.6 5.5 25.0 1.5 6.5

500 30.2 4.3 5.4 20.4 4.7 5.3 29.1 3.8 5.4 18.9 3.8 5.3 33.8 3.6 5.5

One single bound
0.8 100 7.0 4.3 5.8 8.3 5.5 5.5 5.1 3.0 5.8 5.0 3.2 5.3 3.7 2.6 5.5

500 8.2 4.9 5.4 8.3 5.3 5.4 7.8 4.5 5.4 7.6 4.8 5.4 6.1 4.2 5.4
0.6 100 10.1 4.3 6.1 9.9 5.7 5.6 7.9 2.8 6.1 6.3 2.9 5.5 7.4 2.5 6.4

500 11.3 4.6 5.5 9.8 5.1 5.3 10.9 4.2 5.5 8.9 4.3 5.3 10.4 4.1 5.4
0.4 100 13.2 3.9 5.7 11.7 5.3 5.4 10.9 2.4 5.7 7.6 2.4 5.2 12.3 2.4 6.2

500 15.0 4.1 5.1 12.0 4.5 5.1 14.6 3.8 5.1 11.1 3.9 5.1 16.1 3.8 5.1
0.2 100 15.8 2.9 5.3 14.1 4.5 5.4 13.5 1.5 5.3 9.3 1.6 5.3 14.9 1.7 5.5

500 17.7 3.8 4.8 14.1 4.2 4.9 17.2 3.5 4.8 13.2 3.5 4.9 18.8 3.6 4.8
0 100 17.4 2.5 5.1 18.8 4.5 5.0 14.9 1.0 5.1 13.4 1.1 5.1 14.2 1.1 5.1

500 20.0 3.7 5.1 19.1 4.2 5.1 19.4 3.4 5.1 18.0 3.3 5.1 18.5 3.3 5.0

Notes: (i) Nominal 5% asymptotic level. (ii) Tests based on OLS de-meaned data. (iii) Columns (a) and (b) denote

simulation-based tests with n = 20, 000 (a), n = T (b).
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Table 4. Standard and simulation-based unit root tests, U.S. 3-month Treasury Bills

rate, monthly data 1957–2008

Standard Unit Root Tests Simulation-based Unit Root Tests

statistic p-values p-values

(a) (b) (c)

ADFα −22.580 0.006 ADF∗
α 0.073 0.068 0.086

ADF t −2.945 0.004 ADF∗
t 0.142 0.128 0.118

MZα −25.195 0.003 MZ∗
α 0.053 0.061 0.088

MZt −3.502 0.009 MZ∗
t 0.057 0.061 0.092

MSB 0.139 0.003 MSB∗ 0.053 0.062 0.084

Notes: (i) The number of lags determined by MAIC is k = 16. Columns a, b and c denote

simulation-based p-values with n = 20, 000 (a), n = T (b) and with re-colouring device (c).

(ii) The estimated long run variance is s2AR (k) = 0.63. (iii) The estimated bound parameter

is ĉ = −0.16.
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Figure 1: U.S. 3-month Treasury Bill rate, monthly data 1957:01-2008:09
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