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Abstract 

This paper describes the application of X-ray tomography to predict the tensile fracture 
properties of aluminium alloy die-castings containing natural casting defects. A new estimator 
(Z-project) is presented that can predict the areal fraction of porosity involved during tensile 
failure to a higher degree of accuracy than conventional methods, which are also discussed. By 
coupling the proposed estimator with an existing model for the development of plastic 
instabilities in a deforming body, the tensile fracture strain and tensile fracture stress are 
predicted with much less error than previous approaches.  
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1. Introduction 

Cast aluminium alloys are finding increasing applications in lightweight vehicle architecture, 
due to their competitive specific strength and excellent castability. For the purpose of cost 
reduction and part consolidation, die-castings typically exhibit a high degree of geometric 
complexity, which results in a certain amount of porosity that is practically unavoidable in 
normal industrial castings [1–3]. As the dominant ductility limiting factor in hypoeutectic Al-Si-
Mg alloys, porosity presents a major obstacle to the more widespread use of aluminium 
castings within the automotive industry, often responsible for the conservative safety 
coefficients used in component design [4]. To address this issue, further understanding is 
required before a quantitative relationship may be established between the casting integrity 
and the materials performance in tensile and fatigue. 

By performing 3D in-situ tensile and fatigue tests using X-ray tomography and digital volume 
correlation, several studies have revealed the damage mechanisms of hypoeutectic Al-Si alloys 
[4–13]. It is widely accepted, that damage originates at various microstructural 
inhomogenieties including eutectic Si particles and intermetallic phases. The nucleation of 
voids from these hard inclusions occurs by decohesion of the particle-matrix interface or by 
particle fracture, with the subsequent growth and coalescence of voids forming large cracks in 
the Al matrix [14]. By reducing the load-bearing area and localising strain, pores provide 



preferential crack initiation sites and accelerate the production of damage [1,2,10]. Whilst 
there exists little to no correlation between the bulk porosity content and the reduction in 
tensile properties, the ductility and tensile strength are reported to decrease monotonically 
with an increase in the areal fraction of porosity observed on the fracture surface [1,2,15–18]. 
Accordingly, several researchers have attempted to relate the failure of die-cast metals to 
some measure of the areal fraction of porosity; whether determined by non-destructive 
evaluation or by coupling quantitative fractography with extreme value statistics [1,2,18–22].  

A tensile failure model, first presented by Ghosh and later developed by Cáceres and Selling, 
approximates the effects of multiple voids (𝐴𝐴𝑖𝑖) as a single geometric imperfection of 
equivalent area (𝐴𝐴𝑣𝑣 = ∑ 𝐴𝐴𝑖𝑖), located at the centre of an otherwise perfect specimen [1,2,23]. 
The geometry assumed in this model is illustrated in Fig.1(i). Under uniaxial tension, the 
defective region yields first as a consequence of the reduced load-bearing area. The 
subsequent localisation of plastic flow results in the formation of an incipient neck around the 
local inhomogeneity. Following Ghosh’s model for the loss of mechanical stability in a 
deforming body, the rate of strain concentration can be described considering the strain 
hardening ability of the material [23]. For a sample of initial cross-sectional area 𝐴𝐴𝑜𝑜 containing 
an imperfection of areal fraction 𝑓𝑓 = 𝐴𝐴𝑣𝑣/𝐴𝐴𝑜𝑜, axial load equilibrium requires: 

𝜎𝜎𝑣𝑣(1 − 𝑓𝑓)𝐴𝐴𝑜𝑜 exp(−𝜀𝜀𝑣𝑣) = 𝜎𝜎ℎ𝐴𝐴𝑜𝑜 exp(−𝜀𝜀ℎ)    (1) 
 

Where 𝜎𝜎𝑣𝑣, 𝜀𝜀𝑣𝑣 and 𝜎𝜎ℎ, 𝜀𝜀ℎ are the true stresses and true strains in the void containing region and 
in the homogeneous material respectively. By coupling equation Eq.(1) with the following 
constitutive equation, we may solve for 𝜀𝜀ℎ when 𝜀𝜀𝑣𝑣 reaches some critical fracture strain 𝜀𝜀𝑣𝑣

∗: 

𝜎𝜎 = 𝐾𝐾𝜀𝜀𝜂𝜂       (2) 
 
where 𝐾𝐾 is a material constant, 𝜎𝜎 is the true stress, 𝜀𝜀 is the true strain, and 𝜂𝜂 is the strain-
hardening exponent of the material. Substituting Eq.(2) into Eq.(1), we may relate the strain in 
the defective region to the homogeneous strain: 

𝜀𝜀𝑣𝑣
𝜂𝜂(1 − 𝑓𝑓) exp(−𝜀𝜀𝑣𝑣) = 𝜀𝜀ℎ

𝜂𝜂 exp(−𝜀𝜀ℎ)     (3) 
 

Solving Eq.(3) allows the ductility of the sample to be determined by plotting 𝜀𝜀𝑣𝑣 against 𝜀𝜀ℎ  and 
noting the homogeneous fracture strain 𝜀𝜀ℎ

∗  attained when the ordinate reaches some critical 
fracture strain 𝜀𝜀𝑣𝑣

∗, as illustrated in Fig.1(ii). The tensile strength of the material 𝜎𝜎𝑓𝑓 may then be 
determined using Eq. (4), where 𝜎𝜎∗ is the true fracture strength of the ‘defect-free’ material 
obtained from 𝜎𝜎∗ = 𝐾𝐾𝜂𝜂𝜂𝜂, corresponding to Considéres criterion 𝜀𝜀 = 𝜂𝜂.  

𝜎𝜎𝑓𝑓 = 𝜎𝜎∗ �𝜀𝜀ℎ
∗

𝜂𝜂
�

𝜂𝜂
       (4) 

 

Clearly, the predicted fracture strain depends on the estimated values of f, 𝜂𝜂 and 𝜀𝜀𝑣𝑣
∗. Intuitively 

speaking, the predicted fracture strain depends on (i) the method used to characterise defects 
in the material, and (ii) the method used to describe the response of the material to plastic 
deformation. With regards to the former, an accurate measure of f can easily be obtained from 
the fracture surface of post-mortem specimens. However, when the location of fracture is 
unknown (i.e. prior to deformation) the estimation of f is not so trivial. The problem now 
becomes that of predicting which defects will be involved during tensile failure, and estimating 



the resultant value of f. By acquiring a non-destructive measure of f using X-ray tomography, 
and using this as input for the critical local strain model, Weiler et al. [24] were able to predict 
the location of fracture, the tensile fracture strain and the tensile fracture stress to within 8%, 
22%, and 11% error respectively. It is possible that this relatively high error stems from the 
axiom that fracture will occur on the tomographic plane containing the maximum dimension of 
the largest defect. By considering the 3D volume as a sequence of independent 2D images, the 
authors effectively constrain the fracture path to a single elevation. Whilst this assumption 
might be accurate for defects which are highly spherical and/or small in comparison to the 
casting dimension, this is not the usually the case.  

The purpose of this contribution is to present a new characterisation technique, which 
identifies which defects will be involved during tensile failure and captures their true 3D form. 
By alleviating the spatial constraints of its predecessors, the proposed technique is capable of 
estimating f with utmost precision. The practical implications of this improvement are 
demonstrated by coupling the proposed technique with the critical local strain model to 
predict the tensile properties of Al-Si alloy die-castings containing natural casting defects. 

 

 

 
Fig.1.(i) Geometry assumed by the critical local strain model, in which the effects of multiple 
voids of area 𝐴𝐴1,𝐴𝐴2, … 𝐴𝐴𝑛𝑛 are approximated by a single spherical void of area 𝐴𝐴𝑣𝑣 = ∑ 𝐴𝐴𝑖𝑖 
located at the centre of an otherwise perfect specimen. (ii) Curves derived from Eq.(3) 
showing the relation between strain in the void containing region and the homogeneous 
strain for different areal fractions of porosity (f). 
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2. Experimental Method 

2.1 Specimen Preparation 

A typical AlSiMnMg die-casting aluminium alloy (8 % Si, 0.4 % Mn, 0.3 % Mg) was used as a 
base material. The melt was prepared in a clay-graphite crucible (30 Kg charge) in an electric 
resistance furnace at 700 °C.  The melt was degassed using a conventional rotary degassing 
unit (5 L/min at 350 rpm for 10 min) and then manually poured at 680 °C into an ASTM B108 
standard permanent steel mould [25], pre-heated to 460 °C. In total, 16 tensile specimens 
were produced, with dimensions shown in Fig.2(i). The geometry of the casting mould in 
addition to the nominal flow of liquid metal is provided in Fig.2(ii). To acquire the strain-
hardening exponent 𝜂𝜂 and strength coefficient 𝐾𝐾 required in Eq.(2), a ‘pore-free’ sample of 
dimensions equivalent to Fig.2(i) was machined from the bottom region of a custom made 
gravity die-casting shown in Fig.2(iii); Fig.2(iii) depicts a prediction of shrinkage porosity in the 
‘pore-free’ casting calculated using the POROS 1 module based on ProCAST code [26,27].  

 

 

Fig.2. (i) Specimen geometry (ASTM B108 [25]). (ii) Geometry of the mould used to produce 
tensile specimens (arrows indicate the nominal flow of liquid metal). (iii) Prediction of 
shrinkage porosity within the casting used to produce the ‘pore free’ sample. Simulations 
were performed using the POROS1 module based on ProCAST code. 

 

2.2 X-ray Tomography and 3D Analysis 

X-ray inspection was carried out using a Y.CT Compact XL Mag computed tomography system 
(YXLON International, 450KV, 1mA), for which data acquisition and tomographic 
reconstructions are performed in parallel. An anisotropic voxel was defined, corresponding to 
a 2D pixel size of 133 µm and an interstitial spacing of 200 µm. The VGSTUDIO MAX software 
suite (Volume Graphics Inc.) was used to visualise and analyse the 3D volumes. An iterative 
local surface determination was performed to define outer boundaries of the material volume 
whilst compensating for local fluctuations in grey value. Pore descriptors (relating to size, 
shape and location) were obtained using the VGDEFX void and inclusion analysis module by 
Volume Graphics Inc.  
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2.2.1 Predicting the location of fracture 

To identify a suitable size descriptor, two methods were used to predict the location of tensile 
fracture (defined here as the longitudinal distance from the bottom of the gauge section) and 
then compared to the actual location of fracture. In the first method, the location of fracture 
was predicted to occur on the tomographic plane corresponding to the centroid of the pore 
with the largest Feret diameter (Diameter). The second method utilizes a similar approach to 
that of Weiler et al. [24], in which fracture was assumed to occur on the tomographic plane 
containing the maximum projected area of porosity in the tensile direction (Proj. Area). A 
visualisation of these two methods is shown in Fig.3(i). 

2.2.2 Predicting the areal fraction of porosity involved in tensile failure 

The Diameter and Proj. Area methods may also be used to estimate the areal fraction of 
porosity fDiameter and fProj.Area involved during failure: by evaluating f on the transverse plane 
coincident with the corresponding fracture locations (section 2.2.1). However, considering the 
inherently complex morphology of an interconnected shrinkage pore, it seems unreasonable 
to assume that its maximum projected area will lie exactly on one of the tomographic planes. 
Hence, acquiring a measure of f using the 2D images alone will likely result in an 
underestimate of the true value.  

To overcome these spatial constraints, a new estimator (Z-Project) is presented, in which the 
series of images within a specified range are superimposed to estimate the maximum value of 
f within the 3D sub-volume (Fig.3(ii)). To achieve this, each tomographic dataset is imported as 
an image sequence into the Fiji image post-processing software based on ImageJ [28]. The 
tomographic plane containing the maximum projected area of porosity is then defined as a 
starting position for the subsequent superposition (i.e. Proj. Area). From this plane, the 
sequence of images within a search distance of ±√𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/2 are examined to identify extensions 
of the projection in the transverse plane of the main defect along the principle stress axis; 
where √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  (square root of the area of the defect projected in the direction of principle 
stress) is selected as a representative dimension of length due to its relation with the 
maximum stress intensity factor along a 3D crack (i.e. 𝐾𝐾𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∝  (√𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)1/2) [29,30]. The 
minimum intensity of each pixel within this sub-sequence is then superimposed onto a single 
plane and the areal fraction of porosity measured from the generated image (fZ-Project). 

 



 

2.3 Mechanical properties and fracture characterization 

Following X-ray inspection, tensile tests were performed at room temperature using an Instron 
5500 universal electromechanical testing system equipped with a 50 kN load cell, in 
accordance with ASTM standard E8/E8M [31]. Post-mortem tensile specimens were examined 
to identify the true location of fracture, with the areal fraction of porosity on the fracture 
surface obtained via quantitative fractography. The location of fracture was determined by the 
average distance from the bottom of the gauge section to the plane defined by several 
symmetric points along the lateral fracture surface, in a similar manner to that described in 
references [32,33]. 

2.4 Critical local strain model 

To describe the strain-hardening behaviour of the material, values of 𝐾𝐾 and 𝜂𝜂 were acquired 
from the true stress-strain curve of the ‘pore-free’ sample. Eq.(3) was then solved numerically 
in Matlab (Mathworks Inc.) and the homogenous strain 𝜀𝜀ℎ  plotted against the strain in the void 
containing region 𝜀𝜀𝑣𝑣. A critical fracture strain 𝜀𝜀𝑣𝑣

∗ was defined to denote failure in the void 
containing region, as determined by the ductility of the ‘pore-free’ sample (i.e. when f = 
0, 𝜀𝜀𝑣𝑣

∗ = 𝜀𝜀ℎ
∗  ). For f ≠ 0, strain concentrates in the void containing region and 𝜀𝜀𝑣𝑣

∗ > 𝜀𝜀ℎ
∗ . In this 

case, the ductility of the sample is determined by the value of 𝜀𝜀ℎ  attained when 𝜀𝜀𝑣𝑣 = 𝜀𝜀𝑣𝑣
∗. This 

concept is illustrated by the dashed lines in Fig.1(ii) for the particular case 𝜀𝜀𝑣𝑣
∗ = 0.06 and f = 

0.05.  

3. Results  

3.1. Characterisation of internal porosity 

Fig.4 depicts a 3D visualisation of porosity within the gauge length of the tensile specimens 
obtained via X-ray tomography. In agreement with the underlying assumption of the critical 
local strain model, fracture is likely to be dominated by the presence of a single macropore or 

 
 
Fig.3. (i) 3D visualisation of internal porosity within the tensile specimen, showing the 
location of fracture predicted using the Diameter and Proj. Area methods respectively. (ii) 
Overview of Z-Project methodology, highlighting the starting position (Proj. Area) in addition 
to the upper and lower limits of the image superposition. 
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a condensed cluster of pores, covering in both cases a sizeable fraction of the cross-sectional 
area. Pore morphology has also been found to play an important role in the distribution of 
strain. Stress concentrations induced by shrinkage cavities of an interconnected and tortuous 
nature have proven to be more severe than those of near-spherical gas pores of an equivalent 
size [9,11,34]. Sphericity, which relates the surface area of a particle or void to the surface area 
of a perfect sphere of equivalent volume, is commonly used to characterise the morphology of 
a particle or void [7,35]. In Fig.5, the sphericity of each pore is plotted against its corresponding 
maximum Feret diameter. Pores of sphericity greater than 0.4 were assumed to originate from 
gaseous sources, whilst those of sphericity below 0.4 were attributed to solidification 
shrinkage or oxide films. From the 648 pores analysed by the VGDEFX algorithm, a quasi-
logarithmic relationship was obtained between the sphericity and maximum Feret diameter. 

 

Fig.4. 3D visualisation of porosity within the gauge length of tensile specimens obtained via 
X-ray tomography. Each connected pore is designated a colour based on its sphericity. Pores 
of sphericity greater than 0.4 were believed to originate from gaseous sources, whilst those 
of sphericity below 0.4 were attributed to solidification shrinkage or oxide films. 

 

 

 

 

Fig.5. Relationship between sphericity and maximum Feret diameter. Pores of sphericity less 
than 0.4 are attributed to solidification shrinkage or oxide films, whilst those of sphericity 
greater than or equal to 0.4 are believed to originate from gaseous sources.  
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3.2 Fracture location 

In Fig.6 the fracture locations predicted using the Diameter and Proj. Area approaches are 
plotted against the actual location of fracture measured after tensile testing. Least squares 
linear regression fittings are also included in the graph, with the corresponding coefficient of 
determination (R2) provided for each method. Predictions based on the Proj. Area method 
clearly surpass their Diameter method counterparts, with average errors of 5% (max. 18%) and 
15% (max. 75%) reported for each method respectively. It follows then, that the maximum 
projected area of a pore in the tensile direction is a superior size descriptor than the maximum 
Feret diameter. An example of this difference is also shown in Fig.3(i), for which failure was 
observed to occur not at the pore with the largest Feret diameter but instead at a smaller pore 
with a larger projected area in the transverse plane. These findings are in strong agreement 
with previous reports describing a quasi-linear relationship between the tensile fracture strain 
and the projected area of the largest defect observed on the fracture surface [16,17]. 

 

Fig.6. Comparison between the true fracture location and those predicted using the 
Diameter and Proj. Area methods respectively. Linear fittings and corresponding R2 
coefficients are also included to compare the predictability of both methods. 

 

3.3 Areal fraction of porosity 

Fig.7(i,ii,iii) presents a visual representation of the areal fraction of porosity estimated using 
the Diameter, Proj. Area, and Z-Project methods respectively, with the actual fracture surface 
shown in Fig.7(iv). One might expect predictions based on the Diameter approach to highly 
depend on pore morphology, as the maximum Feret diameter considers only the largest 
dimension of the defect without regards to the principle stress axis. Accordingly, the image 
produced using the Diameter approach is shown to drastically underestimate the true areal 
fraction of porosity. Whilst there are some distinct similarities between the image produced 
using the Proj. Area method and the actual fracture surface, it is evident that the true fracture 
path transcends the tomographic plane and traverses multiple elevations. In contrast to this, 
the Z-Project method provides an excellent measure of the areal fraction of porosity, with the 
superimposed image closely resembling the actual fracture surface. Fig.8 presents a 
quantitative comparison between the values of f estimated using the three prediction 
methods and the true areal fraction of porosity measured from fracture surface. For the 
majority of samples, the Diameter and Proj. Area methods produce an underestimate of f. The 
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only exception to this was the value of f estimated for Sample 4 (marked with a star symbol in 
Figures 4, 5 and 8) using the Proj. Area method, for which failure was observed to occur at a 
highly spherical gas pore. 

 

 

 

Fig.8. Comparison between the true areal fraction of porosity, f, and those estimated using 
the Diameter, Proj. Area, and Z-Project methods respectively.  

 

 

 

Fig.7. Areal fraction of porosity estimated for a representative sample using the (i) Diameter, 
(ii) Proj. Area, and (iii) Z-Project methods respectively. For comparison, the actual fracture 
surface is provided in (iv). Here, green lines denote the outer boundaries of each defect. 

○ Diameter
y = 2.11x + 0.05

R² = 0.760

■ Proj. Area
y = 0.97x + 0.07

R² = 0.721

□ Z-project
y = 0.93x + 0.01

R² = 0.881

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

M
ea

su
re

d 
ff

ro
m

 F
ra

ct
ur

e 
Su

rfa
ce

Estimated f from X-ray Tomography

(i) (ii) 

(iii) (iv) 



3.4 Mechanical Properties 

The measured tensile properties of the die-cast Al8SiMnMg alloy samples are shown in Fig.9(i). 
The 0.2% proof strength appears to be relatively unaffected by changes in porosity, with an 
average value of 101.1 ± 4.8 MPa. In contrast to this, a high degree of variability is observed for 
the tensile strength and the tensile ductility, with average values of 175.1 ± 20.2 MPa and 2.35 
± 1.12 % respectively. This relatively high variability in mechanical properties results from 
variations in the size and spatial distribution of casting defects within each sample, as will be 
discussed later on in this paper. A power law relation was observed between the ductility and 
tensile strength, as would be expected from a material which exhibits strain-hardening 
behaviour.   

Conventionally, the parameters 𝐾𝐾, 𝜂𝜂 and  𝜀𝜀𝑖𝑖
∗ are derived from the maximum fracture strain 

recorded in a large series of tensile tests. The assumption is that for a sufficiently large sample 
size (e.g. 1000 samples [24]), the maximum strain is likely to approach that of a defect free 
material. However, this induces significant cost and should be avoided when possible. In this 
study, we opt to obtain values of 𝐾𝐾, 𝜂𝜂 and  𝜀𝜀𝑣𝑣

∗ from a single ‘pore-free’ specimen machined 
from the custom made gravity die-casting shown in Fig.2(iii). X-ray tomography confirmed that 
no pores could be detected inside the machined specimen. Shown in Fig.9(ii) is the true stress-
strain curve used to obtain the strength coefficient 𝐾𝐾 and strain-hardening exponent 𝜂𝜂 of the 
‘pore-free’ material (f = 0). Using this approach, values of 𝐾𝐾 = 341  and 𝜂𝜂 = 0.164 were 
obtained by fitting data in the plastic region to Eq.(2). For comparison, the true fracture strain 
and true fracture stress of the ASTM specimens (f > 0) are also plotted in Fig.9(ii). Clearly, the 
points for f > 0 fall along the curve for f = 0, suggesting that the strain-hardening behaviour of 
the material is adequately described by the ‘pore-free’ specimen.  

 

 

Fig. 9. (i) Tensile properties of the Al8SiMnMg alloy die-castings acquired from the 
engineering stress-strain curves of each sample. (ii) True stress strain curve of the ‘pore-free’ 
sample (f = 0) used to acquire the values of 𝐾𝐾, 𝜂𝜂 and  𝜀𝜀𝑣𝑣

∗ required of the critical local strain 
model. Also shown are the true fracture strain and true fracture stress for each of the 
tensile specimens (f > 0). 
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3.6 Critical local strain model 

Using the methodology outlined in section (2.4), a critical fracture strain 𝜀𝜀𝑣𝑣
∗ = 0.096 was 

defined to denote failure in the void containing region. The homogeneous fracture strain 𝜀𝜀ℎ
∗  

was then determined by the value of 𝜀𝜀ℎ attained when 𝜀𝜀𝑣𝑣 = 0.096 for a given value of f: this 
concept is illustrated in Fig.1(ii) for the hypothetical case of 𝜀𝜀𝑣𝑣

∗ = 0.06 and f = 0.05. The tensile 
fracture stress was then calculated for each value of 𝜀𝜀ℎ

∗  using Eq.(4). 

Eq.(3) and Eq.(4) were solved numerically in Matlab for a range of f, with the predicted fracture 
strain and fracture stress plotted as a function of f, as shown in Fig.10(i) and Fig.10(ii) 
respectively. For comparison, the experimental data points obtained from the tensile tests are 
also included. Clearly, the critical local strain model can predict the tensile fracture strain and 
tensile fracture stress to a reasonable degree of accuracy, with average errors of 4.5 % (max. 8.9 
%) and 3.9 % (max. 8.3 %) respectively.  

 

4. Discussion 

4.1 Statistical analysis of defect size 

The extremal types theorem allows one to make inference on the probability of low-frequency 
high-severity events based on limited data. Methods based on the statistics of extremes are 
extensively used within material science and engineering to study variability in mechanical 
properties, particularly in modern durability (fatigue) analysis where statistical relationships are 
often established between the defect size distribution and the variability in fatigue life [36]. In 
contrast to this, such techniques are rarely used to relate the probability distribution of defect 
size to the variability in tensile ductility [16].  

Here, the generalized extreme value (GEV) distribution is used to approximate the limiting 
distribution of the maxima of defect size. The GEV distribution combines the Gumbel, Fréchet 
and Weibull families into a single functional form, with the data themselves deciding which of 
the three distributions is most appropriate. The GEV distribution is parameterized by a location 

 

Fig.10. Comparison between the predicted and measured tensile fracture strain (i) and tensile 
fracture stress (ii). For the experimental data points the fracture properties obtained via 
tensile testing are plotted against the corresponding value of f measured on the fracture 
surface. 
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parameter 𝜇𝜇, a scale parameter σ and a shape parameter ξ, which controls the tail behaviour of 
the distribution. The cumulative distribution function (CDF) of the GEV distribution is: 

𝐺𝐺(𝑧𝑧) = exp �− �1 + 𝜉𝜉 �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��

−1 𝜉𝜉⁄
�  , 1 + ξ �

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

� > 0. 

(5) 

For ξ → 0, the GEV distribution is equivalent to the Gumbel distribution, which is characterised 
by an exponentially decreasing tail:   

𝐺𝐺(𝑧𝑧) = exp �−exp �−
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
�� . 

(6) 

For ξ > 0, the GEV distribution is equivalent to the Fréchet distribution, which possesses a 
polynomially decreasing tail and a finite lower bound 𝜇𝜇′: 

𝐺𝐺(𝑧𝑧) = �

                 0,                       𝑧𝑧 < 𝜇𝜇′

exp �− �
𝑧𝑧 − 𝜇𝜇′

𝜎𝜎′ �
−1 𝜉𝜉⁄

 � ,    𝑧𝑧 ≥ 𝜇𝜇′.   
 

(7) 

Where we introduce two new parameters, 𝜇𝜇′ and 𝜎𝜎′, for 𝜉𝜉 ≠ 0: 

𝜇𝜇′ = 𝜇𝜇 −
𝜎𝜎
𝜉𝜉

> 0,             𝜎𝜎′ = �
𝜎𝜎
𝜉𝜉� > 0. 

(8) 

ξ < 0 corresponds to the Weibull distribution, which possesses a finite upper bound 𝜇𝜇′: 

𝐺𝐺(𝑧𝑧) =  � exp �− �−
𝑧𝑧 − 𝜇𝜇′

𝜎𝜎′ �
−1 𝜉𝜉⁄

 � ,    𝑧𝑧 < 𝜇𝜇′

                         0,                        𝑧𝑧 ≥ 𝜇𝜇′.

 

(9) 

Here, block maxima is the natural choice of sampling technique. In the block maxima 
approach, the observation period is divided into a series of sub-domains with only the 
maximum observation within each sub-domain considered in the analysis (𝑧𝑧𝑛𝑛 =
max {𝑋𝑋1, … 𝑋𝑋𝑛𝑛}). Accordingly, the largest defect (max. √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) within each tensile sample was 
identified and its value of √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 used in the subsequent analyses. Within Matlab, the GEV 
parameters were estimated using the maximum likelihood method. The empirical CDF was 
then computed using the Kaplan-Meier estimator, with corresponding 95 % confidence 
intervals evaluated using Greenwood’s formula. The estimated GEV parameters along with the 
corresponding 95 % confidence intervals are presented in Table 1. Fig.11(i) presents a visual 
comparison between the empirical CDF and the GEV CDF computed using the parameter 
estimates in Table 1. Since the entire 95 % confidence interval of ξ  lies in the negative range, 
we may conclude that the limiting distribution of the maxima of defect size follows Weibull. In 
a similar study, Teng et al. [16] found ξ = 0 to lie within the 95 % confidence range, suggesting 
that the pore size distribution in an Al-Si alloy low pressure die-casting may be mathematically 
described by all three families. The authors reasoned that subject to physical considerations, 
the Weibull distribution was most appropriate due to its finite upper bound 𝜇𝜇′. Whilst defects 
in this study were characterised using X-ray tomography, the pore size distribution studied by 



Teng et al. [16] was acquired from 2D images of the fracture surface. It is possible that the 
observed differences in shape factor arise from this difference in measurement technique; as 
in the present contribution, pore size measurements were acquired prior to deformation. 

Whilst the parameter estimates (𝜉𝜉, σ, 𝜇𝜇) provide valuable insight into the quality-of-fit and tail 
behaviour of the distribution, it is often estimates of the extreme quantiles that are of greatest 
interest when analysing block maxima data. Accordingly, the quantile function is obtained by 
inverting Eq.(5) for 𝐺𝐺(𝑧𝑧𝑝𝑝) = 1 − 𝑝𝑝: 

𝑧𝑧𝑝𝑝 = 𝜇𝜇 −
𝜎𝜎
𝜉𝜉 �1 − {− log(1 − 𝑝𝑝)}−𝜉𝜉� ,     𝑓𝑓𝑓𝑓𝑎𝑎 𝜉𝜉 ≠ 0, 

𝑧𝑧𝑝𝑝 = 𝜇𝜇 − 𝜎𝜎 log{− log(1 − 𝑝𝑝)} ,              𝑓𝑓𝑓𝑓𝑎𝑎 𝜉𝜉 = 0. 
(10) 

Where 𝑧𝑧𝑝𝑝 is the return level associated with a return period 𝑇𝑇 = 1/𝑝𝑝. Fig.11(ii) presents a 
return level plot for the block maxima of defect size. Regarding the quality-of-fit, the curve 
obtained for the fitted model provides a reasonable approximation of the empirical quantiles. 
For simplicity, the lower and upper bounds of the fitted curve were computed using the 95 % 
confidence intervals for the parameter estimates (𝜉𝜉, σ, 𝜇𝜇). Here, we simply wish to illustrate 
the relation between 𝜉𝜉 and 𝑧𝑧𝑝𝑝 as 𝑇𝑇 → ∞. In this case, the negative estimate of 𝜉𝜉 (Weibull) 
results in a return level curve which exhibits concavity and asymptotes to a finite value 𝜇𝜇′ at 
large 𝑇𝑇. Physically, this implies that the maximum defect size observed in an infinite number of 
tensile specimens is expected to converge towards some finite value 𝜇𝜇′.  

Table 1. Limiting distribution of the maxima of defect size. Shown are the GEV parameter 
estimates and corresponding 95 % confidence intervals. 

ξ - Mean  ξ – 95 % Confidence Intervals σ 𝜇𝜇 σ’ 𝜇𝜇′ 
-0.473 [-0.843,    -0.102] 0.847 3.150 1.791 4.941 

 

 

 

 

 

Fig.11. Limiting distribution of the maxima of defect size. (i) Comparison between the 
empirical CDF and the GEV CDF computed using the parameter estimates in Table 1. Here 
LCB and UCB refer to the lower and upper 95 % confidence bounds of the empirical 
distribution respectively. (ii) Return level plot for the block maxima data. 
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4.2. Statistical analysis of tensile properties 

This section discusses the application of the GEV function to estimate the limiting distribution 
of the minima of fracture stress and fracture strain. Here, we shall focus on the probability 
distribution of true stress and true strain, as these are the quantities predicted by the critical 
local strain model. With regards to sampling, we opted to use the block minima approach. In 
this case, the minimum observation within each sub-domain is stored instead of the maximum 
value (i.e. �̃�𝑧𝑛𝑛 = min{𝑋𝑋1, … 𝑋𝑋𝑛𝑛}). A duality exists between the limiting distributions of minima 
and maxima such that the former may be determined by modelling the latter for �̃�𝑧𝑛𝑛 = −𝑧𝑧𝑛𝑛 
(i.e. small values of 𝑋𝑋𝑖𝑖  correspond to large values of −𝑋𝑋𝑖𝑖) [37]. For the sake of computational 
efficiency, the GEV parameters and 95 % confidence intervals were determined using the 
methodology outlined in Section (4.1) for �̃�𝑧𝑛𝑛 = −𝑧𝑧𝑛𝑛, with the sign correction 𝜇𝜇� =  − 𝜇𝜇 (Table 
2). Fig.12(i,ii) compares the empirical CDF and the GEV CDF obtained for the probability 
distribution of true strain and true stress respectively. Regarding the empirical distribution of 
true strain, the entire 95 % confidence interval of ξ lies in the negative range, thus we conclude 
that the limiting distribution of minima follows Weibull. Interestingly, ξ = 0 lies within the 95 % 
confidence range for the empirical distribution of true stress, suggesting that the probability 
distribution may be mathematically described by all three families. Following the rational of 
Teng et al. [16], we will discuss the physical implications of the three distributions with regards 
to their respective tail behaviours. If we consider the upper bounds of the 95 % confidence 
range (i.e. ξ > 0), the Fréchet distribution predicts a negative lower bound of 𝜇𝜇� = -175.1 MPa. 
Here, a negative threshold has no physical meaning and usually indicates a mixture of 
probability distributions [36]. According to Eq.(4), the diminution of tensile strength results 
from the reduction in tensile strain. As there is no indication of a mixed distribution for the 
case of tensile strain, we have opted to disregard this possibility. Furthermore, although the 
upper bound of ξ lies in the positive range, one could equally say that the positive value ξ = 
0.092 in fact suggests a Gumbel distribution (i.e. 𝜉𝜉 → 0). Considering the return level plot in 
Fig.12(iv), the curve clearly exhibits some degree of concavity, again suggesting that the 
distribution follows Weibull. Since it is of practical interest to identify a statistical lower bound 
to tensile strength, the Weibull distribution is preferred to the Gumbel distribution, as the 
return level curve asymptotes to a finite value 𝜇𝜇�′. It follows then, that the presence of defects 
following a Weibull distribution (maxima) results in tensile fracture properties that also follow 
a Weibull distribution (minima): the causal relationship between the two factors is 
demonstrated in Fig.10, with the maximum defect size assumed to contribute to the region of 
maximum f. 

 

 

 

 

 

 

 

 



 

Table 2. Limiting distributions of the minima of true stress and true strain. Shown are the GEV 
parameter estimates and corresponding 95 % confidence intervals. 

 ξ -mean ξ – 95 % Confidence Intervals σ 𝜇𝜇� σ' 𝜇𝜇�′ 
True Strain -0.538 [-0.937,    -0.138] 0.012 0.026 0.022 0.047 
True Stress -0.356 [-0.804,    0.092] 22.29 186.4 62.59 249.0 

 

4.3 Improved prediction of mechanical properties 

This section concerns the predictive capability of the critical local strain model when coupled 
with the values of f estimated via X-ray tomography. Fig.13 presents a comparison between 
the predicted and experimental tensile fracture properties. Predictions based on the Z-Project 
method clearly exhibit superior accuracy with respect to the Diameter and Proj. Area methods. 
In Table 3, the average and maximum errors associated with the prediction of f, 𝜀𝜀 and 𝜎𝜎 are 
provided for the three estimators respectively. It is apparent that an improved measure of the 
areal fraction of porosity is accompanied by a reduction in predictive error. Accordingly, we 
will focus our discussion to the aptitude of the three methods in the estimation of f, as this 
controls the values predicted for the other two quantities. Here, it is useful to draw 
comparisons from the study of Weiler et al. [24], in which the pores analysed by the authors 
were much smaller and more regularly shaped (fmax ≈ 0.06, Spherictymin ≈ 0.48) than those 
analysed in this study (fmax = 0.29, Spherictymin = 0.21). It is interesting to note that, for the case 

 

 
 
Fig.12 Limiting distribution of the minima of true strain (i,iii) and true stress (ii,iv). Shown is a 
visual comparison between the empirical CDF and the GEV CDF (i,ii) and the corresponding 
return level plots for the block minima data (iii,iv). 
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of ε, the predictive error of the Proj. Area method observed in this study (95.2 %) is 
substantially larger than that reported by Weiler et al. (22 % [24]). We may infer then that for 
large values of f, the probability that the fracture plane will deviate from the transverse plane 
increases as the sphericity of the pore decreases. Consequently, the predictive error of 
conventional 2D methods (i.e. Diameter, Proj. Area) also increases with decreasing sphericity. 
By alleviating the aforementioned spatial constraints, the Z-Project method is capable of 
estimating f to a superior degree of accuracy, regardless of how large or irregularly shaped 
these defects might be. This is confirmed by the similarity between the maximum error of the 
Z-Project method (fracture strain: 10.9 %, fracture stress: 8.9 %) and the maximum error 
obtained for the critical local strain model (fracture strain: 8.9 %, fracture stress: 8.3 %). 

Despite the strong agreement between the Z-Project and baseline predictions, there is still 
room for improvement within the bounds of the existing model. The observed error is likely 
attributed to the upper and lower bounds considered for the image superposition 
(±√𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/2). To further improve the characterization technique, a quantitative relationship 
shall be established between the spatial clustering of defects and the interaction of their 
mechanical fields. Undergoing work aims to understand this phenomenon, thus enabling a 
more rational upper and lower bound to be determined for the image superposition. This will 
further improve the accuracy of the proposed estimator. 

  

 

 

 

 

 

 

Fig.13. Tensile fracture properties predicted using the critical local strain model using values of f 
obtained via the Diameter, Proj. Area, and Z-Project methods respectively. Here the predicted 
values of the (i) true fracture strain ε and (ii) true fracture stress σ  are plotted against the 
experimental values obtained via tensile testing 
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Table.3. Average and maximum (parenthesised) errors associated with the prediction of f, ε, 
and σ for the Diameter, Proj. Area and Z-Project methods respectively.  

 

 Average Predictive error [%] 
 Diameter Proj. Area Z-Project 
Areal fraction of porosity, f 63.3 (90.0) 43.3 (66.7) 5.00 (11.8) 
True fracture strain, ε 180 (626) 95.2 (242) 6.22 (10.9) 
True Fracture stress, σ 18.4 (45.4) 12.2 (33.5) 4.11 (8.9) 

 

 

5. Conclusions 

i. A new estimator (Z-Project) is presented that can predict the areal fraction of 
porosity involved during tensile failure to a high degree of accuracy, far surpassing 
that of previous methods. 

ii. By coupling the Z-Project method with an existing model for the development of 
plastic instabilities, the true fracture strain and true fracture stress were predicted 
to within 10.9% and 8.9% error, respectively. This fares extremely well against its 
predecessor, for which maximum errors of 242% and 33.5% were reported for the 
fracture strain and fracture stress, respectively. The substantial difference in error 
was attributed to the misalignment of the fracture plane with respect to the 
transverse plane, which is expected to become more severe with increasing pore 
size and decreasing pore sphericity. This misalignment is captured by the Z-Project 
estimator but is neglected in conventional approaches.  

iii. The generalized extreme value function was used to model the upper tail of the 
defect size distribution. It was found that the limiting distribution of the maxima of 
defect size was best described by a Weibull distribution. It follows that the 
presence of defects following a Weibull distribution result in tensile fracture 
properties that also follow a Weibull distribution. This presents the opportunity to 
determine a finite upper bound for the maximum defect size, and thus a finite 
lower bound for the tensile fracture properties. 
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