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Abstract—Load forecasting is a complex non-linear problem 
with high volatility and uncertainty. This paper presents a novel 
load forecasting method known as deep neural network and 
historical data augmentation (DNN-HDA). The method utilizes 
HDA to enhance regression by DNN for monthly load forecasting, 
considering that the historical data to have a high correlation with 
the corresponding predicted data. To make the best use of the 
historical data, one year’s historical data is combined with the 
basic features to construct the input vector for a predicted load. In 
this way, if there is C years’ historical data, one predicted load can 
have C input vectors to create the same number of samples. DNN-
HDA increases the number of training samples and enhances the 
generalization of the model to reduce the forecasting error. The 
proposed method is tested on daily peak loads from 2006 to 2015 
of Austria, Czech and Italy. Comparisons are made between the 
proposed method and several state-of-the-art models. DNN-HDA 
outperforms DNN by 44%, 38% and 63% on the three datasets, 
respectively. 

Keyword—deep neural network, data augmentation, load 
forecasting, regression 

 

Nomenclature 

M Month 

D Day 

Y Year 

W Week 

H Holiday 

𝑦(",$,%) Daily peak load of M month D day, Y 
year 

𝐸(",$,%) Exogenous features of M month D day, Y 
year 

𝐵_𝐿(",$,%)'  Neighboring loads before 𝑦(",$,%) and o 
denotes the number of these loads 

𝑥(",$,%) Input vector without historical data 
augmentation 

C Number of years of historical loads 

𝐵_𝐿(",$,%())
*  Adjacent loads before 𝑦(",$,%()) and p is 

the number of these loads, 𝑡 ∈ [1, 𝐶] 

𝐴_𝐿(",$,%())
+  Adjacent loads after 𝑦(",$,%()) and q is 

the number of these loads, 𝑡 ∈ [1, 𝐶] 

𝐻_𝐷(",$,%()) Historical feature vector of year Y-t, 𝑡 ∈
[1, 𝐶] 

𝑠(",$,%) Input vector for historical data 
concatenation (HDC) 

𝑋(",$,%) Input vector for historical data 
augmentation (HDA) 

L Number of layers in the deep neural 
network (DNN) model 

𝑥,- Input of the lth layer of the ith sample, 𝑙 ∈
[1, 𝐿] 

𝑏- Biases of the neurons in the lth layer 

𝜑(·) Activation function 

𝑊- Weights matrix of the lth layer 

N Number of training samples 

𝜇 Penalty coefficient of the model 
complexity 

Load Forecasting based on Deep Neural 
Network and Historical Data Augmentation 

Chun Sing Lai 1,2, Zhenyao Mo 3, Ting Wang 3, Haoliang Yuan 1, Wing W. Y. Ng 3, Loi Lei Lai 1,* 

1 Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou, China 

2 Brunel Institute of Power Systems, Department of Electronic and Computer Engineering, Brunel University London, London, 
UB8 3PH, UK 

3 Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information, School of Computer Science 
and Engineering, South China University of Technology, Guangzhou 510630, China 
* l.l.lai@ieee.org 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

𝐸 Loss of the deep neural network (DNN) 
model 

𝑦, True label of the ith sample 

𝑦8, Model’s output of the ith sample 

v Number of evaluated samples 

I. INTRODUCTION 
oad forecasting plays an essential role in many areas such 
as energy trading in power markets [1-3], system security 
assessments [4] and infrastructure maintenance [5]. 

Furthermore, load forecasting is getting increasingly important 
since the beginning of the 21st century because of the 
development of the smart grid [6].  

However, load forecasting is a challenging problem due to 
the high volatility and uncertainty. For instance, there is a lower 
electricity demand in rainy days than that of the sunny days in 
summer. The lower temperature will cause a less number of air-
conditioners to operate, which is an electricity intensive 
appliance. Nevertheless, the weather is irregular and becomes 
an uncertain factor for the prediction of loads. The emergence 
of renewable energy (e.g. wind and solar) also increases the 
difficulty of forecasting due to their non-regular behavior. To 
encourage the customers to stagger the peak time of electricity 
consumption, the decision-makers of power market have 
designed various electricity prices in a different time, which 
encourages customers to use electricity when the energy cost is 
low. This strategy also increases the uncertainty of forecasting, 
since its influence to the consumption behavior of users is 
difficult to quantify. All of these variables bring volatility and 
uncertainty to load forecasting, which makes it a complex non-
linear problem. 

Classical statistical methods like autoregressive integrated 
moving average (ARIMA) [7], exponential smoothing method 
[8], multiple linear regression [9] and Kalman filter [10] were 
proposed as the common methods for load forecasting. 
Traditional methods explicitly map the input to the output and 
are easy to implement, but these methods have drawbacks with 
the highly non-linear problem. More attentions are paid on the 
machine learning models because of their great ability in 
building the non-linear mapping. Methods such as radial basis 
function neural network (RBFNN) [11], artificial neural 
network (ANN) [12], support vector regression (SVR) [13] and 
extreme learning machine (ELM) [14] had been applied for load 
forecasting problem. However, the above machine learning 
methods suffer from under-fitting and over-fitting issues. Some 
scholars concentrate on finding a better way to tune parameters; 
for the model to avoid staying in the local optimum. They 
combine evolutionary algorithms and machine learning models 
to reach this goal [6, 15]. Authors in Reference [16] tried the 
methods including cross-validation, early stopping and 

regularization which are commonly applied on machine 
learning to escape from the local optimum. Considering the 
implicit relationships between similar but distinct domain data, 
the authors proposed a two-layer architecture to improve the 
accuracy of the model based on transfer learning [17]. In 
addition, an investigation was devoted to aggregating a series 
of learning models to avoid the over-fitting and strengthen 
model’s ability [18]. To obtain the optimal structure of RBFNN 
and avoid from the over-fitting and under-fitting problems in 
the training process, Abedinia and Amjady [19] constructed a 
stochastic search method to find the suitable number neurons in 
the hidden layer of RBFNN. In Reference [20], a feature 
selection method based on information-theoretic criteria was 
utilized to get the non-linearities and interacting features which 
improves the forecasting model by modeling interaction, 
relevancy and redundancy. To create a forecasting model with 
high accuracy, Reference [21] provided a hybrid prediction 
model based on a feature selection method which chooses the 
best candidate inputs and enhanced support vector machine 
which fine tunes the free parameter of the forecast engine to 
tackle the prediction of aggregated loads of buildings and the 
impact of electric vehicle. Another method based on non-linear 
optimization was introduced in Reference [22] which supports 
the assessment of load forecasts in local energy markets (LEM) 
simulations by generating erroneous load profiles and decreases 
the implications of forecast errors. 

In recent years, deep learning [23] is considered by the 
research community. Comparing to other machine learning 
methods, their deep structure enhances the feature extraction 
capability and helps studying the complicated non-linear 
mapping better. To show the effectiveness of deep learning 
methods, the comparison between two classical deep learning 
methods (recurrent neural network (RNN) and convolutional 
neural network (CNN)) and one popular traditional method 
autoregressive integrated moving average with exogenous 
inputs (ARIMAX) is exhibited in [24]. The experiments 
indicate that deep learning methods have improved results 
compared to traditional statistical methods. In [25], the authors 
constructed a deep neural network (DNN) model with a 
restricted Boltzmann machine (RBM) as the pre-training model 
to initial DNN’s weights to get an accurate prediction model. 
Because the load forecasting is a time series task and long short-
term memory (LSTM) does well in abstracting sequence 
features, [26] proposed an LSTM recurrent neural network-
based framework to deal with the task of load forecasting for 
individual residential households. Dedinec et al. [27] utilized 
deep belief networks (DBN) to solving the load forecasting 
problem and obtaining a better performance, as compared with 
a typical feed-forward multi-layer perceptron neural network 
and Macedonian system operator. To learn the relationship 
from the training data more effectively, [28] proposed a model 
based on deep residual network (DRN) with the ability to 
integrate    

L  
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Table 1 Function comparisons between the proposed method and state-of-the-art models (Y: Yes; N: No) 

Functions [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [25] [26] [27] [28] Proposed 
method 

Feature selection N N Y N N N N Y Y Y N N Y N N 

Deep learning N N N N Y N N N N N Y Y Y Y Y 

Optimizing the hyper 

parameters of learning 
model 

N N Y Y N N Y N Y N N N N N N 

Data augmentation N N N N N N N N N N N N N N Y 

Multiple outputs Y Y N N N Y N N N N N N N Y Y 

 

 
Fig. 1.  The framework of the DNN-based regression model and HDA 

 

domain knowledge and researchers’ understanding of the task 
under different neural network building blocks. In our work, 
DNN is adopted as the regression model because of its 
extraordinary capability for the non-linear task.  

In our study, it is found that loads of different years on the 
same date (LDYSD), such as the daily peak load of December 
1, 2014, and that of December 1, 2015, have a strong correlation 
based on correlation analysis [29]. The discovery indicates that 
the corresponding historical loads have some implicit 
relationships with the load to be predicted. It inspires us to 
utilize this nature to improve the forecasting model. To make 
full use of these historical loads, historical data augmentation 
(HDA) is proposed to strengthen the capability of the model. It 
uses the concept of data augmentation [30] which focuses on 
increasing the number samples and provides additional 
information to the learning model simultaneously. This feature 

strengthen the model, its generalization ability and avoid from 
over-fitting. Many methods use data augmentation to tackle 
their problems such as sound classification [31-33]. To the best 
knowledge of the authors, there are few methods about applying 
data augmentation on load forecasting.  

The contributions of this paper can be summarized as 
follows: 

1. Combining the load data of the same date in different 
years to augment the data for a better performance. This 
fully utilizes the high correlation of data for the same 
period  in different years. 

2. A forecasting model consisting of DNN and HDA is 
proposed. The DNN can learn the non-linear 
relationships for load forecasting. The HDA provides 
extra information to the DNN which strengthens its 
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robustness and improves the performance. The 
combination of these two methods yields a more effective 
load forecasting model.  

3. The proposed HDA method has several corresponding 
samples which bring the same number of outputs after 
sending them into the trained model. Thus, these outputs 
can be aggregated to improve the model further. 
Experimental results show that the proposed method 
outperforms several existing methods. Comparing with 
only using DNN, the proposed method outperforms it by 
44%, 38% and 63% on the three datasets, respectively. 

To demonstrate the contributions of the proposed method as 
compared to other state-of-the-art models, the function 
comparisons are summarized in Table 1. It is shown that some 
researchers focused on the feature selection which aims to find 
the good input for forecasting model to improve its ability [15, 
20-22, 27]. Some studies have applied deep learning to better 
deal with the non-linear mapping problem in load forecasting 
[25-28]. To avoid the over-fitting and under-fitting problems in 
machine learning, authors in references [15-16, 19, 21] made 
contributions on optimizing the hyper parameters of learning 
model. There are other studies that employed different methods 
to generate multiple outputs for one load; to predict and 
aggregate them to get a higher accuracy [13-14, 18, 28]. In our 
work, HDA is proposed to increase the number of samples and 
enhance the generalization of the model. This method also helps 
a forecasted load to get multiple outputs and improve the 
model’s performance further. Meanwhile, DNN is adopted as 
the forecasting engine to solve the non-linearity of load 
forecasting. 

The paper is organized as follows: Section II describes a 
novel method for load forecasting. The case studies with real-
life data, its experimental results and discussion are presented 
in Section III. Finally, the conclusion and future work are given 
in Section IV. 

II. DNN WITH HDA FOR LOAD FORECASTING 
The proposed DNN-HDA method consists of two parts: the 

DNN-based regression model and the HDA. Assuming that the 
loads are forecasted in year Y and there are C-year historical 
data. In the procedure of HDA, for each load to be predicted, 
several features could be used to construct C samples. The 
features include the most recent loads of the predicted load, 
LDYSD, the neighboring loads of LDYSD and the exogenous 
features like a holiday, calendar information, weather etc. After 
generating samples, the deep neural network is trained with the 
training data. For one predicted load, there are C outputs that 
will be averaged to generate the final prediction. Fig. 1 shows 
the whole process of DNN-HDA. In the following subsections, 
the detail about HDA and the construction of DNN will be 
given.     

A. Historical data augmentation 
In this subsection, the proposed method of HDA will be 

elaborated. The components of input are firstly depicted since 
this method is based on the construction of input. Subsequently, 
the proposed HDA is introduced fully.   

In this paper, the commonly used features including past load 
values, calendar information and holiday are selected as the 
input attributes for three datasets. The calendar information 
includes year, month, day and day of the week. Assuming that 
𝑦(",$,%) identifies the current load value to be predicted. M, D 
and Y denote current date’s month, day and year, respectively. 
Let W and H denotes the day of week and holiday information 
of the predicted day, respectively. Therefore, the exogenous 
features can be represented as: 

 𝐸(",$,%) = (𝑌,𝑀,𝐷,𝑊,𝐻)                                                    (1)  

Note that all these exogenous data are transformed into one-hot 
encoding in the experiments. 

Suppose 𝐵_𝐿(",$,%)'  represents the neighboring load values 
before 𝑦(",$,%) and o denotes the number of these load values. 
The common input vector 𝑥(",$,%)  without HDA can be 
formulated as follows: 

𝑥(",$,%) = (𝐵_𝐿(",$,%)' , 𝐸(",$,%))                                            (2) 

HDA will be described after describing the input features. 
Many researchers consider features like the past load values, 
calendar information, weather as the composition of input. 
Besides these features, there is another effective attribute which 
is ignored by many studies. That is load values of different years 
on the same date (LDYSD). For example, when there is each 
day’s peak load value from 2012 to 2014 and to compute 
𝑦((),(,)*(+) , not only the most recent load values should be 
considered, but also the historical same period data (i.e. 
𝑦((),(,)*())  𝑦((),(,)*(,)  and 𝑦((),(,)*(-) ) should be taken into 
account. The motivation to include LDYSD into the input is 
because of the historical samples show a high correlation with 
the corresponding predicted data. To prove this, the correlation 
coefficient analysis is made between loads of different years. 
There are 10 years’ loads for the three nations. Applying all the 
combinations is unnecessary, so 3 years (2009, 2010 and 2014) 
daily peak load values of Czech are randomly selected to carry 
out the correlation coefficient analysis with those of 2015. The 
results are displayed in Fig. 2 to Fig. 4. Because the inputs of 
the correlation coefficient analysis are two vectors, therefore, 
each year’s load value is divided into 4 parts according to the 
seasons and set them as input vectors. From the table, the 
corresponding season’s loads of different years always have a 
positive and high coefficient, especially in the analysis of loads 
of 2009 and  2015, whose correlation coefficients are almost 
higher than 0.9. The analysis implies that electricity 
consumption of the corresponding day from different years are 
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highly relevant. This phenomenon promotes us to apply 
LDYSD on the model. 

  
Fig. 2.  Correlation coefficient between loads of 2009 and 2015 

 
Fig. 3.  Correlation coefficient between loads of 2010 and 2015 

 

Fig. 4.  Correlation coefficient between loads of 2014 and 2015 

 

To make full use of LDYSD, the neighboring points before 
and after them are considered. For instance, the load values for 
December 2-10, 2014 and December 2-10, 2013 can be utilized 
to compute the load value of December 2-10, 2015 i.e.  
𝑦((),.,)*(+). Suppose that there are C-year historical load values 
and the current load value to be forecasted is 𝑦(",$,%), then the 

corresponding historical load of t years ago can be expressed as 
𝑦(",$,%/0), 𝑡 ∈ [1, 𝐶]. Let 𝐵_𝐿(",$,%/0)

1  represents the adjacent 
loads before 𝑦(",$,%/0)  and p is the number of these loads. 
𝐴_𝐿(",$,%/0)

2  denotes the adjacent loads after 𝑦(",$,%/0) and q is 
the number of these loads. The historical feature vector of year 
Y-t can be presented as:  

𝐻_𝐷(",$,%/0) = 7𝐵3(",$,%/0)
1 , 𝑦(",$,%/0), 𝐴3(",$,%/0)

2 , 𝑌 − 𝑡9  (3)
 The simplest way to use these historical data is to concatenate 
all 𝐻_𝐷(",$,%/0) and append them to the original input 𝑥(",$,%). 
The new input vector  𝑠(",$,%) can be written as: 

𝑠(",$,%) =
(𝑥(",$,%), 𝐻_𝐷(",$,%/(), … , 𝐻_𝐷(",$,%/0), … , 𝐻_𝐷(",$,%/4))    (4) 

This method is named as historical data concatenation (HDC). 
However, this method has a defect that only the load values of 
year Y have enough historical data to construct the samples to 
ensure that all inputs have the same dimension. In other words, 
it cannot use load values before year Y as a label to generate 
samples. This leads to the number of samples to be much less.  

HDA is proposed to overcome the shortage of HDC. HDA 
inserts one 𝐻_𝐷(",$,%/0)  into the original input to generate a 
new sample, instead of aggregating the historical data of all 
previous years into the one input. C-year historical data can 
create C new samples for one load to be predicted. The process 
of HDA is shown in Fig. 1. The inputs set 𝑋(",$,%) of  𝑦(",$,%) 
can be written as: 

𝑋(",$,%) = {𝑥|𝑥 = (𝑥(",$,%), 𝐻_𝐷(",$,%/0))}, 𝑡 ∈ {1,… , 𝐶}     (5)          

HDA increases the number of samples and brings historical 
features to the learning model at the same time. In this way, 
HDA enhances the diversity of samples and helps the model be 
able to have a better performance. Furthermore, because the 
predicted load value has several corresponding inputs, several 
outputs could be obtained after feeding the inputs to the 
regression model. These outputs can be aggregated to get an 
enhanced result. In this paper, these outputs are averaged as the 
final result. 

It is obvious that HDA has more advantages than HDC. To 
examine HDA and prove its effectiveness, the comparison 
between two methods will be shown in Section III.  

B. Deep Neural Network 
Deep learning [23] is gaining popularity in the past few years 

because of its excellent ability to construct complicated 
relationships between two domains. Deep learning greatly 
promotes the development of artificial intelligent (AI) and 
makes extraordinary successes in many fields, such as computer 
version, natural language processing and speech recognition. 
Load forecasting is a non-linear problem, while many 
researchers have demonstrated that deep learning is good at 
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dealing with this type of task in recent years. Therefore in this 
work, a DNN model is constructed to predict the load values.  

To build the DNN model, it is necessary to determine the 
number of hidden layers and neurons. However, it is impossible 
to test all the combinations of layers and neurons. A simple and 
effective way is adopted to determine the model’s parameters 
as follows: 50 is set as the initial value for the number of 
neurons, which is increased or decreased in each layer and then 
the combination of layers and neurons is enumerated to create 
the models. With sensitivity analysis, the optimal performance 
of the proposed DNN has the parameters of 4 hidden layers with 
100 neurons per layer.. The structure of the DNN is shown in 
Fig. 5. 

Suppose that L is the number of layers in the model. Let  𝑥56 =
(𝑥5,(6 , 𝑥5,)6 , … , 𝑥5,76 ) identifies the input of the lth layer of the ith 
sample, 𝑙 ∈ [1, 𝐿]. The mapping function in the lth layer can be 

 

Fig. 5.  Structure of DNN 

 

written as: 

𝑥568( = 𝜑B𝑊6𝑥56 + 𝑏6E, 𝑙 ∈ [1, 𝐿]                                                          (6) 

where 𝑏6 represents the biases of the neurons in the lth layer and 
	𝜑(·) denotes the activation function. 𝑊6 is the weights matrix 
of the lth layer.  

To optimize the parameters of the model, generally, the 
backpropagation is applied to minimize the following loss 
function: 

𝐸 = (
9
∑ ‖𝑦5 − 𝑦I5‖9
5:( + 𝜇∑ ‖𝑊6‖))3

6:(                                    (7) 

where N identifies the number of samples and 𝜇 is the penalty 
coefficient of the model complexity. 𝑦5 and 𝑦I5 are the true label 
and the model’s output of the ith sample, respectively. The first 
part of a loss function (

9
∑ ‖𝑦5 − 𝑦I5‖9
5:(  represents the empirical 

risk, while the second part 𝜇∑ ‖𝑊6‖))3
6:(  is the regularization 

term to control the model complexity. 

III. CASE STUDY 
In this section, the details about the experiment is introduced 

and the description of the dataset, the process of 
implementation and the results on the three datasets are 
included.   

A. Dataset 
In this work, experiments based on the daily peak loads of 

the three nations (Austria, Czech and Italy) are carried out. The 
data can be downloaded from the website open power system 
data platform [34]. The website provides 37 European national 
loads from 2006 to 2015 in hourly data format. The 
maximization of the hourly loads per day as the daily peak load 
is considered. For each dataset, there are ten years of load 
values. Among these datasets, load values in December 2015 
are selected as the test set, while the others are used for the 
model training. For the training part, at each run, 25% of the 
samples are randomly chosen as the validation set, to decide the 
best model and the rest is the training set. Each experiment is 
run for 10 times. 

Note that all the following experiments are monthly 
forecasting since a month data is chosen as the test set. All the 
loads in December 2015 are regarded as the unknown data. To 
obtain the daily peak load values in December 2015, the known 
data is firstly used to forecast the load on December 1, 2015. 
Then the load value for December 2, 2015 can be predicted with 
the load value on December 1, 2015. In this way, all the 
predictions are obtained for December 2015. 

B. Implementation 
The code is implemented by PyTorch platform [35]. The 

value of hyper-parameters like epoch, batch size, learning rate 
and L2 regularization coefficient 𝜇 are displayed in Table 2. For 
all the datasets, stochastic gradient descent (SGD) is adopted as 
the optimizer.  

Table 2 Setting of parameters 

 Epoch Batch 
size 

Learning rate 𝜇 

Austria 200 128 0.01 0.001 

Czech 200 128 0.005 0.001 

Italy 200 128 0.01 0.001 

 

For the evaluation criteria, the popular measurement mean 
absolute percentage error (MAPE) is employed to evaluate the 
proposed method in this study.  The equation of the index is: 

MAPE =
∑ <!"#!

$"
!"

<%
"&'

=
× 100%                                                          (8) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

where v is the number of evaluated samples, 𝑦5 denotes the true 
load of the ith sample and 𝑦I5  represents the output from the 
model of the ith sample. 

C. Experiment on the three datasets 
The results of the proposed method on the three datasets are 
shown in this subsection. Firstly, a sensitivity analysis is carried 
out to decide the values of o, p and q as mentioned in Section 

II. Subsequently, the discussion for the effect of historical loads’ 
amount on the proposed method is provided. Next, a 
comparison with other methods is made to demonstrate the 
performance of the proposed method. Finally, the influence of 
seasonality on the method will be discussed.  

 

Table 3 MAPE (%) performances of different p and q based on DNN-HDA 

 Austria Czech Italy 

p q Mean±Std Max Min Mean±Std Max Min Mean±Std Max Min 

5 0 3.55±0.52 4.43 2.78 4.76±0.84 6.09 3.54 4.84±0.67 5.75 3.90 

7 0 3.19±0.37 3.76 2.66 4.59±0.65 5.72 3.86 3.76±0.66 4.82 2.50 

9 0 3.53±0.45 4.18 2.78 4.50±0.50 5.25 3.78 3.62±0.48 4.38 2.87 

11 0 3.52±0.60 4.57 2.70 4.52±0.48 5.60 4.02 4.17±0.74 5.76 3.32 

0 5 3.28±0.91 5.56 2.58 4.01±0.45 5.55 2.98 3.73±0.57 4.99 3.20 

0 7 2.85±0.40 4.17 2.71 3.69±0.48 5.16 3.33 3.16±0.43 3.65 2.45 

0 9 3.06±0.45 3.88 2.26 3.77±0.45 5.79 3.14 3.21±0.33 3.95 2.88 

0 11 3.11±0.49 3.81 2.34 3.80±0.70 5.22 3.07 3.19±0.47 3.94 2.67 

5 5 2.96±0.56 4.20 2.36 3.86±0.79 5.27 2.52 3.18±0.36 3.81 2.79 

7 7 2.79±0.47 3.60 2.14 3.48±0.57 4.83 2.87 2.97±0.66 4.24 2.33 

9 9 3.01±0.38 4.00 2.62 3.80±0.81 5.25 2.83 3.15±0.34 3.43 2.30 

11 11 2.93±0.35 3.54 2.45 3.60±0.96 5.70 2.31 3.05±1.04 5.81 2.16 

 

 

Fig. 6.  Performances of different o values on the three datasets 

 

1) Sensitivity analysis 

The structure of the model input is depicted in Section II. The 
input vector consists of several variables. Among these 
variables, the most recent loads of the predicted load 𝐵_𝐿(",$,%)' , 

the adjacent points before and after the LDYSD 
(i.e. 𝐵_𝐿(",$,%/0)

1  and 𝐴_𝐿(",$,%/0)
2 ) are considered to be 

important. To utilize these features, the values of their 
parameters o, p and q have to be calculated first.  

In the experiments, the parameter o is examined first. Since 
the authors only test the values of o and do not include the other 
two parameters, several o values based on DNN without using 
the proposed HDA are examined. For the real daily peak loads, 
the load values of one week forms a cycle because the load 
demand on the weekend is lower than that on a weekday. 
Generally, the load data of one week before the load to be 
predicted is suitable for the input. Therefore, 7 is a suitable 
value for o and also different values are chosen. Meanwhile, 5, 
7, 9 and 11 are selected as the value of o to examine its 
performance on the three datasets. The comparison results are 
presented in Fig. 6. These results show that when the value of o 
is 7, the lowest mean and standard deviation for both Austria 
and Czech datasets can be achieved. However, such value could 
not be obtained on Italy dataset. As an evaluation index, mean 
is a better choice to represent the performance of a model 
comparing to the standard deviation. Therefore, 7 is regarded as 
the most suitable value of o for Italy dataset, since it obtains the 
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best average MAPE. According to the experiments, it is shown 
that one week’s data before the predicted load can actually give 
the satisfactory features for the forecasting.     

The determination of p and q is required after determining o. 
5, 7, 9 and 11 are selected as the sensitivity values for p and q. 
To carry out the sensitivity analysis, 12 combinations of four 
selected values are chosen for comparison. Table 3 gives the 
MAPE results of different p and q values for DNN-HDA, with 
the lowest value of each column is highlighted in bold. From 

Table 3, it is shown that no combination of values can 
outperform others on all measurements on three datasets. 
However, the lowest mean MAPE could be obtained when 
setting 7 for both p and q. Therefore 7 is regarded as the most 
suitable value for p and q for the three datasets. 

 

 

 

Table 4 MAPE (%) of different number of historical years for DNN-HDA   

 Austria Czech Italy 

Years Mean±Std Max Min Mean±Std Max Min Mean±Std Max Min 

3 3.62±0.45 4.34 3.22 5.23±0.58 6.13 4.49 4.64±0.40 5.20 4.08 

5 3.22±0.31 3.72 2.75 3.81±0.88 4.96 2.46 4.10±0.35 4.71 3.62 

7 2.89±0.48 3.33 2.34 3.61±0.56 4.67 2.86 3.54±0.50 4.25 2.88 

9 2.79±0.60 3.60 2.14 3.48±0.57 4.83 2.67 2.97±0.66 4.24 2.33 

 

Table 5 MAPE (%) comparison of various models on the three datasets  

 Austria Czech Italy 

Model Mean±Std Max Min Mean±Std Max Min Mean±Std Max Min 

ARIMA 6.43±0 6.43 6.43 6.43±0 6.43 8.32 10.53±0 10.53 10.53 

DNN  4.95±0.41 5.69 4.55 5.61±0.51 6.44 4.68 8.01±1.12 10.19 6.60 

LSTM [26] 4.80±0.62 6.11 5.46 5.78±1.26 8.03 4.21 6.40±1.71 9.39 4.57 

DRN [28] 3.21±0.35 3.50 3.01 5.22±0.23 5.52 4.90 9.09±0.51 9.81 8.24 

DNN-HDC 3.19±0.48 4.40 2.60 5.05±0.55 6.01 4.29 5.46±0.50 6.10 4.62 

DNN-HDA 2.79±0.60 3.60 2.14 3.48±0.57 4.83 2.87 2.97±0.66 4.24 2.33 

 

Through the experiments, it is shown that the best value for 
all three parameters on all datasets is 7. The results showed that 
using the load values of one cycle as an input feature is suitable 
for the prediction. Also, using both 𝐵_𝐿(",$,%/0)

1  and 
𝐴_𝐿(",$,%/0)

2  can reduce the MAPE, which indicates that the 
performance of adding both of these two features into the input 
is better than that of only utilizing one of them. Furthermore, 
the proposed method is robust and less sensitive to the values 
of p and q in the case of applying both 𝐵_𝐿(",$,%/0)

1  
and 𝐴_𝐿(",$,%/0)

2 , because different values have similar 
performances on the three datasets. 

2) Discussion on the number of historical loads    

In Section II, it is mentioned that the number of samples 
could be increased with HDA. More samples could be created 

with additional historical data;  to create more information for 
the learning model and to get a more accurate forecast. To 
verify the aforementioned statement, different amounts of 
historical loads are examined, and their performances are tested 
with DNN-HDA. Table 4 shows the results of utilizing 
historical data of 3, 5, 7 and 9 years.  

It is shown that the lowest average MAPE is obtained by 
using 9-year historical loads on three datasets. The forecasting 
result obtained with the larger historical dataset ranks top two 
on the other two measurements (i.e. max and min). On the other 
hand, the experiments also imply that there will be little model 
improvement when the amount of historical loads outnumber a 
threshold. 
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3) Comparison with existing methods 

  To demonstrate the effectiveness of the proposed method, 
two benchmark models: an autoregressive integrated moving 
average (ARIMA) and deep neural network (DNN); and two 
state-of-the-art models: long short-time memory (LSTM) [26] 

and deep residual neural network (DRN) [28] are selected for 
comparisons. The results of HDC combined with DNN (DNN-
HDC) are also exhibited in this subsection. Table 5 gives the 
comparison results and the best result of each column is 
highlighted in bold.  

 

Fig. 7.  Daily peak load value of Austria 

 

 

Fig. 8.  Analysis of Seasonal Effect on the Proposed Method DNN-HDA (M1: Use all training data, M2: Use only training data of 
winter, M3: Use all training data except those of winter)

The results of the proposed methods DNN-HDC and DNN-
HDA are also given in Table 5. It shows that DNN-HDA has a  
better performances for all datasets, and proves that HDA is a 
better method of utilizing historical same period load values. 
Moreover, the MAPE is the lowest for DNN-HDA and achieves 
the best results on all datasets. The comparison of DNN-HDA 
and DNN is reported in Table 5. The MAPE average values of 
DNN-HDA are 44%, 38% and 63% lower than those of DNN 
on three datasets, respectively. The proposed method shows 
enhanced improvements for DNN on three datasets especially 
on Italian data, because 1) of the worst performance of DNN in 
this dataset; 2) of the outstanding result of DNN-HDA. 
Comparing with the data of Austria and Czech, Italian data are 

more complex which brings about the bad performance of DNN. 
From the results, it is shown that even with the complex data, 
HDA method is very effective and brings a great improvement 
to the learning model. It fully implies that the hybrid of DNN 
and HDA has enhanced performance than only using deep 
neural network. 

In summary, HDA increases the number of samples which 
provide extra information to the learning model and strengthen 
its generalization. The results demonstrate its significant 
improvement to the model.     
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4)   Influence of seasonality  

The influence of season on energy demand is intuitive. The 
daily peak load values of Austria are examined as an example. 
Fig. 7 displays the 3-year daily peak loads curve of Austria from 
2013 to 2015. It is shown that the monthly electricity 
consumption changes periodically. In summer, the load demand 
is the lowest in the year. In contrast, winter has the highest load 
demand. Also, the electricity demand gradually decreases and 
increases in spring and autumn, respectively. The reason for the 
regular change is due to the requirement of heating raised as the 
temperature descends. To account for this effect in the model, 
the training data should give prior knowledge about the season. 
For all the three datasets, the load values that belongs to winter 
in December 2015 are selected as the test set. The training data 
is reorganized and three new training sets for each dataset are 
constructed. They are M1 (Use all training data), M2 (Use only 
training data of winter) and M3 (Use all training data except 
those of winter). The three models based on the reorganized 
training sets for each dataset are trained. Fig. 8 shows the 
performances of these models.  

As expected, the season influences the capability of the 
model. If winter data is not used in the training process, the 
capability of the model is the worst on all the three datasets. By 
comparing in using different combinations of data, it is shown 
that only using winter data will have better performances on the 
dataset of Italy. While for loads of Czech and Austria, utilizing 
all the data will be better than only using the winter data. The 
differences between these two strategies are small in all datasets. 
The experiments indicate that loads of the identical season as 
the test data are essential for the learning model. The model 
cannot be able to yield a good result without these load values. 
Also, load values of different seasons are not important for the 
model since they cannot effectively improve the performance 
of the model. 

IV. CONCLUSIONS AND FUTURE WORK 
This paper develops a monthly load forecasting model based 

on historical data augmentation. The model consists of two 
parts known as HDA and DNN. HDA is based on determining 
the load values of different years, for the same date that is 
highly correlated. Such method increases the number of 
samples and brings additional information for the model 
training, which enhances the generalization of the learning 
model and reduces the forecasting error. Meanwhile, DNN is 
adopted to deal with the complex non-linear relationships of 
load forecasting. The combination of these two methods devises 
an effective model for monthly load forecasting. To examine 
the performance of DNN-HDA, the daily peak loads of Austria, 
Czech and Italy have been investigated. The experiments 
present the comparisons between the model and several existing 
methods, such as ARIMA, DNN, LSTM and DRN. The method 
achieves the best results in all the three datasets and gains the 
MAPE of 2.79%, 3.48% and 2.97% on the dataset of Austria, 

Czech and Italy, respectively.  

As HDA increases the number of training samples, there 
could be an issue with producing redundant and even negative 
information to the learning model. One of the future works will 
focus on developing a sample selection algorithm, to reduce 
ineffective or negative samples and enhance the ability of HDA. 
Another important piece of future work will be on uncertainty. 
Inevitably, model uncertainty occurs due to uncertainties for the 
model parameters, lack of appropriate knowledge, or 
assumptions and simplification made. The uncertainty can be 
simply quantified based on the difference between observed 
and predicted values. Although the present main focus of the 
study is not on uncertainty, however, there is a need to 
investigate the uncertainty present in the model and how to 
refine the model.   
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