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Solitary and Travelling Waves in a Rod

We are concerned with the existence and partial analysis of longitudinal
travelling waves in a thin rod, with a later application to a growth
condition in incompressible elasticity. We consider only solutions

u(x, t) = (I)(z),z—ct , which have the form of steady travelling waves

for the equation of motion, which is derived most simply by means of

Hamilton's principle (cp. [4],[5],[6]) applied to the functional

T

j(k—l)dt. (1)

0

Here, the total kinetic energy is given by

K() LfZeon+pu, (0] d, 2)

—00

where B(.) is a measure of the lateral deformation undergone during any
elongation or contraction of the rod which is assumed to remain straight
at all times. u(x, t) is the longitudinal displacement at time t of a
material point at x measured from some chosen point along the rod,
which is now taken to be of infinite length. We have taken the density

in the current and reference configurations to be unity. In terms of uy,
by adopting the limit of incompressibility (Poisson's ratio v— 4 in the

special case of small deformation)  is given here by

Plu)=

(1+ux)%_1’ ®)

although we need not assume this. To avoid material inversion or






2.

flattening in general, it is only necessary that uy, f >-1. I, the

total strain energy, is of the form

(1) = W (x,0.80u_(x,1) dx )

where W(. , .) is the strain energy function.

On carrying out the variations, we obtain from (1) the Euler equation
1 U 2 12 ' * ' _
utt—(ﬁB uly +P uxtt)x—(W +WB)X—0, (5)

where subscripts denote differentiation with respect to x and t , and
'

superscripts ', " denote differentiation with respect to dependent

variables uy and P respectively.

We now consider the substitution in (5) of

u(x,t)=¢(z)z =x-ct,ce IR, (6)
giving
24%  d Ba[ggjczd3¢
dz? dz dz ) dz3
2
- Ly g2 402w (42 pdoy,

dz dz dz dz? dz " dz

(46 of o)) (db))_
S (E)-o >

On further substituting =?, X =c[3'(\|/)((11—w and
z z

integrating (7) with respect to z, we obtain
1 dX 1 1
—cly+cp (\V)E+W+WB (v)=0 (8)

where we have omitted the constant of integration.
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At some point z, the initial data for (8) is given by
dy :
W(Zo)z\lfo,?(zo)z‘lfpx(zo): cp (‘Vo)‘h’ ©)
and on multiplying (8) by i—w and integrating with respect to z ,
z

2
we have the energy equation —C—\|I2 +%X2 + W(\V,B(\p)): E, (10)
z

where E is a constant depending only on the values of wy,y; and c .
Our analysis of equation (7) is in the phase plane.
(For a related discussion in another problem, c.p. Ball [1], Calderer [2]).

We therefore use (8) and (9) to obtain the equivalent first order system

4, 2(#)=my.X) (11)
Z
where X = (;l’() , (12)
m:]-1,0xR ->R? | (13)
1 X
m( ,X):m Czw_wv_w‘B‘ 5 (14)
and
Yo
x(rg)= Gié%): cB'(Wow, (15)

We now present a result on local existence of trajectories X:

Proposition 1 Assume m(y,x) is locally Lipschitz continuous

on its domain of definition. Then the initial value problem (12) - (15)

has a unique maximally defined solution

x(z)e Cl()xCl(1) where 1 =]z — .,z + af

for some aelR. The solution x(z) satisfies

X(zy) = (2’(%) )
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Proof For m(\v,X) to be locally Lipschitz, it is enough for

B (.), W(.,.) and W' to be locally Lipschitz continuous in each
variable, and for B (.) to be sign definite. This implies we require

the existence of some 0<I'<w,I'=I(g,R) such that for any
(v X)W (y,, X,) €] -1+ €,R[x]-R,R[,€,R >0,

W' (yry, X)) =W (15, X)) S T(e, Ry =, |+ X, = X, | ete.,
anda<0suchthat|[3'| > OL%.

We may then apply standard results in ordinary differential equations

(e.g. Friedrichs [3]) to obtain local existence and uniqueness through
Yo
(XO) :

Referring to equation (10) we define

2
C
V(w)=—7w2 + W(y,B(y)) (16)
and denote
d2v
o'(y)=c’+—
dy
= W '"+2w "B+ W B (17)

We may characterize the equilibrium points for (11) - (14) by the
following proposition.

Proposition 2 Let ¢ be given. Then the equilibrium solutions

X(Z):O,w(z):g,zeIR of (11) are the zeros of the function

¢y - o(y) where o(y)= czqf +§—V
1

Further, for E satisfying c2<c'(ﬁ),($,0) is a centre and V(G) is a
relative minimum. When E satisfies ,02<G'($),($,0)

is a saddle point and V@) is a relative maximum.
Proof Follows from (14) and its linearization

my.X) ) (w wj
o " -o(¥) 0N X

In a neighbourhod of @,0)
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Remark In addition to the above cases we may also have c? :0'(\|1) which

corresponds to a point of inflection of V.

We now assume that for each, ¢ , there exists a finite number n of

Zeros

(Vi 0<i<n}V;<viy (18)

to the function c2\|/ =o' (vy) .

Further we consider two possible hypotheses for o :-

HI) As y — 400, 2
VI
(H2) As \|/—>+oo,$ ~yB,

where B > 0. (HI) and (H2) are compatible with the Lipschitz assumptions

made earlier. We use these conditions to investigate the region y > 0

of the phase plane and obtain the next two results.

Proposition 3 Let y >0 throughout, the let (y,,y;) be chosen so that

E(yo,¥1)# V(y;)0<i<n
Then a) when ¢ = 1 and either (HI) or (H2) hold, the trajectory through
(W(>¥y) is periodic with period

J

_ 2| LW (19)
Jp E-V(¥)?2

where J,<J, and (J;,0),(J;,0) are the intersections of the trajectory

with the axis X = 0.
b) When ¢ > 1 and (H2) holds, we again have the result of a).
¢) When ¢ > 1 and (HI) holds, no periodic orbits exist through

any point (y,0) with \u>$n .






Proof From (10) and (18) , and the Theorem of Poincaré-Bendixon.

Corollary When (y,,y,) are chosen so that

E(\yo,\yl)=V(\yi) for some of i= 0,1,..... ,n
then either A) (y,,y,) is a centre, or when ¢t <1
and (HI) and (H2) hold or ¢* > 1 and (H2) holds, then
B) i) for y,; 20 we have

lim wy(z)=vy,;, lim x(z)=0
Z —> +o© Z —> +00

where vy, <y, is the closest saddlepoint to the left of (y,,0)

i1) for y; <0

lim y(z)=vy;, lim x(z)=0
Z — +®© Z —> +o0

where ;i 2y, is the closest saddle point to the right of (y,0).

Remark The case B) above is that which provides for the existence of

solitary waves. Note that since centres and saddle points alternate (we
have excluded the case ¢ = G'(J)), given the same y, in B i) and ii)
above implies Jj =V,
We conclude by looking at a case for —1<wy <0, with B(y) given by (3) .
Hypothesis (H3) For pe]-1,00 as q— +©

w(p.q)~ 84",y eR,5>0.

Proposition 4 Under hypothesis (H3), a sufficient condition preventing

flattening of the incompressible rod is y>6 .

Proof With B given by (3), (10) becomes

_1
—, WA+ )+l w2+ Wy, (L+y) P+ y)  =E(l+y)®  (20)

and so as y —> -1






*/q U~ (1+3)3E+c¢?) =80+ y) "2

and the result follows since 6 > 0 and it is impossible for

uy, =y =-1.
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