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Abstract

This work studies the near-field localization problem using a symmetry uniform

linear array (ULA). To decouple the range and direction of arrival (DOA), by

exploiting the symmetry property of the array, two spatial correlation sequences

are constructed, where each sequence only corresponds to one parameter, i.e,

DOA or range. After decoupling, an attractive property is that the resulting

sequences still share the similar ULA spatial structure. To perform DOA es-

timation, two approaches have been developed. The first one is based on the

power of R (POR) method, which obtains the noise subspace without the eigen-

decomposition and prior information of the number of sources. The second one

is developed using atomic norm minimization, which eliminates the off-grid is-

sue. For range estimation, since the constructed sequence that corresponds to

the range parameter shares the same spatial structure with the DOA sequence,

the developed approaches are readily applied to obtain the range estimates.

The proposed approach is also studied under one-bit measurement to show its
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robustness. The numerical studies including simulation and real-world data

demonstrate the performance of the proposed method.

Keywords: Near-field localization, power of R, atomic norm, uniform linear

array

1. Introduction

Source localization is a fundamental problem in array signal processing such

as radar, sonar, and microphone, where the array geometry and phase infor-

mation are explored to obtain position information of targets [1], It is also a

building block for source tracking and source separations [2]. In terms of the5

distance of the source signal to the reference array, the source localization is

categorized as far-field and near-field localizations. For far-field localization,

the signal wavefront is assumed to be a plane wave, and therefore, only the

direction of arrival (DOA) of the source needs to be estimated. For near-field

localization, the signal wavefront is considered as a spherical wave, and hence,10

the position of the source depends on not only the DOA, but also the range of

the source of interest [3].

Over the past several decades, for the far-field source localization, i.e., DOA

estimation, the subspace based methods have been the primary choice. Clas-

sical algorithms include, multiple signal classification (MUSIC) [4], maximum-15

likelihood (ML) [5], subspace fitting [6], estimation of signal parameters via

rotational invariance techniques (ESPRIT) [7], and Min-Norm [8] have been de-

veloped and successfully applied to different applications. The core idea behind

those methods is that the signal subspace is orthogonal to the noise subspace,

and by that, the DOA information is extracted. More recently compressed sens-20

ing (CS) has been applied to DOA estimation as well [9, 10, 11, 12, 13, 14, 15].

The superior performance is reported by exploring CS concept, but for the fixed

dictionary methods, the off-grid issue is present. By utilizing atomic norm min-

imization, this issue is successfully avoided [15, 16].

For the near-field source localization, the problem becomes a two-dimensional25
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(2-D) estimation of range and DOA of the source. To perform efficient estima-

tion, Fresnel approximation is usually adopted to simplify the signal model [17].

Based on this, MUSIC [18], ESPRIT[19], and ML[20] are respectively developed

for the near-field source localization. However, the multidimensional search or

high-order statistics could be problematic. To decouple the range and the DOA,30

based on the symmetric property of the uniform linear array (ULA), the local-

ization is realized by a two-stage algorithm, namely DOA estimation is first

conducted and then followed by the range estimation. By doing so, the compu-

tational complexity is reduced[21, 17]. In each stage, the respective method can

be utilized to conduct estimation. For example, in [21], the linear prediction is35

employed, and in [17], the CS idea is utilized. It is of interest to mention that

a lot of studies are also devoted to the localization of the mixed far-field and

near-field sources [22, 23, 24], but this is not the focus of this work.

In the above discussions, one assumption implicitly made is that the infinite

resolution is employed, which means no quantization. The quantized measure-40

ments also enables the cost-effective approaches with a reasonable accuracy and

high sampling rate. In [25], one-bit DOA estimation is studied and the beam-

forming based method is developed to obtain the direction information. In [26],

the spatial and spectral information are used to perform one-bit DOA estima-

tion, but the off-grid issue degrades the performance. Based on support vector45

machine (SVM), a gridless one-bit DOA estimation approach is developed to

alleviate grid effect [27]. To the best of our knowledge, the study of near-field

localization using one-bit measurements is still missing. Therefore, it is impor-

tant to study its effect on the near-field localization performance.

In this work, the symmetric property of a ULA array is also exploited. In50

doing so, two special spatial correlation sequences are constructed in which each

sequence only corresponds to one parameter, DOA or range, and at the same

time, the resulting sequences still preserve the spatial structure of a ULA array.

Therefore, to obtain the DOA/range estimation, the traditional method MUSIC

can be applied and the search in one-dimension (1-D). In the traditional MUSIC55

method, the noise subspace is needed, which means the number of sources is
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required. To avoid that, subsequently, we propose to utilize the power of R

(POR) method to obtain the noise subspace without the eigendecomposition

and knowing the number of sources. The impacts of POR and finite snapshot

are also analyzed theoretically. Furthermore, to explore the sparse promotion60

technique, the atomic norm minimization is utilized to perform DOA/range

estimation by which the off-grid problem is avoided. The one-bit quantization

measurement is also studied to show the robustness of the proposed method.

Using the one-bit measurements, the spatial correlation sequences needed are

estimated and then the developed approaches such as POR and gridless method65

based atomic norm minimization are applied to perform near-field localization.

Finally, the experiments of simulated data and real-world data using microphone

array are conducted to demonstrate the localization performance of the proposed

approach.

The rest of the paper is organized as follows. The problem formulation of70

the near-field localization is presented in Section 2. Based on the signal model,

the algorithm developments based on POR and atomic norm are presented in

3. In Section 4, performance analysis including integer p and finite snapshot

in POR method is provided. The simulations for the proposed approach are

presented to demonstrate the effectiveness of the proposed approach in Section75

5. Finally, this paper concludes with a brief summary in Section 6.

2. Problem Formulations

The array geometry is given in Figure 1, where the uniform linear array

(ULA) is symmetric about the origin that is also the phase reference of the

array. In the near-field scenario, namely the ranges of sources are in the Fresnel

region [0.62(D
3

λ )
1
2 , 2D

2

λ ], where D and λ respectively indicate the aperture of

the array and the wavelength, the received signal by the mth sensor at time t is

ym(t) =

K∑
k=1

sk(t) exp (j
2π

λ
(`m,k − `k)) + wm(t),m = −M − 1

2
, · · · , M − 1

2

(1)
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where K and M respectively indicate the number of narrowband sources and

that of sensors, λ is the wavelength, wm(t) denotes the additive noise, and

`m,k is the distance between the kth (k = 1, 2, · · · ,K) source and the mth

(m = −M−12 , · · · , M−12 ) sensor, given by

`m,k =
√
`2k +m2d2 − 2md`k sin(θk), (2)

where `k is the distance between kth source and the reference sensor, d is the

spacing of sensors, and θk is the direction of arrival (DOA).

In a matrix form, (1) is rewritten as

y(t) =

K∑
k=1

aθ,r(θk, `k)sk(t) + w(t), t = 1, · · · , T (3)

where y(t) = [y−M−1
2
, · · · , y0, · · · , yM−1

2
]T is the measurement at the sensor80

positions of [p−M−1
2
, · · · , p0, · · · , pM−1

2
]T, aθ,r(θk, `k) is the steering vector with

θk and `k representing the DOA and range of the kth source, and T is the

number of snapshots.

Finally, utilizing the array manifold representation of Aθ,r(θ, r) = [a(θ1, `1), · · · ,a(θK , `K)],

(3) in a matrix form is

y(t) = Aθ,r(θ, r)s(t) + w(t), (4)

where s(t) = [s1(t), · · · , sK(t)]T is the source vector.

The objective of source localization is to determine the DOA θk and range

`k. However, due to nonlinear relationship in (2), the Fresnel approximation is

usually utilized [28] i.e.,

`m,k = `k −md sin(θk) +m2d2
cos2(θk)

2`k
. (5)
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Figure 1: Illustration of array geometry and source placement.

With this approximation, the phase term in (1) is simplified as

τm,k =
2π

λ
(`m,k − `k) ≈ −m2πd

λ
sin(θk) +m2πd

2

λ`k
cos2(θk)

= mϑk +m2ϕk,

(6)

where ϑk = − 2πd
λ sin(θk) and ϕk = πd2

λ`k
cos2(θk).85

Substituting (6) into (1), one obtains

ym(t) =

K∑
k=1

sk(t) exp (j(mϑk +m2ϕk)) + wm(t). (7)

Utilizing the matrix notation again, the received array signal is

y(t) = x(t) + w(t) = Aϑ,ϕ(ϑ,ϕ)s(t) + w(t), (8)

where Aϑ,ϕ(ϑ,ϕ) = [a(ϑ1, ϕ1), · · · ,

a(ϑK , ϕK)]T with aϑ,ϕ(ϑk, ϕk) = [e−j
M−1

2 ϑkej(
M−1

2 )2ϕk , · · · , 1, · · · , ejM−1
2 ϑkej(

M−1
2 )2ϕk ]T,

and s(t) and w(t) respectively denote the source and noise vectors. It is of in-

terest to point out that based on model of (8), two-dimensional (2D)-MUSIC

can be applied directly. However its complexity is high due to the 2D search.90
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3. Algorithm Developments

3.1. Signal Conversion

Prior to developing the algorithm, the following assumptions are made, which

are commonly used in practice, and they are

(A1) The sources are mutually independent and independent identically dis-95

tributed (i.i.d.) complex circular random variables with zero mean and covari-

ance matrix E(s(t)sH(t)) = diag(σ2
1 , · · · , σ2

K), where σ2
k is the signal power of

the kth signal.

(A2) The noise is uncorrelated with the sources and is a spatially white

Gaussian process with zero mean and covariance matrix E(w(t)wH(t)) = σ2
wI,100

where I is an identity matrix and σ2
w is the noise variance.

Utilizing those assumptions, the spatial correlation of the mth and the nth

sensors are calculated by

r(m,n) = E(ym(t)y∗n(t))

=

K∑
k=1

σ2
k exp(j(m− n)ϑk + j(m2 − n2)ϕk) + σ2

wδ(m− n),
(9)

where ∗ indicates the conjugate operation and δ(·) is the Dirac function.

From (9), a more general spatial correlation is defined as

r(αm+ β, µm+ ν) = E(yαm+β(t)y∗µm+ν(t))

=

K∑
k=1

σ2
k exp(j((α− µ)m+ β − ν)ϑk + j((α2 − µ2)m2 + 2(αβ − µν)m+ (β2 − ν2))ϕk)

+ σ2
wδ((α− µ)m+ β − ν),

(10)

where α, β, µ, ν are integers.

Two special correlations are produced from (10). First, let α = 1, β = 0, µ =
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−1, ν = 0, the following correlation sequence is obtained

r1(m,−m) =

K∑
k=1

σ2
k exp(j2mϑk) + σ2

wδ(2m). (11)

It is observed that by doing so, the term involving ϕk is removed in the expo-

nential and only the term of ϑk is preserved. By the similar thinking, a second

special correlation sequence is constructed that only preserves the term of ϕk.

To that end, let α = µ = 1, β = 1, ν = −1, the second special correlation

sequence is produced

r2(m+ 1,m− 1) =

K∑
k=1

σ2
k exp(j2ϑk + j4mϕk). (12)

Using the matrix representation, (11) is rewritten as

r1 = Aϑ(ϑ)rs + σ2
we, (13)

where r1 = [r(0, 0), r(1,−1), · · · , r(M−12 ,−M−12 )]T, rs = [σ2
1 , · · · , σ2

K ]T, e =

[1, 0, · · · , 0]T, and the array manifold Aϑ(ϑ) = [aϑ(ϑ1), · · · ,aϑ(ϑK)] with the105

steering vector aϑ(ϑk) = [1, ej2ϑk , · · · , ej2M−1
2 ϑk ]T.

In a similar fashion, using the matrix form, (12) is rewritten as

r2 = Aϕ(ϕ)r̃s, (14)

where r2 = [r(1,−1), r(2, 0), r(3, 1) · · · , r(M−12 , M−12 −2)]T, r̃s = [σ2
1e
j2ϑ1 , · · · , σ2

Ke
j2ϑK ]T

and the array manifold Aϕ(ϕ) = [aϕ(ϕ1), · · · ,aϕ(ϕK)] with the steering vec-

tor aϕ(ϕk) = [1, ej4ϕk , · · · , ej4(M−1
2 −1)ϕk ]T. Let αk = 2ϕk, the steering vector

can be reexpressed as aα(αk) = [1, ej2αk , · · · , ej2(M−1
2 −1)αk ]T. With this, (14)

becomes

r2 = Aα(α)r̃s, (15)
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It is noted that Aϑ(ϑ) and Aα(α) have the same structure, and therefore, using

a new variable ω, (13)/(15) is presented in a unified framework as

r = Aω(ω)r̄s + σ2
wē, (16)

where Aω(ω) = [aω(ω1), · · · ,aω(ωK)], where ω could be ϑ in (13) or α in

(15). According to equations of (13) and (15), ē in (16) either e or a all-zero

vector, and correspondingly, r̄ is either rs or r̃s. It is also of interest to note

that to form the second special correlation, other choices are possible as well110

[29, 21], for example, the choice of α = µ = 1, β = 0, ν = 1 can also achieve the

same objective. To estimate the DOA and range, in this work, the two-stage

process is developed where the DOA is estimated based on (13) and range is

obtained given (15). Since two models share the same spatial structures, the

same procedure can be applied to either sequence to obtain the DOA/range.115

Therefore, the notation of r without the subscript is utilized in the following

algorithm developments. In what follows, two approaches are developed: the

first one is based on the traditional subspace method, i.e., POR algorithm and

the other is based on sparse signal reconstruction method, i.e., atomic norm

minimization.120

3.2. Proposed Subspace Algorithm

It is now evident from (16) that the DOA and range estimations can be

realized by the well-known MUSIC algorithm. The pseudo covariance matrix,

denoted by Rr, is calculated by

Rr = rrH. (17)

It is of interest to note that the rank of Rr equals to the number of sources.

Exploiting the eigen value decomposition (EVD), the matrix Rr is decomposed
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as

Rr = [Us Un]

 Σs + σ2
wI 0

0 σ2
wI

 UH
s

UH
n

 , (18)

where Us = [u1, · · · , uK ] and Un = [uK+1, · · · , uN ] respectively indicate the

signal subspace and noise subspace, and Σs = diag{λ21, · · · , λ2K}. Note that

in the case of signal model (16), since e has only one nonzero element σ2
w, the

eigenvalues of eeH has one nonzero component σ4
w. However, in practice, due to125

limited snapshots, this perfect condition rarely happens. Therefore, the generic

model in (18) is still utilized. The effect of limited snapshots will be analyzed

by perturbation theory in section 4.

The subspace theory states that the signal subspace is orthogonal to the noise

subspace, and based on this, the estimates of ϑ and α utilizing one-dimensional

(1D)-MUSIC are

{ϑ̂, α̂} = arg maxω
1

aH
ω (ω)UnUH

naω(ω)
, (19)

where aω(ω) = [1, ej2ω, · · · , ej2(M−1
2 −1)ω]T in which the variable ω acts the

universal surrogate for variables ϑ and α.130

The issue of utilizing (12) is to obtain the dimension of the subspace, which

can be difficult in practice because the number of sources is required to separate

the signal and noise subspaces. To avoid directly employing the EVD, the power

of R (POR) technique [30, 31] is utilized. From (18), the following relation holds

σ2p
w R−pr = UnUH

n + Usdiag

{(
σ2
w

λ2i + σ2
w

)p}
UH
s , (20)

where p is a positive integer.

From (20), it is obvious that
(

σ2
w

λ2
i+σ

2
w

)
is less than one and it approaches

zero as p→∞. That is,

lim
p→∞

σ2p
w R−pr = UnUH

n . (21)
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For specific analysis of (21), the more information is provided in Section 4.1.

With this property, the DOA and range estimations can be written without

the use of EVD as

{ϑ̂, α̂} = arg maxω
1

aH
ω (ω)R−pr aω(ω)

. (22)

It is seen that with (22), once the estimations of ϑ and α are obtained, the final

DOA and range values can be simply calculated by

θ̂ = arcsin

(
−λϑ̂
2πd

)
,

ˆ̀=
2πd2 cos2(θ̂)

λα̂

(23)

Clearly, the special spatial correlation sequences are formed at the cost of the

array aperture, which in turn may impact the performance of the subspace-based

approach. In what follows, the sparsity of the DOA and range are explored,135

which allows one to achieve super-resolution. In the estimation process, the

pairing technique needs to be utilized to determine the correct pair of (θ̂k, r̂k),

and available methods in [32, 33] can be easily applied to conduct the pairing.

3.3. Proposed Atomic Minimization

It is easy to notice that the incoming signals with directions (θ1, r1), · · · , (θK , rK)

only occupy certain isolated points in the spatial domain, meaning that the in-

coming sources are sparse. To exploit that sparsity, the spatial domain can

be derived by sampling grid (θ, r), where θ = [θ1, · · · , θl, · · · , θJ ]T and r =

[r1, · · · , rl, · · · , rJ ]T with J indicating the number of grids [34]. Using this idea,

(16) becomes

r = Aγ(γ)u + σ2
we, (24)

where Aγ(γ) = [aγ(γ1), · · · ,aγ(γK)]T and u is a sparse vector.140

11



By utilizing the sparse property of u, the following optimization is devised

minimizeu ‖r−Aγ(γ)u‖22 + λ‖u‖1, (25)

where ‖·‖2 is the `2-norm to measure the data fidelity and ‖·‖1 is the `1-norm to

promote sparse solution. Once u is obtained, its nonzero components produce

the estimations of the DOA and range.

This so-called grid-based approach inherits a flaw that the sampling grid

sometimes does not match the true location of the source, which creates the

off-grid problem. When that happens, as expected, the performance of the

grid-based one deteriorates significantly. Even though there are some methods

developed to migrate this issue, their effects remain to be seen. To address this

issue, we untilize, the atomic norm minimization [12, 13, 14, 35]. With that

spirit, (16) is rewritten as

r =

K∑
k=1

Akνk + σ2
we, (26)

where νk = [1, ejνk , ej2νk , · · · , ej(
(M−1)

2 −1)νk ]T with νk = ϑk or νk = αk. To

estimate ν, based on atomic norm, the following optimization is devised

minimizei ‖r− i‖22 + τ‖i‖A, (27)

where i =
∑K
k=1Akνk and ‖ · ‖A is the atomic norm, which is defined by

‖i‖A = inf

{∑
l

cl : i =
∑
l

clν(fl), cl > 0,ν(fl) ∈ A

}
, (28)

where A is a collection of atoms and ν(fl) = [1, ejfl , ej2fl , · · · , e−j(
(M−1)

2 −1)fl ]T .

To efficiently solve the atomic norm, it can be transformed into the following

12



semidefinite programming (SDP) [12]

‖i‖A = minimizet,u
1

2
(t+ u1)

subject to

 T (u) i

iH t

 � 0,
(29)

where T (u) is an N ×N Toeplitz matrix, given by

T (u) =


u1 u2 · · · uN

u∗2 u1 · · · uN−1
...

...
...

...

u∗N u∗N−1 · · · u1

 , (30)

where ui is the ith component of u.145

By utilizing the SDP formulation in (29), the optimization problem (27) can

be transformed as

minimizet,u,i τ(t+ u1) + ‖r− i‖22

subject to

 T (u) i

iH t

 � 0.
(31)

To efficiently solve (31), the existing solver of CVX [36] is utilized to produce

the solutions.

3.4. One-bit DOA and range estimation

From the received signal in (7), its one-bit quantization is given by

ycm(t) =
1√
2

csgn{ym(t)} =
1√
2
{sgn(Re(ym(t))) + jsgn(Im(ym(t)))} (32)

13



where Re(·) and Im(·) take the real and imaginary parts of ym(t) and sgn(·) is

a sign function, given by150

sgn(t) =

 1, if t ≥ 0

−1, if t < 0

By arcsine law [37], the auto-correlation of ycm(t), denoted by rc(m,n) =

E(ycm(t)yc∗n (t)), is related to r(m,n) by the following equality

rc(m,n) =
2

π
{arcsin {Re(r(m,n))}+ j arcsin {Im(r(m,n))}}. (33)

According to polarity coincidence correlator (PCC)[38], one obtains

r(m,n) = sin {π
2
Re(rc(m,n))}+ j sin {π

2
Im(rc(m,n))}. (34)

In a vector form, the reconstructed correlation sequence is

r̂ = sin {π
2
Re(rc)}+ j sin {π

2
Im(rc)}, (35)

where rc is the spatial correlation calculated from one-bit measurement ycm(t)

using different array sensors.

It has been shown that rc is the best estimate of the original correlation r

[25]. After the corresponding r̂ is recovered using one-bit measurements, the

proposed algorithms are ready to apply to perform estimations.155

4. Performance Analysis

In this section, the POR based approach including the effects of parameter

p and finite snapshots is analyzed.

4.1. Effect of parameter p

Lemma 1: When p→∞, equation (21) holds, which indicates that the POR160

approach attains the MUSIC performance.
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Proof: The similar procedure in [30] is utilized. From the EVD, the inverse

of Rr is

R−1r =
1

σ2
w

UnUH
n + Usdiag

{
1

λ2i + σ2
w

}
UH
s . (36)

Based on (36), one obtains

R−pr =
1

σ2p
w

UnUH
n + Usdiag

{
1

(λ2i + σ2
w)p

}
UH
s . (37)

From Taylor expansion, the term of 1
(λ2

i+σ
2
w)p

is approximated by

1

(λ2i + σ2
w)p
≈ 1

λ2pi
− pσ2

w

λ
2(p+1)
i

. (38)

Substituting (38) into (37) produces

σ2p
w R−pr = UnUH

n + UsΣ
−p
s UH

s + σ2(p+1)
w pUsΣ

−(p+1)
s UH

s . (39)

It is obvious that when p→∞, equation (21) follows. In that case, the MUSIC

performance is attained. However, when p is finite, from (39), the energy from165

signal subspace will leak into the noise subspace, and when that happens, the

performance of POR deteriorates, see simulation section for more insights. In

the case of p = 1, this corresponds the Capon beamforming.

The equation (19) is equivalent to

ω̂ = arg minωf(ω), (40)

where f(ω) = aH
ω (ω)UnUH

naω(ω). By a use of the result in [4], the covariance

matrix of estimation errors {ω̂ − ω} using MUSIC algorithm is

CMUSIC =
2σw
M − 1

(H� I)−1Re{H� (AωUAω)T }(H� I)−1, (41)
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where � denotes the element-wise product and H = DUnUH
nD in which D is

the first derivative of steering vector. In (41), U is given by

AωUAω = P−1 + σwP−1(AωAω)−1P−1, (42)

where P is the covariance matrix of r̄s.

Following the similar procedure, the covariance matrix of estimation error

using POR based approach is

CPOR =
2σw
M − 1

(H̄� I)−1Re{H̃� (AωUAω)T }(H̄� I)−1, (43)

where H̄ = DR−pr D and H̃ = DR−2pr D.170

It is seen that when p is finite, CPOR � CMUSIC, which means that the

performance of the proposed POR is inferior to that of MUSIC. However, the

performance gap vanishes as p grows, as shown in the simulations.

4.2. Effect of limited snapshots

In reality, the special correlation sequences are calculated using a finite num-

ber of snapshots, which means that the covariance matrix Rr deviates from true

value. By using the perturbation analysis, the effect of finite snapshots are stud-

ied. The deviation is denoted by ∆Rr, and the perturbed covariance matrix is

Rr + ∆Rr. With this, (22) is rewritten as

ω̂ = arg minω aH
ω (ω)(Rr + ∆Rr)

−paω(ω). (44)

Applying Taylor expansion, (Rr +∆Rr)
−1 is approximated up to the first order

by

(Rr + ∆Rr)
−1 ≈ R−1r −R−1r ∆RrR

−1
r

(45)
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Based on (45), (Rr + ∆Rr)
−p is

(Rr + ∆Rr)
−p ≈ R−pr −

p∑
k=1

R−kr ∆RrR
(−p+1−k)
r (46)

Substituting (46) into (44), one obtains

ω̂ = arg minω aH
ω (ω)

(
R−pr −

p∑
k=1

R−kr ∆RrR
(−p+1−k)
r

)
aω(ω)

= arg minω aH
ω (ω)R−pr aω(ω)− aH

ω (ω)

(
p∑
k=1

R−kr ∆RrR
(−p+1−k)
r

)
aω(ω).

(47)

The first term in (47) is the POR, which attains the MUSIC performance when

p → ∞. However, the existence of the second term degrades the performance.

Consider a special case, where ∆Rr = I and p = ∞, and we only take the

first component in
(∑p

k=1 R−kr ∆RrR
(−p+1−k)
r

)
into calculation. After some

algebra, (47) becomes

ω̂ = arg minω − aH
ω (ω)Usdiag

{
1

λ2i + σ2
w

}
UH
s aω(ω). (48)

It is obvious that using (48) will not produce the correct estimates.175

In the case of limited snapshot, the covariance matrix CPOR becomes

CPOR =
2σw
M − 1

(H̄� I)−1Re{H̃� (AωUAω)T }(H̄� I)−1, (49)

where ¯̄H = D(Rr + ∆Rr)
−pD and ˜̃H = D(Rr + ∆Rr)

−2pD.

It is obvious that when the snapshot is limited, CPOR � CMUSIC. As the

number of snapshot approaches infinity, i.e., N → ∞, the performance of the

POR based method is asymptotically close to the MUSIC.

4.3. Complexity analysis180

In this subsection, we compare the complexities of the proposed POR and

atomic norm based algorithms with that of the MUSIC algorithm and Grid
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matching algorithms. For 1D-MUSIC, in the angle dimension, it involves the

EVD decomposition of Rr of size (M + 1)× (M + 1) and requires O{(M+1)3}

operations. After that, for the peak search, its complexity is O{Nθ(M+1)(M+

1 − K)}, where Nθ represents the angle grid search. In the range dimension,

the EVD takes O{M3} and the peak search needs O{NrM(M −K)}, where Nr

represents the range grid search. Therefore, the total complexity of 1D-MUSIC

is

C̄MUSIC = O{(M + 1)3 +Nθ(M + 1)(M + 1−K) +M3 +NrM(M −K)}

≈ O{2M3 +NθM
2 +NrM

2}.

(50)

For the POR method, it is very much the same to the MUSIC, and it is

C̄POR = O{2M3 +NθM
2 +NrM

2}. (51)

In the sparsely reconstructed grid matching algorithm, the computational

complexity of the algorithm consists of two parts. First, the angle grid is con-

structed, and its computational complexity is O{(M + 1)2Nθ}. Second, the

CVX toolkit is used to produce the solution, and the complexity of the pro-

cess is O{2N2
θ }. The range dimension can be conducted similarly. The total

computational complexity of the grid matching algorithm is

C̄Grid matching = O{(M + 1)2Nθ + 2N2
θ +NrM

2 + 2N2
r }. (52)

The proposed atomic norm algorithm is to solve the problem of weighted atomic

norm minimization, and its complexity is

C̄Atomic norm = O{i(M + 1)3 + iM3}, (53)

where i represents the number of iterations. In Table 1, the complexities of

each algorithm are summarized, and in Table 2, the running times of different

18



Table 1: Complexities of Algorithms

MUSIC O{2M3 +NθM
2 +NrM

2}
POR O{2M3 +NθM

2 +NrM
2}

Grid matching O{(M + 1)2Nθ + 2N2
θ +NrM

2 + 2N2
r }

Atomic norm O{i(M + 1)3 + iM3}

methods versus number of microphones are also provided.

5. Numerical Results

5.1. Simulations185

In this section, the simulated data are used to demonstrate the effectiveness

and accuracy of the proposed algorithm and comparisons with other methods

are also provided. To objectively evaluate the system performance, mean square

error (MSE) is used. In the experiments, the wavelength is λ = 1, the spacing

between the sensors is d = λ
4 , and the number of sensors is M = 15.190

First, the comparisons between POR and MUSIC approaches are conducted.

For this comparison, two narrow-band near-field source signals with their posi-

tions at (10◦, 2λ) and (60◦, 12λ) are generated. The estimated results obtained

by MUSIC, POR (p = 1), Capon, and ESPRIT algorithms are depicted in Fig-

ure 2. In order to clearly observe the estimation results, estimated results of195

10 independent runs from two subspace approaches are provided. From figures,

the classical MUSIC algorithm in Figure 2a and POR algorithm in Figure 2b,

it is seen that both of them are able to obtain the accurate positions of true

sources. But unlike MUSIC method POR approach does not require the number

of sources and EVD decomposition.200

To further demonstrate the performances of the POR method, in Figure

3, the MSEs of the DOA and range obtained by POR method with different

values of p versus SNR are provided. In this case, two scenarios of full-bit and

one-bit measurements are presented. It is expected, performance increases as

SNR increases and they all approach the theoretical bound Ctheoretical that is205
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calculated by (43). It is observed that p does not play a deciding role as the POR

method with different values of p presents a comparable performance, except

when SNR is low. Therefore, in the following experiments, the POR method

with p = 1 is utilized, unless stated otherwise. It is also of interest to point out

that with one-bit measurement, the corresponding spatial correlation sequence210

is reconstructed by (35) first, and estimation is carried out by POR method

and the theoretical bound is calculated. With less information, one-bit to be

exact, the performance degradation is noticed, but its estimation still attains

the theoretical bound.

In Figure 4, the MSEs of different approaches are compared against snap-215

shots in the case of full-bit and one-bit measurements. From the figure, the

Grid-off it the worst due to the presence of the off-gird. The MSEs of MUSIC

and POR methods overlap, which agrees with the theoretical analysis when the

snapshot is moderate. With one-bit measurement, the Grid matching approach

achieves a perfect estimate when the snapshot exceeds 250 in terms of DOA220

estimation, demonstrated in Figure 4a. The atomic norm based method offers

a promising performance in both scenarios.

Finally, in Figure 5, the MSEs of different approaches are compared in the

case of full-bit and one-bit measurements. From the figure, the Grid-off performs

the worst because of the presence of the off-gird, which is also consistent with225

the conclusion in Figure 4. The MSEs of MUSIC and POR methods overlap,

suggesting they produce the same performance, which agrees with the theo-

retical analysis when the SNR/snapshot is moderate, they present the similar

performances. With full-bit measurement, the Grid matching approach achieves

a perfect estimate when the SNR exceeds 10 dB, demonstrated in Figure 5a.230

With one-bit quantization, however, the Grid matching approach deteriorates.

The atomic norm based method offers a promising performance in both sce-

narios and it approaches the CRB. The running times of different methods are

provided in Table 2, using a Intel Dual Core i3 with CPU 2.4 GHz and MAT-

LAB. The results show that the MUSIC and POR execute similarly in time.235

In a comparison of sparse reconstruction based method, the atomic norm based
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Figure 2: Near-field source localization with snapshots 100 and SNR=10dB. (a)
MUSIC, (b) POR, (c) Capon, (d) ESPRIT.
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Figure 3: Performance evaluations of the POR method versus SNR. (a) DOA
with full-bit measurement, (b) DOA with one-bit measurement, (c) Range with
full-bit measurement, (d) Range with one-bit measurement.
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Figure 4: MSEs of different methods versus snapshots. (a) MSEs of DOA with
full-bit, (b) MSEs of DOA with one-bit, (c) MSEs of range with full-bit, (d)
MSEs of range with one-bit.

5.2. Real-world data

The real data are collected by a microphone array that is custom-made in

our laboratory, where the array consists of five microphones and it is mounted240

at the bottom of a display and the spacing of sensors is 7 cm. The data ac-

quisition layout is depicted in Figure 6. A single tone signal with frequency
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Figure 5: MSEs of different methods versus SNRs. (a) MSEs of DOA with
full-bit, (b) MSEs of DOA with one-bit, (c) MSEs of range with full-bit, (d)
MSEs of range with one-bit.

Table 2: Running times of different methods versus number of sensors (seconds)

M 3 5 7 9
MUSIC 1.012 1.536 2.563 4.807
POR 1.012 1.636 2.722 4.907

Grid matching 3.917 5.773 7.088 7.296
Atomic norm 1.503 1.761 2.153 2.721
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1kHz is placed at (30◦, 0.68m) to act a single source and recording duration

is 10 seconds. Another single tone signal with frequency 2kHz is placed at

(60◦, 0.85m) to act another single source and recording duration is 10 seconds.245

Finally, two single tone signals play simultaneously to generate multiple sources

and the recording duration is also 10 seconds. From a simple calculation, the

wavelengths of two sources are λ1 = 0.34m and λ2 = 0.17m, which means the

source positions are (30◦, 2λ1) and (60◦, 5λ2). The estimated results obtained by

different approaches are provided in Figure 7. It is observed that all approaches250

are able to produce the estimated positions that match the true one well. In

what follows, the case of broadband near-field is studied. A 16kHz sampled sin-

gle speech signal is placed at (30◦, 0.68m) for a recording duration of 7 seconds,

and another 16kHz sampled single speech signal is placed at (60◦, 0.85m) with

a recording time of 7 seconds. Finally, the mixed speech signals of the those255

two are also collected with the same duration is 7 seconds. In the experiment,

the minimum wavelength of the two speech signals is given by λ3 = 340/8000,

which means the source positions are at (30◦, 16λ3) and (60◦, 20λ3) by a simple

calculation. The broadband near field estimation results obtained by different

methods are provided in the Figure 8, where the positions are displayed in terms260

of λ3. Obviously, all methods are also able to obtain the positions of sources

in broadband near-field source location. However, the POR approach does not

require knowing the number of sources and EVD, which is more practical in

real applications, whereas the atomic norm based approach does not need to

construct the grided dictionary, which eliminates the off-grid issue.265

6. Conclusion

To perform near-field source localization, in this work, based on subspace

theory and sparse signal reconstruction theory, two approaches are devised to

obtain DOA and range information in a two-stage manner. To that end, by a

use of symmetry property of the ULA, two special sequences are constructed270

and each sequence only depends on one unknown parameter. Because of this
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Figure 6: Experimental setup.

decouple operation, the computational complexity is obviously reduced since

the search only confines to one parameter. In addition to the usual noise effect

experiments, the proposed method is also examined under the case of one-bit

quantization. The numerical studies including simulation and real-world data275

are provided to demonstrate that the proposed approach is able to localize the

sources when they are in near-field.
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