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Abstract: In this study, a deep learning algorithm based on the you-only-look-once (YOLO) approach
is proposed for the quality inspection of printed circuit boards (PCBs). The high accuracy and
efficiency of deep learning algorithms has resulted in their increased adoption in every field. Similarly,
accurate detection of defects in PCBs by using deep learning algorithms, such as convolutional neural
networks (CNNs), has garnered considerable attention. In the proposed method, highly skilled
quality inspection engineers first use an interface to record and label defective PCBs. The data are
then used to train a YOLO/CNN model to detect defects in PCBs. In this study, 11,000 images and a
network of 24 convolutional layers and 2 fully connected layers were used. The proposed model
achieved a defect detection accuracy of 98.79% in PCBs with a batch size of 32.
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1. Introduction

Printed circuit boards (PCBs) are a crucial component in most electronic devices. For decades,
PCBs have been adapted for industrial and domestic use. PCBs are the primary component of any
electronic design and have been used in fields such as logistics, defence, and aeronautics as well as
for applications in the automobile and medical industries, among others. PCBs are solid thin plates
prepared from laminated materials, fibreglass, or composite epoxy and form a physical base that
supports chips and electronic components [1–4]. These boards are designed with conductive pathways,
which form circuits and power electronic devices attached to the PCBs. Therefore, PCB inspection
processes have continually improved to meet the ever-increasing demands of modern manufacturing.
Production and manufacturing industries have attempted to achieve 100% quality assurance for
all PCBs. Automated visual inspection of PCBs has advanced considerably [5,6]. Studies [7] have
revealed that deep learning outperforms traditional machine-based classification and feature extraction
algorithms. Defect detection in PCBs during quality inspection is critical. In the conventional method,
defects are initially detected by an automatic inspection (AOI) machine. A skilled quality inspection
engineer then verifies each PCB. Many boards classified as defective by the AOI machine may not be
defective. The machine can erroneously classify a PCB as defective because of a scratch or small hole or
the presence of nanoparticles such as dust, paper fragments, or small air bubbles. Slight variation from
the reference sample may result in the AOI machine classifying PCBs as defective. However, reliance on
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inspection engineers requires considerable human resources as well as sufficient training. Furthermore,
even skilled operators can make errors during inspection. Therefore, robust deep learning systems can
replace skilled operators to a certain extent. Machines programmed with deep learning algorithms can
be used to verify defects. Deep learning methods are faster and more accurate than skilled operators
are. Thus, the objective of this study was to develop a deep learning-based PCB recognition system
that reduces the false detection rate and increases the production rate.

With the increasing popularity of consumer electronics products, such as laptops, smartphones,
and tablets, accurate PCB manufacturing is critical [8]. Because of this surge in the demand for PCBs in
the market, manufacturers are required to produce PCBs in large quantities. Therefore, maintaining
the quality of such large numbers of PCBs is challenging. Accurate automated inspection systems can
prove helpful in quality maintenance. Such systems overcome the limitations of manual inspection for a
large number of PCBs. Automated visual PCB inspection can provide fast and quantitative information
of defects and therefore can prove to be an asset in manufacturing processes. A few examples of
PCB defect detection methods can be found in the literature [8–10]. Typically, the template-matching
method [11] is used to detect defects in PCBs. Another method for PCB defect detection is OPENCV
followed by image subtraction [12]. However, these detection algorithms are limited to a specific type
of defect in PCBs. Remarkable progress has been made in the use of convolutional neural networks
(CNNs) in several applications, such as image recognition [13,14] and object detection. In particular,
object detection is achieved by implementing object recognition methods [15] and region-based
CNNs [16]. In this study, a CNN classifier was trained to recognise various electrical components on a
PCB and then detect and localise defects on the PCB components by using Tiny-YOLO-v2, an effective
and accurate object detector.

Quality inspection engineers are employed to ensure minimum defects. Manual inspection and
diagnosis of defects is challenging. Defect inspection encompasses detection of several types of defects,
an extremely low tolerance for errors, and considerable expertise to reliably recognise and handle
flawed units.

Researchers have applied various you-only-look-once (YOLO) approaches to art data sets and
achieved excellent accuracy. YOLO, an object detection algorithm, differs from other classification
methods. Unlike conventional classification mechanisms, YOLO can classify more than one object in a
single picture. Because YOLO is based on CNNs, it has a unique method of object detection. In the
algorithm, a single neural network is used for an image separated into different regions. The probability
of each region is then predicted, and predicted probabilities determine the location of bounding boxes.

YOLO is becoming increasingly popular because of its high accuracy and efficiency. As the name
suggests, an image is checked just once; that is, a single forward propagation pass is performed by the
neural network to generate predictions. Following the nonmax suppression technique, the algorithm
outputs the recognised objects using the bounding box. The YOLO algorithm with a single CNN
predicts several bounding boxes and the class probability for those boxes. This algorithm uses full
images for training and optimises its detection performance. YOLO is quick and considers the whole
image during processing. Therefore, it encrypts circumstantial details regarding class. The YOLO
algorithm is faster than other object detection algorithms because it learns general representations of
objects during training.

However, the YOLO algorithm has some drawbacks, such as more localisation errors than Fast
R-CNN. Furthermore, YOLO has a lower recall than other region proposal–based methods. Thus,
the objective of this study was to improve recall and localisation while maintaining high classification
accuracy. Currently, deep networks are preferred for computer vision [17–19]. Excellent results can
be achieved using large networks and different methods. YOLO is preferred because of its accurate
detection within a limited time frame. The performance of YOLO has been continually improved
over time.

Networks that can achieve fast and precise detection are always preferred. Several applications,
such as self-driving cars and robotics, require low latency prediction. Thus, YOLO-v2 is designed to
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be fast. Most object detection or classification frameworks use VGG-16 as the basic feature extractor
algorithm [19] because of its high accuracy and robustness. However, VGG-16 is highly complex and
requires 30.69 billion floating point operations per second (FLOP) for a single pass over to achieve an
image resolution of 224 × 224. A custom network based on the Google Net architecture is typically
preferable for YOLO frameworks [20]. This model is faster than VGG-16 and requires only 8.52 billion
FLOP for a forward pass. However, its accuracy is slightly lower than that of VGG-16. Therefore,
on the basis of these parameter comparisons, we used Tiny-YOLO-v2 (a modified and compact version
of YOLO).

Using Microsoft visual studio, we developed an interface to collect images from the AOI machine.
The interface enables the quality inspection engineer to label the defective region on individual PCBs.
Deep learning is then applied on the gathered image data. This study implemented the Tiny-YOLO-v2
model with a CNN to improve the accuracy and reduce the error rate.

2. Materials and Methods

2.1. PCB Data Set

The PCB data set was obtained from the AOI machine to generate an image of the reference
PCB sample in RGB format, which was then converted into JPEG format and saved. In addition
to images of the reference sample, images of defective samples were also collected using the AOI
machine. The images were extracted and cropped. Almost 11,000 images were collected for training.
An interface was developed (as shown in Figure 1) to enable quality inspection engineers to label the
defective regions of PCBs, which were then compared with the same location on the reference sample.
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Figure 1. User interface for data collection.

Figure 2 illustrates this process. Figure 2a displays six identical PCBs with a defect at the bottom.
Figure 2b is an enlarged image of the defective region, and Figure 2c displays the defective region and
the same region on the reference sample. The images were 420 × 420 pixels and were placed adjacent
to each other to enable a quality inspection engineer to compare the defective and reference samples.
The inspection engineer then labelled the defective area in the image. Images of 11 defect types were
collected. However, because of the small amount of data, all the defect types were labelled as a single
type of defect.
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2.2. Architecture of Tiny-YOLO-v2

The unique object detection algorithm [21] developed using Tiny-YOLO-v2 [22,23] is explained
in this section. For a single image, Tiny-YOLO-v2 predicts several bounding boxes with the class
probability by using a single CNN. Figure 3 displays the structure of Tiny-YOLO-v2, which includes
convolutional layers, various activation function blocks—such as a rectified linear unit (ReLU) and
batch normalisation, within the region layer—and six max pooling layers. An image of 416 × 416 pixels
is used as the input for the classifier. The output is a (125 × 13 × 13) tensor with 13 × 13 grid cells.
Each grid cell corresponds to 125 channels, consisting of five bounding boxes predicted by the grid cell
and the 25 data elements that describe each bounding box (5 × 25 = 125).
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2.3. Convolutional Layer

The convolutional layer in Tiny-YOLO-v2 occupies 90% of the feed-forward computation time [24].
Therefore, the performance of the classifier is improved through the optimisation of the convolutional
layer. Hundreds of millions of addition and multiplication operations are performed between the local
regions and filters for a single image. The function is presented as follows:

X(i) =
n∑

i=1

(
X( j)
×W(k)

)
+ b (1)

where X(i) = output pixel feature, X( j) = input pixel feature, W(k) = convolution weights, and b =

convolution bias.
The number of functions involved in the convolution layer is calculated according to Equation (2).

The number of operations for batch normalisation and the leaky activation function for each layer are
ignored in this equation.

Operations = 2×Nim×K ×K ×Nout ×Hout ×Wout (2)

where Nim = the number of channels of the input feature, K = the filter size; Nout = the number of filters;
Hout = the output feature height; Wout = the output feature width. The required memory is a challenge
because of the paucity of space. The weight used in the convolutional layer is the primary parameter
in the Tiny-YOLO-v2. Equation (3) expresses the weights involved in the convolutional layer:

Weights = Nin × K × K × Nout (3)

where Nin = the number of channels for the input feature, K = the filter size, and Nout = the number
of filters. Approximately 7 billion operations and 15 million weights are simultaneously inputted in
Tiny-YOLO-v2 for an input image in Pascal VOC. Furthermore, 5.7 billion operations with 12 million
weights are inputted in Tiny-YOLO-v2 for a single input image in the COCO data set.

2.4. Activation Function

In the CNN architecture, the activation function is used to correct the input. Sigmoidal activation
functions are the most used activation function and are limited to the maximum and minimum values;
thus, they lead saturated neurons to higher layers of the neural network. The leaky ReLU function
updates weights, which are never reactivated on any data point, as shown in Figure 4.
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2.5. Pooling Layer

The pooling layer is used to reduce the dimensions of images. The main objective of the
pooling layer is to eliminate unnecessary information and preserve only vital parameters. Often used
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are maximum pooling, which considers the maximum value from the input, and average pooling,
which considers the average value, expressed as follows:

s[i, j] = max {S[i;, j’]:i ≤ i’ < i + ,j ≤ j’ < j + p} (4)

s[i, j] = average {S[i;, j’]:i ≤ i’ < i + ,j ≤ j’ < j + p} (5)

Layers in Tiny-YOLO-v2 can be accessed after the application of the batch normalisation layer
to convolutional layers. Inputs with zero mean and unit variance are used. Batch normalisation is
expressed in Equation (6). The earlier output of the convolutional layer is normalised through removal
of the batch mean and dissection of the batch variance. The output after batch normalisation is shifted
according to bias and scaled. CNNs consist of variables such as variance, mean, scale, and bias caused
during the CNN training stage. These parameters permit individual layers to learn independently and
prevent overfitting through their regularisation effect.

x( j) =
(x(i) − µ)
√

σ2 + ξ
(6)

where x( j) = the output pixel after batch normalisation, x(i) = the output pixel after convolution, µ =

the mean, σ = variance, ξ = constant.

3. Results

Efficient computing is necessary to achieve optimal performance of the Tiny-YOLO-v2 model.
Therefore, a NVidia TITAN V graphics processing unit (GPU) (NVidia, Santa Clara, CA, USA) was
used for this experiment, which reduced the training time to 10% (i.e., 34 to 4 h). The Tiny-YOLO-v2
model was trained with the Keras framework running on the NVidia TITAN V GPU by using the
Linux operating system. The early stop criteria were implemented, which achieved the highest
validation accuracy. A batch size of 32 was used, which is a standard maximum batch size. Here,
8 GB of memory was used. Initially, during the training stage, a small data set was selected for testing
the basic performance of these networks. The network settings and parameters were adjusted and
tuned gradually using the trial-and-error method. The parameter batch size was changed. Initially,
5000 images of PCBs labelled as defective were used. Next, 11,000 images of defective PCBs were
used. This procedure was implemented to improve the accuracy of the Tiny-YOLO-v2 model and
regulate the parameters of the model to attain the most advantageous implementation of the training
model. The epoch size is based on the training data set. After parameters were selected for the model,
an initial ideal start for training was initiated. Moreover, with the callback function, a model checkpoint
instruction was used to tune the training process. Its primary purpose is to save the Tiny-YOLO-v2
model with all the weight after each epoch so that finally model framework and weights can save its
optimal performance.

Fivefold cross validation [25] was used to evaluate the execution of the trained models. Initially,
the data were randomly divided into five equal segments, four of which were used for the training
model, and the remaining segment was used for testing. After every training phase, the model
evaluated the remaining segment. This procedure was performed five times with different testing and
training data sets. After completing the training process, each model was tested on a different data
segment. Figure 5 displays the confusion matrix of the tests. The accuracy of the batch sizes of 8, 16,
and 32 was approximately 95.88%, 97.77%, and 98.79%, respectively. Cross validation training was
performed for batch sizes of 8, 16, and 32. Fifteen cross validations were performed on three batch
sizes (Figure 5). Green cells represent true positives and true negatives, and red cells represent false
positives and false negatives. The cells are labelled as NG (not good/damaged) or OK.
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Figure 5. Confusion matrix of five different cross validations for batch size 8, 16 and 32. Note.
True positives (TP): PCB predicted as damaged (NG) and is damaged (NG). True negatives (TN):
PCB predicted as OK and does not have any damage (OK). False positives (FP): PCB predicted damaged
(NG) but does not have any damage. False negatives (FN): PCB predicted as OK but is damaged (NG).

The results gradually improved as the batch size increased, which proved that the Tiny-YOLO-v2
model is more efficient than other CNN models. After every epoch or iteration, the accuracy of the
training process increased, which eventually improved the performance of the model. The final model
was saved after the accuracy stabilised. The results of fivefold cross validation with batch sizes of 8,
16 and 32 are displayed in Tables 1–3, respectively.

Figure 6 displays a sample detected as false negative. The PCB was defective and incorrectly
classified. Data of 11 types of defects were collected and labelled. The number of images for each
defect type was not equal. Therefore, the displayed sample images display the types of defects that
were noted least often, and the remaining types of defects are compared.

Figure 7 displays images of a false positive case. The model misclassified the sample and exhibited
low confidence. To avoid such misclassification, the size of the bounding box in the training data
should be examined.

Figure 8 displays sample images for true positive detections in which defects were detected by
the model with confidence.

Figure 9 displays sample images for true negative detection. These samples did not have any
defect and were classified as OK. The model achieved accurate defect detection. The average accuracy
in detecting defective PCBs for a batch size of 32 was 98.79%, and evaluation precision was consistently
0.99 (Table 3). In addition, other parameters such as the misclassification rate, true positive rate,
false positive rate, true negative rate, and prevalence for a batch size of 32 were favourable to those for
batch sizes of 8 and 16. In most machine learning algorithms, a large and balanced data set is crucial
for achieving optimal performance.
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Table 1. Accuracy, misclassification rate, true positive rate, false positive rate, true negative rate, precision, prevalence, and mean and standard deviation of accuracy
for a batch size of 8.

Batch Size = 8

Category Accuracy Misclassification Rate True Positive Rate False Positive Rate True Negative Rate Precision Prevalence

Cross validation 1 95.68% 0.04 0.95 0.05 0.94 0.98 0.80
Cross validation 2 95.67% 0.04 0.95 0.04 0.95 0.98 0.80
Cross validation 3 96.60% 0.03 0.96 0.02 0.97 0.99 0.80
Cross validation 4 95.42% 0.04 0.95 0.06 0.93 0.98 0.80
Cross validation 5 96.07% 0.03 0.96 0.09 0.95 0.98 0.80

Mean ± SD 95.88 ± 0.412% - - - - - -

Note. Accuracy: how often the detection is correct (TP + TN)/total. Misclassification rate: how often detection is incorrect (FP + FN)/total. True positive rate: when defects are accurately
detected, also known as ‘sensitivity’ or ‘recall’. False positive rate: when defects are detected but are not actually present (FP/actual no). True negative rate: when no defects are detected
where no defects are present, also known as ‘specificity’ (TN/actual no). Precision: positive predictions (TP/predicted yes). Prevalence: how often defects are accurately detected in the
samples (actual yes/total).

Table 2. Accuracy, misclassification rate, true positive rate, false positive rate, true negative rate, precision, prevalence, and mean and standard deviation of accuracy
for a batch size of 16.

Batch Size = 16

Category Accuracy Misclassification Rate True Positive Rate False Positive Rate True Negative Rate Precision Prevalence

Cross validation 1 97.77% 0.01 0.98 0.02 0.97 0.99 0.80
Cross validation 2 97.78% 0.02 0.97 0.02 0.97 0.99 0.80
Cross validation 3 97.77% 0.02 0.98 0.05 0.94 0.98 0.80
Cross validation 4 98.30% 0.01 0.98 0.01 0.98 0.99 0.80
Cross validation 5 97.25% 0.02 0.98 0.06 0.93 0.98 0.80

Mean ± SD 97.77 ± 0.32% - - - - - -

Note. Accuracy: how often the detection is correct (TP + TN)/total. Misclassification rate: how often detection is incorrect (FP + FN)/total. True positive rate: when defects are accurately
detected, also known as ‘sensitivity’ or ‘recall’. False positive rate: when defects are detected but are not actually present (FP/actual no). True negative rate: when no defects are detected
where no defects are present, also known as ‘specificity’ (TN/actual no). Precision: positive predictions (TP/predicted yes). Prevalence: how often defects are accurately detected in the
samples (actual yes/total).
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Table 3. Accuracy, misclassification rate, true positive rate, false positive rate, true negative rate, precision, prevalence, mean and standard deviation of accuracy for a
batch size of 32.

Batch Size = 32

Category Accuracy Misclassification Rate True Positive Rate False Positive Rate True Negative Rate Precision Prevalence

Crossvalidation1 98.82% 0.01 0.99 0.02 0.97 0.99 0.80
Crossvalidation2 98.95% 0.01 0.99 0.02 0.97 0.99 0.80
Crossvalidation3 98.82% 0.01 0.98 0.01 0.98 0.99 0.80
Crossvalidation4 99.21% 0.007 0.99 0.02 0.97 0.99 0.80
Crossvalidation5 98.16% 0.01 0.98 0.04 0.95 0.99 0.80

Mean ± SD 98.79 ± 0.346% - - - - - -

Note. Accuracy: how often the detection is correct (TP + TN)/total. Misclassification rate: how often detection is incorrect (FP + FN)/total. True positive rate: when defects are accurately
detected, also known as ‘sensitivity’ or ‘recall’. False positive rate: when defects are detected but are not actually present (FP/actual no). True negative rate: when no defects are detected
where no defects are present, also known as ‘specificity’ (TN/actual no). Precision: positive predictions (TP/predicted yes). Prevalence: how often defects are accurately detected in the
samples (actual yes/total).
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Figure 9. True negative PCB sections: (a) True negative PCB sample 1. (b) True negative PCB sample 2.
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A vanilla version of the CNN [26] was used to compare the results of the proposed model.
The vanilla CNN was trained using 15,823 images. Fivefold cross validation was implemented to
evaluate the execution of the trained models. Figure 10 displays the results of testing in the form of
a confusion matrix (Figure 5); green cells represent true positives and true negatives, and red cells
represent false positives and false negatives.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 17 

 

 
(c) 

Figure 9. True negative PCB sections: (a) True negative PCB sample 1. (b) True negative PCB sample 
2. (c) True negative PCB sample 3. 

A vanilla version of the CNN [26] was used to compare the results of the proposed model. The 
vanilla CNN was trained using 15,823 images. Fivefold cross validation was implemented to evaluate 
the execution of the trained models. Figure 10 displays the results of testing in the form of a confusion 
matrix (Figure 5); green cells represent true positives and true negatives, and red cells represent false 
positives and false negatives. 

 

Figure 10. Vanilla convolutional neural network (CNN) confusion matrix of five cross validations. 
Note. True positive (TP): Cases in which damage is detected (NG) in the PCB and the PCB is defective 
(NG). True negative (TN): the PCB is predicted as OK and does not have any damage (OK). False 
positive (FP): damage is detected (NG) but the PCB does not actually have any damage. False negative 
(FN): the PCB is predicted as OK but is actually damaged (NG). 

The cross validation results of the Vanilla CNN are presented in Table 4. The mean and standard 
deviation of accuracy was approximately 81.53 ± 2.326%, and precision was less than 0.8, which is 
less than that of Tiny-YOLO-v2. The vanilla CNN is an image classifier that could not identify the 
location of defects. Furthermore, it considers the background as a class, which increased 
misclassification, unlike Tiny-YOLO-v2, which detects multiple defects in a single image and locates 
the defects with a bounding box. 

Figure 10. Vanilla convolutional neural network (CNN) confusion matrix of five cross validations. Note.
True positive (TP): Cases in which damage is detected (NG) in the PCB and the PCB is defective (NG).
True negative (TN): the PCB is predicted as OK and does not have any damage (OK). False positive
(FP): damage is detected (NG) but the PCB does not actually have any damage. False negative (FN):
the PCB is predicted as OK but is actually damaged (NG).

The cross validation results of the Vanilla CNN are presented in Table 4. The mean and standard
deviation of accuracy was approximately 81.53 ± 2.326%, and precision was less than 0.8, which is less
than that of Tiny-YOLO-v2. The vanilla CNN is an image classifier that could not identify the location
of defects. Furthermore, it considers the background as a class, which increased misclassification,
unlike Tiny-YOLO-v2, which detects multiple defects in a single image and locates the defects with a
bounding box.
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Table 4. Accuracy, misclassification rate, true positive rate, false positive rate, true negative rate, precision, prevalence, and mean and standard deviation of accuracy.

Category Accuracy Misclassification Rate True Positive Rate False Positive Rate True Negative Rate Precision Prevalence

Cross validation 1 81.21% 0.18 0.89 0.29 0.70 0.80 0.57
Cross validation 2 84.55% 0.15 0.85 0.17 0.82 0.77 0.57
Cross validation 3 79.01% 0.20 0.86 0.31 0.68 0.78 0.57
Cross validation 4 79.70% 0.20 0.83 0.25 0.74 0.75 0.57
Cross validation 5 83.18% 0.16 0.87 0.22 0.77 0.78 0.57

Mean ± SD 81.53 ± 2.326% - - - - - -

Note. Accuracy: how often the detection is correct (TP + TN)/total. Misclassification rate: how often detection is incorrect (FP + FN)/total. True positive rate: when defects are accurately
detected, also known as ‘sensitivity’ or ‘recall’. False positive rate: when defects are detected but are not actually present (FP/actual no). True negative rate: when no defects are detected
where no defects are present, also known as ‘specificity’ (TN/actual no). Precision: positive predictions (TP/predicted yes). Prevalence: how often defects are accurately detected in the
samples (actual yes/total).
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4. Discussion

A novel user interface was developed to collect data. Skilled engineers labelled the defects using
the interface. The simple method achieved an excellent PCB defect detection accuracy of 98.79%,
which is considerably better than that of other algorithms involving complex feature extraction [27–29].
The effectiveness of the proposed method was investigated using various CNN layers. To avoid the
delay resulting from the nonspecificity of a single CNN model and insufficient storage capacity, a GPU
environment was established. The model was trained using different batch sizes to improve accuracy.

The YOLO strategy is a powerful and quick approach that achieves a higher FPS rate than
computationally expensive two-stage detectors (e.g., faster R-CNN) and some single-stage detectors
(e.g., RetinaNet and SSD). Tiny-YOLO-v2 was used in this study to increase the execution speed
because it is approximately 442% faster than the standard YOLO model, achieving 244 FLOP on a
single GPU. A small model size (<50 MB) and fast inference renders the Tiny-YOLO-v2 naturally
suitable for embedded computer vision.

Compared with other simple classifiers, YOLO is widely used in practice. It is a simple unified
object detection model and can be trained directly using full images. Unlike classifier-based approaches,
YOLO is trained using a loss function that directly influences detection performance. Furthermore,
the entire model is trained at one time. Fast YOLO is the fastest general-purpose object detector.
YOLO-v2 provides the best tradeoff between real-time speed and accuracy for object detection compared
with other detection systems across various detection data sets.

Multilayer neural networks or tree-based algorithms are deemed insufficient for modern
advanced computer vision tasks. The disadvantage of fully connected layers, in which each
perceptron is connected to every other perceptron, is that the number of parameters can increase
considerably, which results in redundancy in such high dimensions, rendering the system inefficient.
Another disadvantage is that spatial information is disregarded because flattened vectors are used as
inputs. However, the key difference distinguishing YOLO from other methods is that the complete
image is viewed at one time rather than only a generated region, and this contextual information helps
to avoid false positives.

In this study, a modified YOLO model was developed and combined with an advanced CNN
architecture. However, some challenges remain to be overcome. Although the proposed system
incorporates a smart structure and an advanced CNN method, the model accuracy is not perfect,
particularly when operated with unbalanced data sets. The used data sets are collected by experienced
PCB quality inspection teams. Moreover, traditional deep learning methods [30–32] are based on
classifying or detecting particular objects in an image. Therefore, the model structure was tested with
three batch sizes. As elaborated elsewhere [33], these structures exhibit high precision for a classical
CNN model but unpredictable performance for the PCB data set. According to research on deep learning,
the types of network layer parameters, linear unit activation parameters, regularisation strategies,
optimisation algorithms, and approach to batch normalisation of the CNN training process should be
focused on for improving the PCB defect detection performance of CNNs. As depicted in Figure 5,
the proposed model can accurately detect defects on PCBs and can therefore be used for PCB quality
inspection on a commercial scale.

The three models achieved excellent results with an accuracy reaching 99.21% (Table 3). This proves
that the modified YOLO model with deep CNNs is suitable for detecting PCB defects and can achieve
accurate results. CNNs can automatically perform the learning process of the target after appropriate
tuning of the model parameters. During training, the CNN weights are automatically fine-tuned to
extract features from the images. However, further research, such as experimental evaluation and
performance analysis, should be conducted to enhance CNN performance, describe PCB defects in
more detail, and classify defects into predefined categories.
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5. Conclusions

This study proves that the proposed CNN object detection algorithm combined with the
Tiny-YOLO-v2 algorithm can accurately detect defects in PCBs with an accuracy of 98.82%.

In the future, the system should be improved for detecting other types of defects. Additionally,
more types of defects and more data should be included to achieve group balancing. Other CNN
algorithms, such as Rateninet, ResNet, and GoogleNet [17,20,34], should be implemented using
GPU hardware for increased learning speed. Finally, the transfer learning approach [35] should be
considered for a pretrained YOLO model.
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