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Solitary and Travelling Waves in a Rod 

 
We are concerned with the existence and partial  analysis of longitudinal 

t rave l l ing  waves  in  a  th in  rod ,  wi th  a  la te r  appl ica t ion  to  a  growth  

condition in incompressible elasticity.  We consider only solutions               

u(x,  t )  =   which have the form of  s teady t ravel l ing waves          ( ) ,ctz,z −φ

for the equation of motion, which is derived most simply by means of  

Hamilton's principle (cp. [4],[5],[6]) applied to the functional 
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Here, the total kinetic energy is given by 

 

  ( ) ,dt]))t,x(xu(2
tβ)t,x(2

tu[tK
2
1 ∫

∞

∞−

+     (2) 

 
where β(.) is a measure of the lateral deformation undergone during any 

elongation or contraction of the rod which is assumed to remain straight          

a t  a l l  t imes.   u(x,  t )  i s  the  longi tudinal  displacement  a t  t ime t  of  a    

material point at x measured from some chosen point along the rod,           

which is now taken to be of infinite length.  We have taken the density            

in the current and reference configurations to be unity. In terms of ,         xu

by adopting the limit of incompressibility (Poisson's ratio 2
1ν→  in the   

special case of small deformation) β  is given here by 
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although we need not assume this.   To avoid material inversion or 
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f l a t t e n i n g  i n  g e n e r a l ,  i t  i s  o n l y  n e c e s s a r y  t h a t    I ,  t h e  .1β,ux −>

total   strain  energy,   is   of   the  form 
 

      (4) ( ) dx)))t,x(xuβ(),t,x(xu(WtI ∫
∞

∞−

=

 

where W( .  ,  .) is the strain energy function. 
 
On carrying out the variations, we obtain from (1) the Euler equation 
 

  ( ) ( ) 0,'βW'Wuβ'u'β'β'u x
`

xttx
22

xttt =+−+−   (5) 
 

w h e r e  s u b s c r i p t s  d e n o t e  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  x  a n d  t  ,  a n d  
superscr ip t s   '  ,  `   denote  d i f fe ren t ia t ion  wi th  respec t  to  dependent  
v a r i a b l e s   and   β  r e s p e c t i v e l y .  xu
 

We now consider the substitution in (5) of 
 

  ( ) ( ) ,,,, RIcctxzztxu ∈−== φ    (6) 
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On further substituting  ( )
dz
d'cx,

dz
d ψ

ψβ=
φ

=ψ  and                                     

integrating (7) with respect to z,  we obtain 
 

  ( ) ( ) 0'`W'W
dz
dX'cc2 =ψβ++ψβ+ψ−      (8) 

 
where we have omitted the constant of integration. 





- 3 - 
 
At some point  the initial data for (8) is given by 0z
 

  ( ) ( ) ( ) ( ) ,'czx,z
dz
d,z 1001000 ψψβ=ψ=
ψ

ψ=ψ  (9) 
 

and on multiplying (8) by 
dz
dψ  and integrating with respect to  z  ,                

we have the energy equation ( )( ) ,E,WX
z

c 2
2
12

2

=ψβψ++ψ−   (10) 

where  E  is a constant depending only on the values of  10,ψψ  and  c .  
 
Our analysis of equation (7) is in the phase plane. 
 
(For a related discussion in another problem, c.p. Ball [l] ,  Calderer [2]).   
 
We therefore use (8) and (9) to obtain the equivalent f irst  order system 
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where        )(X~x
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We now presen t  a  r esu l t  on  loca l  ex i s t ence  o f  t r a jec to r ies   ~x :   

Proposition 1  Assume  is locally Lipschitz continuous                     )x,(~m ψ

on i ts  domain of  defini t ion.   Then the ini t ia l  value problem (12)  -  (15)    

has a unique maximally defined solution 
 
   where )I(C)I(C)z(~x

11 ×∈ [z,z]I 00 α+α−=  

for some  The solution  satisfies .RI∈α )z(~x

     )(
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P r o o f   F o r   t o  b e  l o c a l l y  L i p s c h i t z ,  i t  i s  e n o u g h  f o r               ( X,m ψ )
Β  ( . ) ,  W ’ ( . , . )  a n d  W `  t o  b e  l o c a l l y  L i p s c h i t z  c o n t i n u o u s  i n  e a c h  

var iab le ,  and  for  β  ( . )  to  be  s ign  def in i te .   This  impl ies  we  requi re        

t h e  e x i s t e n c e  o f  s o m e  )R,(,0 ∈Γ=Γ∞<Γ<  s u c h  t h a t  f o r  a n y   
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ψψψψ

and α < 0 such that .' 2
1

α>β  

We may then apply s tandard resul ts  in  ordinary different ia l  equat ions  

(e .g .  Fr iedr ichs  [3] )  to  obta in  loca l  ex is tence  and  uniqueness  through 

.)(
0X
0ψ  

Referr ing to  equat ion (10)  we def ine 

   ))(,(W
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c)(V 2
2
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and denote 
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+=ψσ  

    '.'`W'`'w2''W β+β+≡     (17) 
 

We may character ize  the equi l ibr ium points  for  (11)  -  (14)  by the  

following proposition. 

P ropos i t ion  2     Le t  c  be  g iven .   Then  the  equ i l ib r ium so lu t ions   

( ) ( ) RIz,z,0zX ∈ψ=ψ=  o f  ( 1 1 )  a r e  t h e  z e r o s  o f  t h e  f u n c t i o n   

( )ψσ−ψ2c  where ( )
ψ

+ψ=ψσ
d
dvc 2   . 

Fu r the r ,  f o r  ψ  s a t i s fy i n g  )0,(),('c2 ψψσ<  i s  a  c e n t r e  a n d  )(v ψ  i s  a   

r e l a t ive  min imum.   When  ψ  s a t i s f i e s  )0,(,)('c, 2 ψψσ<                 

i s  a  sadd le  po in t  and  ( )ψv  i s  a  r e la t ive  maximum.  
Proof  Fol lows from (14)  and i ts  l inear izat ion 
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In  a  neighbourhod of  ( ).0,ψ  
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Remark In addition to the above cases we may also have (ψσ= 'c2 ) which 

corresponds to a point of inflection of  V. 

We now assume that  for  each,  c   ,  there  exis ts  a  f ini te  number   n   of  
Zeros 
 
    1iii }ni0,{ +ψ≤ψ≤≤ψ    (18) 

 
to the function  . )('c2 ψσ=ψ

Further we consider two possible hypotheses for σ  :-  

(H1)   As  1~)(,
ψ
ψσ

+∞→ψ  ; 

(H2)   As  B~)(, ψ
ψ
ψσ

+∞→ψ ,  

where B > 0.  (HI) and (H2) are compatible with the Lipschitz assumptions 
made earlier.  We use these conditions to investigate the region            0≥ψ

of the phase plane and obtain the next two results. 
 
Proposition 3   Let  throughout,  the let 0≥ψ ),( 10 ψψ  be chosen so that 

   .ni0),(V),(E i10 ≤≤ψ≠ψψ  

Then  a) when c2   ≤   1 and either (HI) or (H2) hold, the trajectory through 
),( 10 ψψ  is periodic with period 

    ∫
−

=
1J

0J 2
1

))V(ψ(E
)dψ('c2τ ψβ     (19) 

w h e r e   a n d   a r e  t h e  i n t e r s e c t i o n s  o f  t h e  t r a j e c t o r y    10 JJ < )0,J(),0,J( 10

with the axis X = 0. 
b)  When c2  > 1 and (H2) holds, we again have the result of a). 
c)  When c2  > 1 and (HI) holds, no periodic orbits exist through  

any point   with )0,(ψ nψ>ψ  . 
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Proof  From (10) and (18) ,  and the Theorem of Poincaré-Bendixon. 

Corollary  When ),( 10 ψψ  are chosen so that 

  ( )i10 V),(E ψ=ψψ    for some of i= 0,1,…..,n 

t h e n  e i t h e r  A )   i s  a  c e n t r e ,  o r  w h e n  c),( 10 ψψ 2  <  1   

and (HI) and (H2) hold or c2 > 1 and (H2) holds, then  

B) i) for  we have 01 ≥ψ

   0)z(x
z

lim,)z(
z

lim i =
+∞→

ψ=ψ
+∞→

 

where  is   the   closest   saddlepoint   to  the   left    of  ( ,0) 0i ψ≤ψ 0ψ

      ii)        for  01 ≤ψ

 

0)z(x
z

lim,)z(
z

lim j =
+∞→

ψ=ψ
+∞→

 

 
where   is the closest saddle point to the right of  (0j ψ≥ψ 0ψ ,0). 
 

Remark The case B) above is that which provides for the existence of  
solitary waves.  Note that since centres and saddle points alternate (we    

have excluded the case c2 = )),(' ψσ  given the same 0ψ  in B  i)  and ii)     

above implies  .2ij +ψ=ψ  

We conclude by looking at a case for ,01 ≤ψ<−  with )(ψβ  given by (3) .   
Hypothesis (H3)    For  as [,1]p ∞−∈ +∞→q  

     .0,RIγ,~)q,p(w γ
q >δ∈δ

Proposition 4  Under hypothesis (H3), a sufficient condition preventing 

flattening of the incompressible rod is  . 6γ >

Proof  With  B  given by (3),  (10) becomes 

 2322 )1.(E)1()1(,(w2'8/c)1(2/c 2
1

22 ψ+=ψ+ψ+ψ+ψ+ψ+ψ−
−  (20) 

 
and so as   1−→ψ
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  2/32 )1()cE()31(~'8/c 232 λ−ψ+δ−++ψ

and  the  resu l t  fo l lows  s ince  δ  >  0  and  i t  i s  imposs ib le  fo r  

     .1u x −=ψ=  

 

 

______________ 
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