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 Abstract—This paper focuses on optimal voltage regulators 
(VRs) planning to maximize the photovoltaic (PV) energy 
integration in distribution grids. To describe the amount of 
dynamic PV energy that can be integrated into the power system, 
the concept of PV accommodation capability (PVAC) is 
introduced and modeled with optimization. Our proposed 
planning model is formulated as a Benders decomposition based 
bi-level stochastic optimization problem. In the upper-level 
problem, VR planning decisions and PVAC are determined via the 
mixed integer linear programming (MILP) before considering 
uncertainty. Then in the lower-level problem, the feasibility of 
first-level results is checked by critical network constraints (e.g. 
voltage magnitude constraints and line capacity constraints) under 
uncertainties raised by time-varying loads and PV generations. In 
this paper, these uncertainties are represented in the form of 
operation scenarios, which are generated by the Gaussian copula 
theory and reduced by a well-studied backward-reduction 
algorithm. The modified IEEE 33-node distribution grid is utilized 
to verify the effectiveness of the proposed model. The results 
demonstrate that PV energy integration can be significantly 
enhanced after optimal voltage regulator planning.  

Index Terms—Voltage regulator planning, photovoltaic energy 
integration, bi-level stochastic optimization problem, critical 
network constraints, uncertainties 

I. INTRODUCTION

S an emerging solution to solve the energy crisis and 
reduce greenhouse gas emission, distributed photovoltaic 

(PV) generation system has become much popular in recent 
years [1-5]. In this paper, we investigate the financial incentives 
(or monetary benefit) for PV energy integration. The concept of 
“incentive-based PV energy integration” can be construed as 
the subsidy-based PV energy integration. Under this 
mechanism, the owner of PV generators, i.e., the distribution 
system operator, receives a certain amount of financial reward 
for providing PV energy to the power grid. The distribution 
system operator is motivated to accept an incentive program in 
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which they see additional revenue sources [6, 7]. However, the 
uncertain PV output presents significant uncertainties to the 
power grids. Besides, the over-proliferation of PV generators 
brings about various negative effects on normal operating 
conditions for grids [8], which directly affects the capability of 
hosting PV integration. In this regard, the grid planners need a 
reasonable and effective method to improve the PV energy 
integration to ensure no violations of normal distribution grid 
operation constraints [9], especially voltage magnitude 
violations and line capacity violations. 

In this paper, the PV accommodation capability (PVAC) is 
introduced to describe how much PV generations can be 
accommodated by a grid within a certain time slot. Several 
methods have been proposed to improve PV energy penetration 
in the distribution grids. One of the popular methods is based 
on Monte Carlo simulation [10], where stochastic analysis is 
presented to evaluate the PVAC. Other methods are based on 
optimization techniques, which have many real-life 
applications in different fields, like Refs. [11-16]. Besides, an 
optimization-based method is proposed in Ref. [17] to consider 
both technical and economic aspects of renewable hosting 
capacity enhancement. There are many real-life applications of 
optimization techniques in different fields. For example, the 
work in Ref. [18] presents a method to increase the PV hosting 
capacity of the low-voltage network. The method consists of 
voltage droop control to efficiently control the active medium-
voltage to low-voltage transformers in the condition of high PV 
energy integration. To facilitate the integration of solar PV in 
small-scale systems, optimal scheduling regimes (e.g. [19]) and 
specific energy management methods (e.g. [20, 21]) can be 
employed to settle the induced uncertainties. From demand 
response perspective, Ref. [22] provides a multi-objective and 
multi-period nonlinear programming optimization model, 
where the demand response is utilized to enhance the system 
ability to hold PV generations and decrease the active power 
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losses at the meantime. In Ref. [23], in terms of voltage 
sensitivity analysis results, a novel voltage control method is 
developed to improve the accommodation capability of PV 
energy via energy storage system management. Ref [24] aims 
to improve the renewable hosting capacity by optimal 
coordinated operation of the on-load tap changer and static var 
compensators in the distribution system. Nevertheless, to 
improve renewable accommodation capability, most of the 
existing works only study short-term operation strategies rather 
than considering long-term planning of advanced devices such 
as voltage regulators. Since the PV power integration increases 
continuously, the distribution grid owner needs a considerate 
way to improve the ability of the network to absorb PV 
generation. Hence, the PVAC improvement can be considered 
from the long-term perspective. 

Optimal voltage regulator (VR) planning is an effective 
approach to enhance the PVAC in the distribution grid since VR 
can regulate voltage magnitude. The VR is known as the step 
voltage regulator and includes an autotransformer [25]. During 
the voltage regulation process, the voltage magnitude variation 
can be obtained by changing the number of turns (tap changers) 
of the series winding of the autotransformer. VR has many 
advantages, especially fast and efficient operation metrics [26]. 
To some extent, VR can address the voltage fluctuation 
problem caused by renewable energy and thus has an influence 
on PVAC enhancement by alleviating overvoltage violations. 
However, some classical works [27-30] related to VR planning 
overlook the potential of VR planning for improving the PVAC. 
Therefore, this paper endeavors to improve the PVAC via 
optimal VR planning in distribution grids. 

In this paper, a novel bi-level optimization based VR 
planning model is proposed for the incentive-based PV energy 
integration maximization. The proposed optimization model is 
formulated as a Benders decomposition based bi-level problem. 
In the upper-level problem, VR planning decisions and PVAC 
are determined via the mixed integer linear programming. Then 
in the lower-level problem, the feasibility of first-level results 
is checked by critical network constraints (e.g. voltage 
magnitude constraints and line capacity constraints) under 
uncertainties including load and PV generation. To represent 
these uncertainties, operation scenarios are generated and 
selected by the Gaussian copula theory and a well-studied 
backward-reduction algorithm, respectively. The modified 33-
node distribution grid is utilized to verify the effectiveness of 
the proposed model and solution method. The results 
demonstrate that hourly PVAC can be significantly enhanced 
with optimal VR planning. The major contributions of this 
paper are summarized in threefold as below: 

1) The main contribution of this work is the investigation on
the potential benefits from optimal VR planning, as an option 
to improve the PV energy integration of distribution grids. This 
work has a practical significance by considering the widespread 
application of VRs in power systems. 

2) Instead of using conventional time-consuming simulation-
based methods to evaluate the hourly amount of PV energy that 
can be integrated into the distribution grids, this paper 
introduces the concept of PVAC, which is modeled by the 

optimization context and incorporated into the objective 
function. 

3) To maintain the safety and reliability of the distribution
grid operation, two criteria are introduced, i.e., voltage variation 
and line capacity. Then the stochastic programming-based 
feasibility check model is proposed to guarantee the security of 
distribution grids for any considered operation scenarios. 

NOMENCLATURE 

Symbol Description 

Index/set of times 
Index/set of uncertainty scenarios 
Index/set of nodes 

 Index/set of child nodes 
 Index of piecewise linearization approximation method 

Sets for the quadratic term representing active/reactive 
power 
Reactive PV output 

Node voltage magnitude 

Voltage magnitude at the point of VR installation 

Active/Reactive power flow 

Quadratic terms of active/reactive power flow 

Binary decision variable for VR installation status 

Binary decision variable for PV energy connection 

Size of PV energy integration 

Auxiliary variable representing the bilinear term 

Slack variables for voltage constraints 

Slack variable for line capacity constraints 

VR investment cost ($) 

VR operating and maintenance cost ($/day) 

Subsidy for PV generation integration 

Penalty coefficient for voltage deviation and overload 
($/p.u.) 
Probability of scenario 

VR planning budget 

PV generation factor (ratio of the PV accommodation 
capability) 

 Daily capital recovery factor for VR 
Resistance/Reactance of the distribution line 

Power factor angle for PV power systems 

Active/Reactive load 

Minimum/Maximum voltage magnitude 

 Maximum active/reactive power flow 

Distribution line/Substation capacity 

Upper bound of reactive PV output 
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The remainder of this paper is organized as follows: Section 
II provides the system modelling. Section III introduces the 
problem formulation and solution method. The case study is 
demonstrated in Section IV. Section V includes concluding 
remarks. 

II. SYSTEM MODELLING

A. Uncertainty Consideration
During the decision-making process of VR planning,

uncertainties arising from load and PV generation should be 
duly considered. In this paper, these two uncertainties are 
described in the form of operation scenario, where the load can 
be fitted by the normal distribution [31] in the long term, while 
the PV generation is highly related to the solar irradiance, which 
is usually modeled by Beta distribution [32]. With distribution 
information, the Gaussian copula theory [33] is employed to 
generate standard Gaussian random variables, which can be 
transformed into operation scenarios by the inverse transform 
method [34]. 

Generally, the obtained solution becomes robust with more 
operation scenarios considered. However, solving optimization 
problems with numerous operation scenarios may result in a 
huge computation burden [35]. In this regard, representative 
scenarios should be distinguished before the optimization 
process, to guarantee the robustness of the solution and 
meanwhile ensure the acceptable computation time. Here, a 
Kantorovich Distance (KD) [36] based scenario reduction 
method is adopted for scenario reduction since this algorithm 
can generate weights of each selected scenario, distinguishing 
the importance of each scenario. KD can be calculated 
according to the following equation: 

(1) 

where 𝑑!"(𝜒($), 𝜒(&)) is the KD between two scenarios 𝜒($) 
and 𝜒(&) , 𝑁'  is the number of stages in the optimization 
problem, 𝜆 is the stage, ν' is the vector value of the scenario at 
stage 𝜆, 𝑚 and 𝑛 are the scenario numbers. 

Algorithm 1 describes the implementation procedure of the 
KD based scenario reduction method. Finally, each 
representative scenario 𝑤 ∈ 𝒲  consists of three vectors, 
denoting active load, reactive load and PV output factor, given 
as, . 

Algorithm 1 KD based Scenario Reduction Method 
1. Initialize
2.   Calculate the KD of each scenario pair via Eq. (1) 
3.      Build the KD matrix 
4.   Repeat 
5.          Randomly evaluate the scenario 𝜒! via min{𝐾𝐷(𝜒!, 𝜒")} 
6.          Eliminate one scenario via min	{𝑚𝑖𝑛	{𝐾𝐷(𝜒!, 𝜒")} × 𝑃!} 
7.          Build the new KD matrix 
8.          Add the probability of the eliminated scenario to the probability of      
             the closest one 
9.      Until stopping criterion has been met 
10. End

B. Piecewise Linearized DistFlow Model
In this paper, DistFlow model [37] is utilized to describe the 

complex power flows at the node 𝑗 in a distribution network, 
given as follows: 

 (2) 

 (3) 

(4) 

(5) 

where (1) and (2) describe the active and reactive power flow 
balance, respectively. (3) denotes the voltage along the 
distribution line 𝑖𝑗. 

To deal with nonlinearity caused by quadratic terms, like 
𝑃()*+  and	𝑄()*+ , we employ the piecewise linearized DistFlow 
equations [38] which linearizes these two quadratic terms to 
calculate the apparent power more accurately. The following 
piecewise linearized DistFlow equations characterize the set of 
power flow and PV output: 

 (6) 

(7) 

(8) 

(9) 

where (6)-(8) are derived from (1)-(3). The quadratic terms 𝑃,)*
-. 

and 𝑄,)*
-.  are employed to estimate 𝑃,)*+  and 𝑄,)*+ . By using the 

piecewise linearization approximation (PLA) approach [38], 
the quadratic terms 𝑃,)*

-.  and 𝑄,)*
-.  can be estimated by the 

following two equations: 

(10) 

(11) 

where 𝑀/,)*
01 , 𝑀/,)*

21 , 𝑁/,)*01  and 𝑁/,)*21 are the constant 
coefficient of the PLA approach. 
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Besides, we assume PV systems can provide reactive power 
support to the distribution network and the range of reactive 
power output is given as follows: 

(12) 

where 𝑄,)*13 = −𝑄6,)*13  and 𝑄6,)*13 = 𝑃,)*13 ∗ 𝑡𝑎𝑛𝜃45. 

C. Voltage Regulation Installation Model
Fig. 1 depicts one distribution branch diagram with a VR. For

simplification, we assume that each VR has a regulator range of 
𝑟𝑟% and the VR tap position is considered as a continuous 
variable [39]. The mathematical VR planning and operation 
model can be formulated as follows: 

(13) 

(14) 

(15) 

where (13) describes the voltage transit along the distribution 
branch between the node 𝑖 and the VR installation point.  (14) 
and (15) describe the relationship of the voltage magnitude 
between the VR installation point and the node 𝑗. Note that if 
𝑢,32 = 0 , (without VR installation), then 𝑉,)* = 𝑉@,)* , 
otherwise, 𝑉,)* varies in [(1 − 𝑟𝑟%), (1 + 𝑟𝑟%)]𝑉@,)*. 

Fig. 1.  One branch diagram with a VR installed 

III. PROBLEM FORMULATION AND SOLUTION

Fig. 2. Bi-level optimization based framework 

In this section, we first formulate the bi-level optimization 
based VR planning model to maximize the hourly PVAC of the 
distribution system. Specifically, in the upper-level problem, 
optimal VR planning decisions and hourly PV hosting capacity 
decisions can be made without consideration of network 
constraints. The lower-level problem is based on the feasibility 
checking model, in which critical network constraints with the 

upper-level results, e.g. voltage magnitude constraints and line 
capacity constraints are ensured for the security of system 
operation. Then, a solution method is proposed to solve the 
upper-level problem and lower-level problem iteratively. Fig. 2 
depicts the proposed optimization based bi-level framework. 

A. Upper-level Problem Formulation
The upper-level problem is based on mixed integer linear

programming (MILP), aiming to find the optimal VR planning 
decisions and hourly PV hosting capacity. The detailed upper-
level problem formulation is given as follows, 

 (16) 

s.t. (17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

where (16) describes the objective function of the upper-level 
problem, which is to minimize the VR planning cost (the first 
term) and meanwhile maximize the revenue of PV energy 
integration in the first term. 𝜅 = 6(786)!

9:;[(786)!=7]
 is the daily 

recovery factor, which is introduced here to transform the VR 
investment cost 𝑐(&532  into the daily value. r and y represent the 
interest rate and planning horizon, respectively. 𝑐?&$32  denotes 
the daily VR operating & maintenance cost. 𝑢,32 represents the 
binary decision variable for VR installation status, i.e., 
installation (𝑢,32 = 1) or not (𝑢,32 = 0). In the second term, 𝑝* 
is the probability of uncertainty scenario. 𝑐13  denotes the 
subsidy for PV generation integration. Note that the subsidy is 
decided by relative policies, but in this work, we assume that it 
can be increased by the local distribution grid operator to 
simulate the improvement of PV energy penetration. PV output 
factor 𝜇)*13 ∈ [0,1] is used to capture the PV generations. An 
auxiliary continuous variable 𝑍,13 is introduced to replace the 
bilinear term 𝑢,13𝐸,13 . (17) considers the practical total VR 
capital cost limit and (18) defines the binary variable 𝑢,32. The 
continuous variable 𝐸,13  in (19) denotes the size of PV 
generation connected to the node 𝑗. In (20), the binary variable 
𝑢,13 represents whether the PV generation is connected to the 
node 𝑗. Big M method [40] is used in (21)-(22) to linear the 
nonlinear term 𝑢,13𝐸,13 , which is replaced by an auxiliary 
continuous variable 𝑍,13 . Note that 𝐵A  is a positive constant 
which is large enough. 

In the following subsection, we will give the formulation of 
lower-level problem formulation. 
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B. Lower-level Problem Formulation
The proposed lower-level problem can be formulated to a

feasibility checking model, given as follows, 

(24) 

s.t. (6)-(12), (13)-(15)
       (25) 

      (26) 

(27) 

(28) 

(29) 

where the optimal objective (24) in the lower-level problem 
should be zero because of the enforced penalty cost. where 
constraints (6)-(12) and (13)-(15) describe the power flow 
constraints and the VR model, respectively. (25) and (26) show 
relaxed voltage constraints. The limits of relaxed distribution 
branch capacity as well as the substation capacity are described 
in (27) and (28), respectively. 

C. Iterative Solution Procedure

Algorithm 2 Iterative Solution Procedure 
1. Initialization.

Convergence controller 𝜀 = 0.01
Iteration counter 𝑣 = 0

2. Repeat
3.     v ← v + 1 
4.  Solve the upper-level problem as follows 

s.t. (17)-(23)

 

5. Update 𝑍!
"#(%) and 𝑢!

#'(%) and 𝑍()*+,(%)

6.     Solve the lower-level problem as follow 
  

s.t. (6)-(15), (25)-(29)

7.     Output 𝑍-*
./0(%), 𝜆!-*

"#(%) and 𝜆!-*
#'(%)

8.     Calculate 𝑍122+,(%)  via the following equation 

9. Until -𝑍122+,(%) − 𝑍()*+,(%)- ≤ 𝜀
10. Output optimal results, 𝑍!"#∗,	𝑢!#'∗

Generally, the upper-level problem (16)-(23) and lower-level 
problem (24)-(29) can be combined to form a conventional two-
stage stochastic programming problem, which can be solved 
with commercial solvers like CPLEX [41] and GURIBO [42]. 
However, to guarantee the robustness of the solution, a 
reasonable number of operation scenarios should be taken into 
account during the decision-making process. This can cause a 
huge computation burden since numerous variables and 
constraints are involved in the stochastic problem. To deal with 
the aforementioned issues, an efficient solution approach is 
introduced in this section. The upper-level problem ignores the 
network constraints, so the result of objective (16) in the upper-
level problem can be regarded as the lower bound of the 
combined two-stage stochastic programming problem. Given 
the upper-level results, the objective (24) in the lower-level 
problem can be used to obtain the upper bound. In Algorithm 2, 
Step 4 and Step 6 are executed iteratively to update the lower 
bound 𝑍B?*C6(5) and upper bound 𝑍D44C6(5). It should be noted 
that an additional constraint is added to link the upper-level 
problem and lower-level problem. In this constraint, dual 
variables 𝜆,)*

13(5)  and 𝜆,)*
32(5)  are included to provide the

sensitivities of the upper-level variables 𝑍,
13(5) and 𝑢,

32(5) ,
respectively. 

IV. CASE STUDIES

Fig. 3. IEEE 33-node test distribution grid 

(a) 

(b) 
Fig. 4. Load scenarios (a) before and (b) after scenario reduction 
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(a) 

(b) 
Fig. 5. PV generation scenarios (a) before and (b) after scenario reduction 

TABLE I 
RELATED PARAMETERS IN TEST CASE 

Parameter name Parameter value 
VR investment cost 𝑐#"$%&  5,000 $ [30] 
VR operating and maintenance cost 𝑐'&!%&  5 $/day [43] 
Subsidy for PV generation integration 𝑐)% 0.39 $/kWh [44] 
Penalty coefficient for violations 𝑐)*"+,-. 100,000 $/p.u. 
Base energy value 1 MVA 
Base voltage value 12.66 kV 

The performance of the proposed method is validated on the 
IEEE 33-node distribution grid (see Fig. 3). The parameters 
details of this test system can be referred to [45]. In this paper, 
we consider a five-year planning horizon. One hundred 
representative operation samples with different weights are 
selected, which includes ten load demand scenarios (see Fig. 4) 
and ten PV output scenarios (see Fig. 5). Table I summarizes 
the parameters in this test case including VR investment cost, 
VR operating and maintenance cost, subsidy for PV generation 
integration, penalty coefficient for violations, base energy value, 
and base voltage value. 

A. Performance of Computation Efficiency
Fig. 6 depicts the evolution of the proposed iterative solution

method. In the 37th iteration, this algorithm convergences 
where the gap between the upper bound and the lower bound is 
smaller than the predefined tolerance. To demonstrate the 
computational efficiency of our proposed approach, a 
comparison between these two solution methods is conducted: 
(1) directly using the commercial solver (e.g. GUROBI [42]);
(2) proposed method. As shown in Table II, both two solution
methods can be used to solve the proposed problem with low
considered scenario numbers (e.g. 1, 9, 25) while our proposed
method shows a clear advantage over the first method, and this
advantage widened as the scenario number increases. With high
scenarios numbers (e.g. 64, 100), a huge computation burden

may be involved so the commercial solver cannot handle the 
original problem. By contrast, our proposed method can solve 
the same problem with acceptable computation time. 

Fig. 6. Evolution of the decomposition solution algorithm 

TABLE II 
COMPARISONS OF COMPUTATION TIME 

Scenario number 
Computation time (min) 

GUROBI 
solver 

Proposed method 

1 (1*1) 0.22 0.19 
9 (3*3) 27.36 4.57 
25 (5*5) 132.27 18.56 
64 (8*8) N.A. 53.33 
100 (10*10) N.A. 105.28 

B. Performance of Optimal VR Planning

TABLE III 
RESULT OF THE PVAC IN THE 33-NODE TEST SYSTEM 

Locations (nodes) PVAC Value (p.u.) 
5 0.0187 
10 0.0028 
16 0.0042 
21 0.0044 
23 0,0123 
27 0.0010 
32 0.0010 

TABLE IV 
VR PLANNING RESULT IN THE 33-NODE TEST SYSTEM

Locations (node) 5, 6, 22, 25, 26, 28, 30, 31 

Fig. 7. Comparison of PVAC with and without VR installation 

In this subsection, we demonstrate the performance of the 
optimal VR planning. It can be seen from Table III that the 
value of PVAC is 0.0444 p.u and Table IV shows the 
corresponding VR planning decisions. In order to demonstrate 
the performance of VR planning on the PVAC enhancement, 
Case 1 (the base case without VR installation) and Case 2 (the 
case with VR installation) are compared as shown in Fig. 7. We 
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can observe from this figure that the PVAC is significantly 
improved after VR installation. 

Fig. 8. Comparison of voltage magnitude 

Fig. 9. Comparison of maximum apparent power in scenario 17 

Fig. 10. Comparison of maximum apparent power in scenario 55 

Fig. 8 depicts two voltage profiles at 12:00 pm under the 
expected scenario in which loads and PV generations are their 
mean values: (1) voltage profile of the case with PV generators 
but without VR installation, and (2) voltage profile of the case 
with both PV integration and VR installation, as the results in 
Table III and Table IV. As seen in this figure, the voltage 
magnitudes on some nodes, i.e., nodes 5, 14, 16, 17, 21, 22, 31, 
32, and 33 exceed the upper bound (1.05 p.u.) in the first case 
due to the lack of voltage adjustment of VR. However, the 
overvoltage violations caused by high PV penetration can be 
avoided after optimal VR planning, as shown in the second case. 

Fig. 9 and Fig. 10 show the comparison results about the 
apparent power of the 33-node test system in two representative 
scenarios, i.e. scenario 17 and scenario 55. Note that the 
apparent power  can be calculated by using the following 
equation, 

(30) 

As shown in these two figures, the line overload can be 
observed before VR installation. In comparison, the apparent 
power flow is maintained within its desired range after VR 
installation. According to these comparisons, we can conclude 
that the optimal VR allocation can not only avoid overvoltage 
occurrence but also ensure the safe operation of lines. 

C. Comparison with Deterministic Model

(a) 

(b) 
Fig. 11. Comparison results of (a) the deterministic model and (b) the 

stochastic model 

In this subsection, the deterministic VR planning model is 
employed as a benchmark. The deterministic model only uses 
one operation scenario as its input, in which the PV output and 
load demand are replaced by their expected values. By solving 
the deterministic VR planning problem, we can obtain the 
optimal VR installation sites: nodes 15, 16, 19, 21, 23, and 27. 
Together with deterministic VR planning decisions, the PVAC 
values are 0.0106, 0.0001, 0.0007, 0.0064, 0.0021, 0.0036 and 
0.0079 p.u. for nodes 5, 10, 16, 21, 23, 27 and 32, respectively. 

To compare the performance of the deterministic model and 
the stochastic model, the critical operation scenario 
corresponding to the maximum PV output factor with the 
minimum load demand level is utilized. Fig. 11 (a) and Fig. 11 
(b) depict the voltage profiles obtained by the deterministic
model and stochastic model under this critical scenario,
respectively. From these two figures, the overvoltage violation
can be seen in Fig. 11 (a) while this violation cannot be
observed in Fig. 11 (b).

D. Tradeoff curve between PVAC and VR planning cost
Fig. 12 is plotted in to describe the relationship between the

PVAC and VR planning cost. This figure shows that the PVAC 
increases gradually before the VR planning cost reaches about 
$450,000. Then the increasing rate is marginal, which means 
that the PVAC improvement is insensitive to the additional VR 
planning cost. The reason is that there is a threshold determined 
by the loadability of the power grid [46], which means there are 

jtwS

QT QT , \1, ,jtw jtw jtwS P Q j J t T w W= + " Î " Î " Î
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overload issues on distribution grid lines, including overvoltage 
issues on distribution grid nodes that may occur under the larger 
PV integration. When the PVAC improvement is too little to be 
acceptable by microgrid owners, the network expansion is 
recommended. 

Fig. 12. Tradeoff curve between the PVAC and VR planning cost 

E. Impact of VR Installation Number on PVAC
This subsection presents a sensitivity analysis examining the

impact of the VR installation number on the PVAC under the 
expected operation scenario. As shown in Fig. 13, PVAC 
increases almost linearly with respect to the VR installation 
number. However, after an installation of eight VRs, the 
increasing rate of PVAC becomes marginal. Finally, the value 
of PVAC is fixed when twelve or more VRs are placed. The 
reason is that the line capacity limits the threshold of the PVAC, 
which may be further improved after network expansion. 

Fig. 13. Impact of VR installation number on the PVAC 

V. CONCLUSION

This paper presents a novel bi-level Benders decomposition 
based stochastic VR planning model for distribution grids 
considering PV energy integration maximization. As a widely-
used device in power systems, optimal VR planning can be 
regarded as a feasible option to improve the PV energy 
integration by regulating voltage magnitudes. To describe the 
dynamic amount of PV energy that can be integrated into the 
power system, the concept of PVAC is introduced and modeled 
with optimization. Uncertainties of PV generations and loads 
are duly considered during the planning stage, which are 
represented in the form of representative operation scenarios. 
Facing the challenge with numerous scenarios and time 
coupling constraints, a well-studied decomposition algorithm is 
employed as the solution method. Based on the IEEE 33-node 
distribution system, the benefits of optimal VR planning for PV 
energy integration improvement are illustrated in the case 
studies. The proposed model provides a reference to 
distribution system planners. The main conclusions are 

summarized as: 1) From the case studies, the PV energy 
integration can be significantly improved by using the proposed 
VR planning model; 2) Reliable Distribution grid operation can 
be ensured by VR since it can regulate nodal voltage 
magnitudes and relieves overload; 3) The loadability of the 
distribution grid generates a threshold beyond which the PVAC 
is insensitive to the additional VR installation. In future works, 
it would be interesting to coordinately analyze the effect of 
planning and operation of advanced voltage regulation devices 
to improve PV energy integration. Besides, the simultaneous 
improvement of various renewable energy integration including 
wind generators via our proposed model could be investigated. 
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