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Abstract 

 

Recent enhanced warming and sea ice depletion in the Arctic have been put forward as 

potential drivers of severe weather in the midlatitudes. Evidence of a link between Arctic 

warming and midlatitude atmospheric circulation is growing, but the role of Arctic processes 

relative to other drivers remains unknown. Arctic-midlatitude connections in the North Atlantic 

region are particularly complex but important due to the frequent occurrence of severe winters 

in recent decades. Here, Dynamic Bayesian Networks with hidden variables are introduced to 

the field to assess their suitability for teleconnection analyses. Climate networks are 

constructed to analyse North Atlantic circulation variability at 5-day to monthly timescales 

during the winter months of the years 1981-2018. The inclusion of a number of Arctic, 

midlatitude and tropical variables allows for an investigation into the relative role of Arctic 

Amplification as a driver compared to internal atmospheric variability and other remote drivers. 

 

A robust covariability between regions of amplified Arctic warming and two definitions of 

midlatitude circulation is found to occur entirely within winter at submonthly timescales. Hidden 

variables incorporated in networks capture periodic shifts between average and anomalously 

slow stratospheric polar vortex flow. An increase in predictive skill is achieved with the 

inclusion of hidden variables, but a number of caveats to their usage are demonstrated. The 

influence of the Barents-Kara Seas region on the North Atlantic Oscillation is found to be the 

strongest link at 5- and 10-day averages, whilst the stratospheric polar vortex strongly 

influences jet variability on monthly timescales. 
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a) Key Acronyms 

 

BN Bayesian Network 

DBN Dynamic Bayesian Network 

HMM Hidden Markov Model 

pDAG Partially Directed Acyclic Graph 

DAG Directed Acyclic Graph 

HV Hidden Variable 

AO Arctic Oscillation 

NAO North Atlantic Oscillation 

ENSO El Niño Southern Oscillation 

MJO Madden Julian Oscillation 

AA Arctic Amplification 

ECMWF European Centre for Medium-Range Weather Forecasts 

KNMI Koninklijk Nederlands Meteorologisch Instituut or Royal Netherlands Meteorological 

Institute 
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b) Data Dictionary 

 

Data Dictionary of all datasets used in this doctoral project, listing the variable name, its abbreviation, source 
and unit of measurement, as well as the upper limit for the number of samples – i.e. the original daily data 

acquired from sources before any processing listed in the data sections of following chapters. 

 

  

Variable Abbreviation Source Unit No. Samples 

Arctic Oscillation AO NOAA Geopotential height 
(m) 

12755 

North Atlantic 
Oscillation 

NAO NOAA Sea level pressure 13239 

El Niño Southern 
Oscillation 

ENSO NOAA Sea surface 
temperature 

13239 

Snow Cover Extent SCE NOAA Fraction of snow-
covered area 

12755 

Sea Ice Extent SIC ECMWF 
ERA-
Interim 

Fraction of sea ice 
area 

12755 

Zonal component of 
wind 

uWind ECMWF 
ERA-
Interim 

Metres per second 
(m/s) 

182 

Jet latitude Jetlat ECMWF 
ERA-
Interim 

Degrees (°) 13239 

Jet Speed Jetspeed ECMWF 
ERA-
Interim 

Metres per second 
(m/s) 

12755 

850hPa 
temperature 

850hPa ECMWF 
ERA-
Interim 

Temperature (°C) 13239 

Stratospheric polar 
vortex 

PoV ECMWF 
ERA-
Interim 

Geopotential height 
(m) 

13239 

Meandering Index MI ECMWF 
ERA-
Interim 

-  13239 

Madden-Julian 
Oscillation 

MJO NOAA MJO amplitude 13239 
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Chapter 1: An Introduction to Arctic-

Midlatitude Weather Linkages 

 The literature and theories surrounding the Arctic-midlatitude research area are 

dynamic as the field has only been extensively published on since around 2012. Nonetheless, 

this chapter is designed to provide information on our current understanding of the physical 

processes underlying Arctic-midlatitude linkage mechanisms, and how they may differ 

geographically across the Northern Hemisphere. Important climate phenomena that occur in 

the Arctic, midlatitudes and the tropics are presented to underpin the analyses conducted in 

later chapters. Finally, a ‘motivation’ for this research project is given to close the chapter. 

1.1 Research Aims 

 This project applies Dynamic Bayesian Networks (DBNs) with hidden variables (HV) 

to the North Atlantic and European midlatitude circulation research area. Structure-learning 

algorithms are employed to identify regions of AA that might influence winter jet stream 

variability. The inclusion of a number of Arctic, midlatitude and tropical variables allows for an 

investigation into the relative role of AA as a driver compared to internal atmospheric variability 

and other remote drivers. Other graphical model approaches have fallen short in this regard 

as they focus either entirely on potential Arctic drivers of midlatitude circulation responses 

(Kretschmer et al, 2016; Barnes and Simpson, 2017; Samarasinghe et al, 2019) or on possible 

tropical teleconnections like the MJO-NAO link (Barnes et al, 2019). The main aim of this 

thesis is to establish how effective DBNs with structure learning algorithms are for 

investigating this research area, and to measure the impact of hidden variables on model 

accuracy which is a priority due to the low signal-to-noise ratio of AA linkages and their 

intermittent nature (Overland et al, 2016). 

 Finally, the findings presented here are motivated in part by a desire to contribute to 

the knowledge base of midlatitude weather prediction. Arctic variables like sea ice 

concentration provide predictive skill for the winter NAO in both atmospheric (Scaife et al, 

2014) and statistical models (Hall et al, 2017; 2019; Wang et al, 2017), but a great deal of 

uncertainty remains surrounding the relative importance of AA as a driver. If AA has played a 

significant role or increased the frequency of Arctic and midlatitude interactions, then 

achieving a synthesis on this important area of science and maximising subseasonal-to-

seasonal midlatitude weather prediction skill has the potential to impact millions of people 

living in the midlatitudes. 
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1.2 The Process of Arctic Amplification 

 Arctic Amplification (AA) describes the rate with which Arctic temperatures are 

increasing regionally compared to the rest of the globe (Fig. 1.1). The Arctic has outpaced the 

global rise in temperatures at more than twice the rate since the mid 20th century, and by over 

six times the pace between the years 1998-2012 (Huang et al, 2017). The latest IPCC report 

highlighted a decline in sea ice extent of 3.5-4.1% per decade between 1979 and 2012, and 

a mean annual snow cover extent decrease of up to -53% in June for the years 1967-2012 

(Vaughan et al, 2013). This equates to the loss of approximately half a million square 

kilometres per decade since the beginning of the satellite era. The greatly increased fraction 

of open water that results from this lowers the albedo of the Arctic Ocean’s surface, i.e. the 

Figure 1.1 Arctic Amplification – trends in winter temperatures.  A) Linear trend in SAT from 1960-61 to 2013-14. B) Area-
averaged surface temperature anomalies. C) As in a) but 1990-91 to 2013-14.  Note differences in temperature by latitude in 

graphs on left hand side. Source: Cohen et al (2014). 
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difference between the reflectance of dark water as opposed to snow-covered sea ice. The 

sea ice albedo feedback (Perovich et al, 2008) describes the excess heat absorbed by the 

darker ocean surface during the summer melt season which is released during autumn 

through ocean-atmosphere heat fluxes. The ocean-atmosphere temperature gradient 

increases in autumn, resulting in a warming of the lower troposphere. This is turn delays the 

formation of sea ice due to warmer and moister masses of air present late on in the year 

(Vaughan et al, 2013). 

 Whilst sea ice plays an important role in AA, other physical mechanisms have 

contributed to the AA process in significant ways. AA is the result of a complex combination 

of local sensible heat fluxes, evaporation and the remote transport of heat and moisture from 

lower latitudes (Cohen et al, 2018a). Remote transport describes the poleward advection of 

heat and moisture into the Arctic from lower latitudes which has recently been identified as an 

important driver of sea ice loss (Woods and Caballero, 2016; Kapsch et al, 2016; Gong et al, 

2017). Midlatitude atmospheric circulation plays an important role in this process, as intrusions 

of moist air from lower latitudes have been found to increase the exchange of heat between 

the atmosphere and ocean; the effects on sea ice are obvious within several days of the event 

(Kapsch et al, 2016). Moisture transport seems to be especially pronounced through the North 

Atlantic pathway, the study region for this project, where Atlantic blocking can drive enhanced 

poleward transport (Kim et al, 2017; Yang and Magnusdottir, 2017). Recent work with 

atmosphere-only models has suggested that midlatitude circulation has a strong influence on 

the low-middle altitude warming trends of the Arctic during winter (Ye and Jung, 2019), further 

emphasising the importance of the midlatitude-Arctic linkage as a driver of AA. Clearly, when 

considering amplified Arctic warming, sea ice variability does not adequately capture the 

whole picture as an isolated driver or proxy. 

1.3 Arctic-midlatitude Linkage Mechanisms 

  The possible pathways through which AA processes can have an impact on 

midlatitude circulation and persistent weather are discussed here. Given that all analyses in 

this project investigate winter impacts of AA on midlatitude circulation, and that AA is most 

pronounced during the winter months (Serreze et al, 2009), this chapter focuses on winter 

studies and mechanisms. 

 One prominent, widely debated mechanism is a proposed link between AA and 

meridional (north-south oriented) jet stream patterns. AA results in a decreased meridional 

temperature gradient as the Arctic warms faster than lower latitudes, which has led some to 

hypothesise that a decreased poleward temperature gradient would lead to increases in the 

wave amplitude of the Polar jet stream (e.g. Francis et al, 2009). Upper level westerly winds 

could therefore be expected to become weaker due to the thermal wind relation which dictates 
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the change of the geostrophic wind with pressure (and height) (e.g. Overland and Wang, 2010; 

Francis and Vavrus, 2012). Finally, Rossby waves would propagate eastwards at a slower 

rate as the north-south amplitude of the flow increases in magnitude, causing weather systems 

to progress eastwards more slowly and persistent weather patterns to dominate (Francis and 

Vavrus, 2012). This mechanism has been called into question by similar studies that found 

wave amplitude and blocking frequency results depended strongly on the method used to 

calculate these metrics, and that the trends are still within the expected range of internal 

variability (Barnes, 2013; Screen and Simmonds, 2013). 

 Anomalous circulation patterns and increases in jet stream amplitude can drive the 

southerly displacement of cold Arctic air masses as well as heat waves and flooding. Months 

with weather extremes often have Rossby wave patterns with amplified magnitudes when 

compared to average conditions when zonal circulation patterns dominate (Screen and 

Simmonds, 2014; Coumou et al, 2014). 

 Another mechanism thought to impact midlatitude flow is a jet stream split which is 

thought to be favoured by a weaker meridional temperature gradient and AA, whereby double 

jet regimes weaken the propagation rates of high-amplitude Rossby waves through a process 

known as ‘quasi-stationary wave amplification’ (Petoukhov et al, 2013; Coumou et al, 2014). 

Given that the process is thought to occur entirely within summer, work published on double 

jet configurations and trapped atmospheric waves does not inform the aims and analyses of 

this project. 

Figure 1.2 Sample 500hPa geopotential height fields showing a zonally oriented jet stream (left) and a wavier flow 
with multiple outbreaks of low pressure (right). The tropospheric polar vortex is contained within the Arctic on the 

left. White contours delineate the jet stream. Source: Cohen et al (2018a). 
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 The stratosphere is also thought to play a role in possible linkages between the Arctic 

and midlatitudes. Anomalously low sea ice conditions, especially in the Barents and Kara 

Seas, has been put forward as a potential source region for vertical wave propagation which 

initiates stratospheric polar vortex weakening and stratospheric warming events (e.g. Kim et 

al, 2014; Kretschmer et al, 2016). The propagation of Rossby waves vertically into the 

stratosphere can weaken the stratospheric polar vortex though a process known as wave-

breaking, which in turn promotes tropospheric circulation anomalies that resemble the 

negative phase of the Arctic Oscillation (AO) and a weaker jet stream (Cohen et al, 2014). The 

stratospheric pathway has thus been hypothesised to cause more severe winter conditions 

and cold events in the midlatitudes, associated with the negative phase of the AO. Recent 

papers have questioned whether the link between Barents-Kara sea ice and Eurasian cold 

extremes seen in observational studies (Kim et al, 2014; Kretschmer et al, 2016; Zuo et al, 

2016) represents a causal physical mechanism as the finding is not replicated in model 

simulations (Kolstad and Screen, 2019; Fyfe, 2019; Warner et al, 2020). Instead, this observed 

statistical relationship may be caused simply by internal climate variability (Kolstad and 

Screen, 2019) or by remote tropical drivers acting as an uncaptured driver of both variables 

(Warner et al, 2020). The experimental design of chapters 4 and 5 includes tropical indices in 

an attempt to capture non-Arctic remote drivers of midlatitude circulation variability, and 

section 5.6 runs these network results at different tropical variable lead times. 

1.4 Regional Arctic-midlatitude Linkages 

1.4.1 Eurasia 

 Cold anomalies over Eurasia have occurred in recent years leading to severe winters 

despite enhanced warming over the Arctic. Observational analyses show a consistent link 

between cold Eurasian extremes and Barents-Kara sea ice variability (Kim et al, 2014; 

Kretschmer et al, 2016) as already noted, however numerical models have failed to capture a 

robust remote response to sea ice depletion across studies, leading some to propose internal 

atmospheric variability (McCusker et al, 2016; Sun et al, 2016) or Ural blocking anomalies 

(Peings, 2019) as the main drivers of the observed Eurasian cooling. 

 The stratospheric pathway detailed above may act as an important mechanism for 

possible linkages (Cohen et al, 2018a). Barents-Kara sea ice loss in early winter initiates the 

propagation of vertical Rossby waves which weaken the stratospheric polar vortex, resulting 

in the downward propagation of wave energy into the troposphere in mid-late winter (Kim et 

al, 2014). Kretschmer et al (2016) use a graphical model approach to support a stratospheric 

pathway, finding that the Siberian High strengthens and intensifies inducing cold air advection 

from the Arctic and anomalous cold Eurasian winters. Constructive interference with 

climatological wave 1 and 2 patterns is thought only to occur in the Barents-Kara region (Kim 
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et al, 2014; Screen, 2017). Climate models, meanwhile, lack a robust signal which might be a 

product of the current generation of models and their ability to represent stratospheric 

processes, a known source of uncertainty (Zhang et al, 2018). Similarly, the magnitude of the 

atmospheric response to sea ice loss may be underestimated in models; accounting for this 

led to a robust sea ice signal in atmospheric general circulation models (GCMs) in a recent 

study (Mori et al, 2019), although Screen and Blackport (2019) caution that the comparison of 

models and observations made in this paper are misleading and do not constitute evidence 

that ~44% of Eurasian cooling is attributable to sea ice loss as claimed by Mori et al (2019). 

As is the case with much of the Arctic-midlatitude research area, the disparity between the 

results of observational and model approaches is likely only to be resolved by coordinated, 

multi-model experiments (Cohen et al, 2018a). 

1.4.2 North America 

 A multitude of studies exist on connections between the North American Arctic and 

midlatitudes, but only the impacts on the east coast of North America and Greenland are 

relevant to the aims of the project. Linkage mechanisms identified as potential connections 

are governed by their interactions with large-scale waves in the jet stream, and whether those 

interactions are constructive or destructive (Cohen et al, 2018a), making them highly 

intermittent in nature (Overland et al, 2016).  

 AA processes may contribute to the formation and duration of blocking patterns (Chen 

and Lou, 2017; Ballinger et al, 2018). Higher geopotential heights in the Greenland and Baffin 

Bay regions increase the likelihood of Greenland blocking events, leading to an increase in 

the meridional amplitude of the jet and in turn the persistence of cold events on the eastern 

US coast (Chen and Lou, 2017). Severe cold outbreaks on the eastern US coast may not be 

triggered by sea ice variability or surface warming in the Arctic, but such processes can 

increase regional geopotential heights which reinforces the location of high amplitude jet 

patterns (Overland and Wang, 2018). Given that more research is required on the potential 

for regions of AA to support Greenland blocking patterns and the disruption of midlatitude 

circulation, this project focuses on the North Atlantic midlatitudes as a potential ‘impact’ region. 

1.4.3 The Euro-Atlantic Region 

 The Euro-Atlantic region, which denotes the North Atlantic and western Europe, is 

dominated by the phase of the North Atlantic Oscillation (NAO) and NAO variability, which has 

a number of potential drivers including cryospheric variables (sea ice and snow cover), tropical 

sea-surface temperatures (SSTs) in the Pacific and Atlantic oceans, stratospheric circulation 

variability and the Quasi-Biennial Oscillation (QBO) (Hall et al, 2015). The NAO describes the 

north-south orientation in the dipolar structure of the North Atlantic pressure field, 

characterised by a centre of low pressure over Iceland and high pressure over the Azores 
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(Hurrell, 1995). The NAO effectively reflects the variability of the storm tracks and the Polar 

jet stream (Overland et al, 2015), describing it through phase shifts whereby the positive phase 

is associated with milder European winters and a further poleward jet displacement, and the 

negative a severe winter with a southerly displacement of the jet and the predominance of 

blocking regimes (Hall et al, 2015). 

 A large amount of uncertainty exists regarding the response of the NAO to AA 

processes due to the complex set of drivers associated with NAO variability and nonlinear 

linkages between the two. A number of studies find that reductions in Arctic sea ice promote 

the negative phase of the NAO (NAO-) in both observations and models (Petoukhov and 

Semenov, 2010; Kim et al, 2014; Mori et al, 2014), dependent on the pattern and amplitude 

of sea ice anomalies. The Barents and Kara seas are frequently found to be an important 

region of sea ice loss for the NAO response (Kim et al, 2014; Mori et al, 2014), hence this 

project has a strong data focus on the Barents-Kara region alongside the North Atlantic. 

Screen (2017) points out that the increased frequency of NAO- events may be misleading in 

terms of a surface severe cold response, as the temperature of such events remains stable 

on the seasonal scale due to the conflicting effects of dynamical cooling (from NAO- events) 

and thermodynamical impacts (i.e. the warming trend). Added to this, the simulated response 

to sea ice loss is generally a decrease in severe cold events in winter (Ayarzaguena and 

Screen, 2016; Blackport et al, 2019). 

 Whilst the increased frequency of cold events due to sea ice loss is considered an 

unlikely response, AA processes may still contribute to atmospheric circulation variability. 

Atmospheric models suggest robust responses to sea ice reduction including the increased 

intensity of NAO- events and a weakening in the zonal wind on the poleward side of the jet 

stream during the winter months (Screen et al, 2018). Most recently, coupled model 

simulations revealed that a robust weakening and equatorward migration of the jet in response 

to Arctic sea ice loss occurs predominantly in the Atlantic basin (Blackport and Screen, 2019). 

Here, the winter atmospheric circulation response was driven by sea ice variability within the 

winter months, rather than as a lagged response to autumn sea ice as proposed in studies 

using observation-based approaches (Kim et al, 2014; Kretschmer et al, 2016; Hall et al, 

2017). A weak but robust influence of regional AA on the jet stream’s position and speed was 

found in a combined climate projection and reanalysis dataset using Granger causality, 

matching the equatorward shift of the Atlantic jet in response to near-surface Arctic warming 

in the North Atlantic region of the Arctic (Barnes and Simpson, 2017). These two factors – a 

potential atmospheric response to winter AA, and the use of near-surface temperature to 

represent AA rather than sea ice – inform the study design of later chapters. 
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1.4.4 Tropical Influences 

 Tropical modes of variability including the El Niño Southern Oscillation (ENSO) and 

the Madden-Julian Oscillation (MJO) have an influence on midlatitude circulation in the Euro-

Atlantic region. Pacific SSTs can trigger large-scale Rossby waves through intense convection 

and precipitation which can propagate into the midlatitudes and impact midlatitude circulation 

(Trenberth et al, 1998; Scaife et al, 2017). Tropical variability is a source of predictive skill for 

both the wintertime NAO (Scaife et al, 2016) and the AO (Sun and Ahn, 2015), and tropical 

rainfall has been found to explain a high degree of NAO variability in correlative studies (Scaife 

et al, 2016; Hall et al, 2017). In a similar mechanism to the ENSO impact, Rossby wave trains 

which originate in the tropics can reach the midlatitudes, initiated by tropical convection 

associated with the MJO (Sardeshmukh and Hoskins, 1988; Frederiksen and Lin, 2013). The 

tropospheric pathway is considered to be the more impactful for MJO teleconnections as MJO-

driven Rossby wave trains have been associated with Polar jet stream strength and position 

(Moore et al, 2010), the positive phase of the NAO in winter (Lin et al, 2015) and blocking 

occurrence over the Euro-Atlantic basin (Henderson et al, 2016). Whilst studies have 

demonstrated a response in North Atlantic circulation via the stratosphere for both indices 

(e.g. Baldwin and Dunkerton, 2001; Jiang et al, 2017), the dominant pathway for strong El 

Niño events to influence the NAO is also thought to be the troposphere, with La Niña events 

shown to influence stratospheric polar vortex strength and then subsequently NAO variability 

(Hardiman et al, 2019). 

 Stratospheric polar vortex (SPV; the proxy dataset for the SPV is also referred to as 

‘PoV’ in later chapters) conditions are nonetheless an important element of the climate system. 

A weak SPV can cause anomalous easterlies to propagate downwards into the troposphere 

which induces a weakening in the zonal component of the Polar jet stream (Baldwin and 

Dunkerton, 2001; Kidston et al, 2015). Because the wintertime stratospheric polar vortex 

projects onto the AO pattern, shifting the sign to a negative AO, it is thought to be central to 

the development of the long-lead predictive capability of Northern Hemisphere midlatitude 

circulation (Robertson et al, 2015; Scaife et al, 2016). In addition, recent work has highlighted 

that MJO influence on NAO variability through the stratosphere seems to be contingent on the 

background state of the SPV, whereby a robust NAO response is found only when the vortex 

and NAO states are aligned (Barnes et al, 2019). The stratosphere clearly exerts a strong 

influence on tropospheric midlatitude circulation variability, meaning that potential SPV drivers 

including sea ice loss (Kim et al, 2014), ENSO (Baldwin and Dunkerton, 2001) and the MJO 

(Jiang et al, 2017; Barnes et al, 2019), as well as the SPV itself, represent important variables 

through which to investigate potential stratospheric linkage pathways. 
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1.5 Midlatitude Circulation Proxies 

 The metric used to calculate midlatitude circulation, whether it summarises large-scale 

circulation in an index like the NAO (Hurrell, 1995), approximates the speed and position of 

the Polar jet stream (Woollings et al, 2010), or measures the degree of waviness (Di Capua 

and Coumou, 2016), is central to study results and no scientific consensus currently exists on 

which particular metric is most appropriate. An example that highlights this point is the disparity 

in the results of Francis and Vavrus (2012), who reported an increase in wave amplitude over 

North America and the North Atlantic, and Barnes (2013) who found no significant increase 

with a modified wave definition. 

 Many studies focusing on impacts in the Euro-Atlantic region use the NAO index as a 

proxy for midlatitude circulation (e.g. Lin et al, 2015; Wang et al, 2017; Barnes et al, 2019). 

Whilst the NAO is useful as an indicator of jet variability and is generally not as noisy as other 

midlatitude circulation datasets, Screen (2017) shows that the increase in NAO- events is not 

matched by an increase in severe cold event frequency over Northern Europe in simulations. 

The NAO can therefore be misleading if the study focus is cold waves and the surface 

temperature response to AA in the midlatitudes. 

 The variability of the jet stream itself derived as a proxy from reanalysis and model 

output can be used to describe midlatitude circulation. Jet latitude and speed, calculated using 

the technique pioneered by Woollings et al (2010), use low-level winds to exclude the higher 

subtropical jet and can be calculated over regions like the North Pacific to account for 

differences in seasonal dynamics across the Northern Hemisphere. Many studies focusing on 

midlatitude circulation variability in response to remote drivers have made use of this proxy 

(e.g. Hall et al, 2017; Barnes and Simpson, 2017; Samarasinghe et al, 2019). 

 Secondly, metrics have been developed to describe the meridional component of 

atmospheric circulation based on a number of characteristics. These methods capture the 

waviness of circulation by differentiating the geopotential height contour at each timestep from 

zonal conditions in terms of wave amplitude (e.g. Francis and Vavrus, 2012) and sinuosity 

(Cattiaux et al, 2016; Di Capua and Coumou, 2016). An increase in waviness was found only 

for the North American sector in climate projections using these approaches, with no robust 

trends in the meridional amplitude of circulation for other Northern Hemisphere regions 

(Cattiaux et al, 2016; Di Capua and Coumou, 2016). Whilst they certainly represent useful 

circulation proxies, some criticism has been directed at these approaches for being derived 

geometrically rather than being based on physics (Cohen et al, 2018a). 
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1.6 Motivation 

 A number of obvious gaps in knowledge and scientific community consensus are 

identified which inform the data, methodological approach and conclusions of this project. 

Firstly, Arctic Amplification is a recent phenomenon, and the AA signal is only distinguishable 

from internal variability from approximately 1995 onwards at the surface and 2000 onwards in 

the lower troposphere (Francis and Vavrus, 2015). A low signal-to-noise ratio effectively 

means that linkages are hard to detect, especially with a limited time range of reliable satellite 

observations (~40 years). Secondly, midlatitude responses to Arctic forcing are likely to be 

highly intermittent (Overland et al, 2016). A pre-existing meridional jet stream configuration 

may be a pre-requisite of Arctic-midlatitude links over North America; as an example, amplified 

regional Arctic warming in December 2016 had no impact on the midlatitudes due to a highly 

zonal jet stream, in stark contrast to the December 2017 US Cold wave (Overland and Wang, 

2018). 

 As has been shown above, a number of remote drivers may impact midlatitude 

circulation in the North Atlantic region including cryospheric variables, tropical sea-surface 

temperatures and convection, and stratospheric circulation variability (Hall et al, 2015; 2017; 

Smith et al, 2016). The extraction of a robust Arctic signal therefore becomes a complex 

problem due to the diverse range of drivers, which themselves may only link intermittently and 

act to cancel out or reinforce the impact of others. Sea ice concentration has been used as an 

indicator of AA in both observational (Kim et al, 2014; Kretschmer et al, 2016) and model-

based approaches (Mori et al, 2014; 2019; McCusker et al, 2016; Screen, 2017), where sea 

ice concentrations can be manipulated to isolate a circulation response to sea ice only. This 

approach only captures sea ice variability however, missing a range of other important AA 

drivers including the remote transport of heat and moisture into the Arctic through amplified 

circulation patterns (Ye and Jung, 2019). There is a clear need for another metric which 

adequately captures the full AA signal; this is a focus of the analysis of chapters 4 and 5. 

 Alongside these data-based problems, all methodological approaches have to some 

degree a number of drawbacks which should be assessed at the point of use and addressed 

at the point of publication. Findings based entirely on correlation analysis are subject to 

autocorrelation bias and may be the result of indirect links or a common driver entirely 

unaccounted for in the analysis (Runge et al, 2014). Linear relationships are also directionless, 

so offer less information than graphical models. Atmospheric model approaches, meanwhile, 

constitute the bulk of studies able to find robust teleconnection mechanisms due to the large 

number of years simulations can be run for. Model studies, whilst well regarded as tools for 

identifying causal linkages, are not immune from potential shortcomings: they may not 

accurately represent ocean-atmosphere coupling in the Arctic (Cohen et al, 2018a), may 
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respond too weakly to sea ice forcing (Screen et al, 2018; Mori et al, 2019), may underperform 

in terms of stratosphere-troposphere coupling (Zhang et al, 2018), and focus on the impact of 

sea ice removal which may not capture the complex intermittencies thought to define Arctic-

midlatitude linkages (Overland and Wang, 2018). 
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Chapter 2: Bayesian Networks 

 The fundamentals of the Bayesian Network method are presented here to facilitate 

understanding of the experimental design of all three data chapters. The structure-learning 

and parameter-learning processes and the algorithms that drive them are covered, with model 

evaluation and a number of science applications discussed alongside to demonstrate their 

usage. Finally, a definition of hidden variables inferred from input data is given as they are 

central to the model accuracy findings detailed throughout this work. 

2.1 Bayesian Networks 

 Graphical models provide an excellent tool for examining relationships between 

variables of climatological importance, due to their properties as a visualisation tool for result 

communication. Bayesian Networks are a form of probabilistic graphical models that provide 

a useful mechanism for statistically modelling relationships that occur in the real world allowing 

for their visualisation in a ‘graph’, or network. BNs combine elements of graph theory with 

statistics to explore relationships between a set of independent variables (Friedman et al, 

2000). BNs broadly function in two ways: a graph-based structure, either defined by the user 

or constructed from the data using an algorithm, represents relationships between variables 

which are then defined using conditional probability tables (CPTs) for discrete data and 

conditional probability distributions (CPDs) for continuous data. 

 A Bayesian Network (BN) encodes a joint probability distribution, whereby probabilities 

are assigned for all possible outcomes over a set of random variables taken as input 

(Friedman et al, 2000). BNs accomplish this by constructing directed acyclic graphs (DAGs) 

which exploit conditional independence relationships, i.e. that two variables in the graph are 

independent if knowing the state of one event does not change the probability of the second. 

A DAG comprises a graph with the variables as ‘nodes’, links between nodes as ‘edges’ and 

‘parent’ and ‘child’ nodes defining their position within the graph. 

 BNs ‘exploit’ conditional independence relationships in the network parameterisation 

phase, as a variable which is conditionally independent from another in the graph structure 

does not need to be parameterised, resulting in a significant boost to computational efficiency. 

In Fig. 2.1a for example, x and z are conditionally independent given the third node y therefore 

no arc between x and z is needed or parameterised within the BN. The CPDs of the BN are 

then worked out with respect to the DAGs conditional independence relationships. Each 

variable has a CPD which encodes the probability of observing values given the values of its 

‘parents’, i.e. the variables which it is conditionally dependent on. The BN factorises all of 

these CPDs in a joint distribution, with each variable represented as xi: 
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𝑝(𝑥1 … 𝑥𝑛) =  ∏ 𝑝(𝑥𝑖

𝑛

𝑖=1

|𝑃𝑎(𝑥𝑖)) 

where n is the total number of variables and Pa(xi) denotes the parent set of xi (the variable). 

 The DAG graphically represents the BN with nodes (the variables) and conditionally 

dependent relationships indicated with edges (links between the variables). When a node has 

two or more parents (a ‘collider’ structure, Fig. 2.1b), an increase in probability for parent A 

which results in a decrease in another B can be said to ‘explain away’ the likelihood of B being 

a driver. To give a hypothetical example from the climate science field, strongly anomalous 

values for the stratospheric polar vortex in a given timestep might ‘explain away’ the need for 

Barents-Kara sea ice concentration as a driver of jet stream variability if both were parent 

nodes of the jet. This process is referred to as being caused by a ‘v-structure’ in some work 

(e.g. Verma and Pearl, 1991), and is central to the method of chapters 4 and 5, where links 

without direction are removed to allow networks to function correctly. 

2.1.1 Inference 

 BNs can also be used for inference, once all the CPDs of the model are defined. As 

previously mentioned, a node state can change depending on the states of other nodes in the 

graph and the propagation of probability through the DAG. This makes it possible to manually 

change the state of a node in the network to see how that variable changes the states of other 

nodes, or to replace the dataset with new data to examine the posterior probabilities (Koller 

and Friedman, 2009). In this project, the junction tree algorithm was used for inference, which 

(1) 

Figure 2.1 Example DAG structures: a) x and z are conditionally independent given y therefore no arc between x and z is needed 
or parameterised; b) an example of a collider structure, where node z has two parent nodes, x and y; c) a DBN with a single 

hidden variable rolled out over two time slices with autoregressive links between all variables. 
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makes use of a greedy search procedure to find the optimal order for variable elimination 

(Murphy, 1998). The BN framework employed in chapters 4 and 5 makes use of the junction 

tree algorithm to predict the node values in testing datasets, i.e. a dataset independent of the 

input dataset, to examine the fit of the model. The results of this are referred to as the 

‘predictive accuracy’ of each model, discussed in terms of their relative performance for each 

dataset. 

 The purpose of the node ‘predictions’ referred to in this project are therefore simply to 

test the accuracy of the BN, as section 2.3.2 explains below. Data at time t is inferred from the 

data at time t-1, based on the model structure and parameters that have been fitted. The n-

step ahead forecasting method iterates between entering the observations for all variables at 

time t-1 and applying inference to calculate their posterior distributions at time t, then repeats 

this step n times. From the output of the node prediction process, the proportion of values that 

were predicted correctly can be ascertained for the whole test dataset, and compared against 

the actual test dataset values which were excluded from the structure- and parameter-learning 

phases of model construction. This is then visually and statistically assessed throughout this 

project; the predictions are plotted against observed values for the test dataset, and the sum 

of squared error (SSE) is calculated to compare model accuracy with ease. 

2.1.2 Structure Learning 

 The graph structure of a BN can be user-defined through the use of past studies and 

expert knowledge, or learned from the data using an algorithm. Given that this project aims to 

test the Arctic-midlatitude linkage hypothesis, that relationships between Arctic and 

midlatitude processes can be discerned using large modes of variability, the latter approach 

is employed here. Structure-learning algorithms can be broadly split into three categories; 

constraint-based, score-based, and hybrid (not used in this work). All return DAGs or pDAGs 

(partially Directed Acyclic Graphs) which graphically display the conditional dependence 

relationships between input variables. 

 The structure-learning mechanism primarily used in this project is the PC algorithm, 

which is a simple but effective constraint-based structure-learning algorithm developed by 

Spirtes and Glymour (1991). It works by connecting all nodes in a network initially with 

undirected edges, and iteratively deleting edges by taking a pair of nodes (X, Y) and trying to 

find a set of nodes S (exclusive of nodes X and Y) so that X and Y are conditionally 

independent given S (Ebert-Uphoff and Deng, 2012a). If no such set exists, the edge is 

preserved. Next, ‘collider’ structures (also called v structures) are identified – where a pair of 

edges meet a single node, such that the node has two ‘parent’ nodes that need not be related 

– and as many directed edges as possible are added that satisfy the constraints which dictate 

that loops (cycles) or further addition of collider structures are not allowed. As the PC algorithm 
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results in a pDAG, bidirectional edges that appear as a result of the structure-learning stage 

need to be removed as Dynamic Bayesian Networks (DBNs) require fully acyclic graphs. In 

later chapters, arcs are removed to allow for the creation of a DBN and change a pDAG into 

a DAG. Bidirectional arcs are given a single direction such that only the directed arcs pointing 

towards major collider nodes are preserved. Doing otherwise significantly reduces the 

accuracy of the DAG structure and undermines the DBN as a probabilistic model, as the 

removal of collider structures impacts the individual probability distributions that make up a 

BN. This preserves the ‘explain away’ effect produced by collider structures described above. 

 Given that bidirectional edges have to be removed in order for the static BN to be used 

in a DBN, and that the arc needs to be preserved in the direction of collider nodes such as jet 

latitude and the NAO in Chapter 5 (see 5.3.1), a product of this is that networks in this study 

are built to examine the impact of variables on midlatitude circulation and not the other way 

around. For example, whilst the networks of chapters 4 and 5 repeatedly find a covariability 

between Arctic and midlatitude nodes in their static BN phase, the strength of the midlatitude-

Arctic relationship cannot be quantified due to the directed nature of the graphs required by 

DBNs. Conditional dependence between variables in DBNs is explicitly non-causal (Milns et 

al, 2010) as causal sufficiency is usually not satisfied in observational climate science. Any 

discussion of Arctic-midlatitude influences therefore refers to external influence on the jet and 

not a simple cause-and-effect interpretation. This is an important distinction considering the 

central role anomalous midlatitude circulation plays in sea ice loss and AA (Kapsch et al, 

2016). 

 A second structure-learning algorithm is used throughout this project to ensure robust 

DAG findings. Score-based algorithms generate a set of possible network structures, and 

each is scored based on the model fit. The Hill Climbing (HC) algorithm implements this using 

a greedy search that iteratively adds, removes and reverses arcs between all variables, finding 

the DAG with the best fit (Russell and Norvig, 2014). A number of networks are created with 

a single change to a link as the algorithm maximises the score at each stage. Network scoring 

is achieved with the Bayesian Information Criterion (BIC), which penalises models for 

overfitting and approximates the DAG’s posterior probability (Schwarz 1978). The BIC is used 

in this project as it takes the number of observations into account, in contrast to other scoring 

criteria. 

2.1.3 Parameter Learning 

 Once the structure is defined, the parameters of a distribution can be estimated for 

each node in the BN and every configuration of its parents. The Expectation-Maximisation 

(EM) algorithm (Bilmes et al, 1998) was used to parameterise the DBNs presented in chapters 

4 and 5 using the junction tree inference engine. This includes the estimation of parameters 
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for both hidden and observed variables. The EM alternates between finding the expected 

sufficient statistics using the log-likelihood function, and maximising the estimated likelihood 

function until a local maximum is converged upon and the parameter estimates are returned 

(Dempster et al, 1977). Once all the CPDs of the BN are defined, the model can then be used 

to predict the node values in a test dataset to determine the model fit; this process is used to 

compare predictive accuracy amongst different model types in later chapters. 

 BNs can suffer from over-parameterisation which can lead to inaccurate variable 

prediction, as shown in many of the networks in chapters 3 and 4. The term ‘overfitting’ is used 

when a statistical model describes too much of the noise rather than the underlying 

relationship, i.e. the structure. In machine learning, noise in the ‘train’ dataset is learned to the 

extent that that model performance is negatively impacted when it is applied to a new dataset, 

i.e. the ‘test’ data (Brownlee, 2016). This could involve the model having too many parameters 

relative to the number of observations, as is frequently the case in Chapter 3. The predictive 

performance therefore decreases because the model overreacts to small noise fluctuations in 

the training data. Throughout this project, efforts are taken to reduce the level of overfitting 

such as the development of more complex network types, the reduction of variables and the 

forced deletion of arcs to investigate the impact on predictive accuracy, as in section 5.7.3. 

2.2 Dynamic Bayesian Networks 

 A Dynamic Bayesian Network (DBN) is an extension of a BN over time, whereby nodes 

are variables in a given time slice. Directed graphical models are used to model time series. 

Although edges between nodes can be directed and undirected, DBNs require fully directed 

edges both within and between time slices, meaning that the CPD of each variable can be 

estimated for each node independently (Murphy, 2002). The structure selection and parameter 

estimation of DBNs is an extension of the method used for BNs with no time element, called 

‘static BNs’, described in sections 2.1.2 and 2.1.3. The terminology regarding graph structure, 

i.e. nodes, edges and probabilities, is also the same for DBNs, with the addition of ‘intra-slice’ 

and ‘inter-slice’ topologies which are used to refer to the graph structure within a time slice 

and between two time slices respectively. 

2.2.1 Hidden Markov Models 

 Hidden Markov Models (HMMs) can be thought of as the simplest form of DBNs. They 

consist of a set of observed variables, the time series or input dataset, and a set of hidden 

nodes. A sequence of hidden variables (explained below) are predicted from the set of 

observed variables. A HMM is a BN unrolled through time, with the sequence of observations 

used to predict the best sequence of hidden states. The probability that a state will remain in 

the same state or switch to another is dictated by the state transition probabilities, such that 

the next state in a HMM is dictated only by the current state and not by any of the other past 
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or future states of the model, which satisfies the Markov property. This refers to the 

assumption that the future is independent of the past given the current state. The internal state 

changes are not viewable in the case of HMMs, hence they are ‘hidden’, and only the 

sequence generated by the hidden states is observable. 

 A HMM factorises the joint probability for a sequence of observed and hidden states 

like so: 

𝑝({𝑆𝑡, 𝑌𝑡}) =  𝑝(𝑆1)𝑝(𝑌1|𝑆1) ∏ 𝑝(𝑆𝑡|𝑆𝑡−1)𝑝(𝑌𝑡|𝑆𝑡)

𝑇

𝑡=2

 

 

 As described in Gharamani and Jordan (1997), the hidden state is a single random 

variable that can take on a discrete value, St ∈ {1,..., n}, and the state transition probabilities, 

referred to as p(St|St−1), are given by a n x n transition matrix. The transition matrix relates to 

the ‘inter-slice’ links in the graph structure referred to above. 

 A distinction is made between the HMMs and DBNs produced in this project; HMMs 

have a fixed structure, whilst a DBN has more flexibility in terms of graph structure (Murphy, 

2002). When the probability distributions of the hidden states are not known, they can be 

estimated with the Expectation Maximisation (EM) algorithm (Dempster et al, 1977). The EM 

algorithm iterates between the ‘E’ step, which fixes current parameters and computes 

posterior probabilities over all the hidden states, and the ‘M’ step, which maximises the 

expected log likelihood of observations as a function of the parameters (Gharamani and 

Jordan, 1997). Parameter estimation with hidden variables is achieved with the EM algorithm 

in this project. 

2.2.2 Dynamic Bayesian Networks 

 The term ‘DBN’ is used to refer to all dynamic models that use a structure-learning 

approach in this project, with ‘HMM’ used to refer to all fixed structure dynamic networks. A 

DBN makes use of 2 time slices (t-1, t, …) to ‘unroll’ a BN into T time slices (Fig. 2.1c), such 

that model structure and parameters do not change over time and the model stays time 

invariant (Murphy, 2001a). As with HMMs, DBNs represent a Markov process because the 

state of a system t depends only on the preceding timestep and state at t-1 (Mihajlovic and 

Petkovic, 2001). In a DBN, the transition and observation probabilities need to be defined, as 

well as the initial state distribution. The conditional distributions of a DBN are defined using a 

two-slice temporal Bayesian Network, or a ‘2TBN’, with the transition and observation models 

then defined in the 2TBN as a product of the CPDs: 

𝑝(𝑍𝑡|𝑍𝑡−1) = ∏ 𝑝(𝑍𝑡
(𝑖)|𝐏𝐚(𝑍𝑡

(𝑖)))

𝑁

𝑖=1

 

 

(2) 

(3) 
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 where Zt
(i) represents the i’th node in timestep t and Pa(Zt

(i)) represent the parents of 

Zt
(i) which can be in either the t or t-1 time slices (Murphy, 2002). The parameters of the first 

slice of a 2TBN are empty, whereas the second slice nodes have an associated CPD. 

 The initial state distribution can be defined using a static Bayesian Network. This static 

BN, alongside the 2TBN, make up the DBN. The joint distribution for a DBN with a sequence 

of length N can then be created by unrolling the network to N slices, with the CPDs then 

multiplied together: 

𝑝(𝑍1:𝑁) = ∏  

𝑁

𝑡=1

∏ 𝑝(𝑍𝑡
(𝑖)|𝐏𝐚(𝑍𝑡

(𝑖)))

𝑇

𝑖=1

 

 

 This process is shown graphically in Fig. 2.2, whereby a 2TBN for a HMM (a) is 

unrolled over timesteps into a sequence of length T=4 (b). 

 The intra- and inter-slice connections can be seen in Fig. 2.2, where the hidden 

variable nodes are linked between time slices (i.e. H1,…,H4 in timesteps t-1,…,t+2), allowing 

for conditional dependencies between variables at different time slices. DBNs thus allow 

states at time t to be conditionally dependent on states at time t-1 as well as the states of other 

nodes within time t. 

2.2.3 Hidden Variables 

 An advantage of BNs is that they can be used to model observed and unobserved 

data, as hidden nodes can be inferred from the values of the observed nodes. A hidden 

variable (HV) can be used to capture the underlying state of a time series or represent a 

variable of interest to the network that cannot be directly observed (Murphy, 2012). HVs may 

represent something of importance theoretically to the modelled system, or a process or driver 

that shares interdependencies with the variables but was not explicitly constrained within the 

model structure for one reason or another (Trifonova et al, 2017). This could occur where no 

(4) 

Figure 2.2 An example 2TBN DAG (a) and the same model unrolled over T=4 slices (b). 
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data exists on a phenomenon, or where model and methodological approach constraints 

dictate the exclusion of certain system components; for example, a model where a set of 

symptoms are observed, but the disease is unknown (Murphy, 2012). An example of a hidden 

common cause is cloud cover, which would be the parent node of ‘ultraviolet (UV) levels’ and 

‘chance of rain’ in a BN as it impacts the probability of both variables. As UV levels cannot 

impact the chance of rain in a physical sense, it could be wrongly concluded that the UV and 

rain nodes were causally connected without the inclusion of cloud cover in the network, which 

could be modelled as a hidden variable. 

 HV nodes encoded within networks can point to any number of observed variables. 

The HV then reflects the changes in system interactions between the observed nodes it is 

linked to, as its value is inferred to maximise the fit (log-likelihood) of the model to the data. 

As with the observed parameters of HMMs and DBNs in this project, the HV nodes are 

parameterised with the EM algorithm (Dempster et al, 1977). Discrete HVs with three possible 

states are used in this work. Inference and variable prediction to check model accuracy was 

achieved with the junction tree algorithm (Murphy, 1998). Because the HVs are parameterised 

using the observed variables, the nodes that HVs point to are important for model accuracy 

(Friedman et al, 1997), and the mean values of the observed variables associated with each 

hidden state can be calculated for more information on their meaning. Chapter 4 presents an 

analysis of the impact of different HV configurations, and a hidden state mean value analysis 

is shown and discussed in Chapter 5. 

HV approaches have great potential for climate data applications because they 

maximise model accuracy, as shown in DBN models constructed to investigate jet stream 

variability in Chapter 5. Graphical models that incorporate HVs may result in structures that 

are significantly more similar to the climate system we are trying to model; simpler models are 

learned which are less prone to overfitting whilst being more efficient for inference (Tucker 

and Liu, 2004). Given the challenges associated with reproducing Arctic-midlatitude weather 

linkages, due to noisy internal dynamics and the time-constrained nature of AA processes, 

potential improvements in model accuracy make HVs worth consideration. Graphical models 

with HVs inferred from observed data have been largely untouched in climate science studies, 

but their capabilities have been explored and proven in ecological system analyses (Trifonova 

et al, 2015; 2017; 2019; Uusitalo et al, 2018). 

2.3 Summary 

 The experimental steps of the full DBN approach taken in chapters 4 and 5 can 

therefore be summarised as follows. Data were split into training and testing datasets, with 

the proportions varying from a 50:50 split in Chapter 3 to 80:20 in chapters 4 and 5. For the 

DBNs, the train dataset structure was learned using either the PC or HC algorithms as a first 
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step. The PC algorithm uses the fisher z test for conditional independence, and a standardised 

alpha value of 0.01 is used across models unless specified. For the HC algorithm, the BIC is 

used to score candidate networks and optimise model structure; two algorithms are used to 

ensure the network structure results were as robust as possible. HVs were coded into the 

structure after the structure-learning stage for HMM and DBN models, and any bidirectional 

arcs were removed such that collider structures were preserved in the case of the networks 

learned with the PC algorithm only. Next, the parameters were estimated from the data using 

the EM algorithm for both the observed and hidden sets of variables. Finally, predicted test 

dataset values were generated using inference, and test data predicted values were then 

compared against observations to validate the networks and select the best performing model. 

This process was often run multiple times to investigate differences in midlatitude circulation 

proxies (i.e. ‘jet’ versus ‘MI’ DBNs in Chapter 5), HV structures (Chapter 4), DBNs with and 

without HVs (control runs, Chapter 5), lead times for tropical variables and nonstationary 

Arctic-midlatitude linkages (both Chapter 5) to see what impact they had on model 

performance. 

 Other time series models exist that could be used as a methodological approach for 

climate teleconnection analyses. State space models incorporate a range of probabilistic 

graphical models that describe dependence between the hidden variable and the observed 

measurement, and can be used to reconstruct and predict the state of a dynamical system. 

HMMs and state space models both give you a posterior distribution over the hidden state at 

t given the data up to and including time t, but HMMs by convention have discrete hidden 

states whereas state space models denote models with continuous hidden states (Petris and 

Petrone, 2011). For this thesis’ contribution to the scientific field, HMMs were considered a 

good starting point because any physical processes targeted by the hidden variable analysis 

(i.e. the identification of an AA period, or the impact of stratospheric polar vortex states on the 

propagation of tropical signals to the midlatitudes) were likely to be described more effectively 

in discrete terms. However, future analyses could certainly make use of the wider range of 

models available in this area of computer science research, with a particular focus on 

observation noise in timesteps and the strong degree of random variability one has to account 

for in the field of atmospheric science. 

2.3.1 Graphical Models in Climate Science 

 Graphical models are increasingly being presented as a robust methodology to 

investigate relationships between climate variables in observed datasets (Ebert-Uphoff and 

Deng, 2012a; 2012b; Kretschmer et al, 2016; 2017, Di Capua et al, 2019), as an alternative 

to correlation analyses. Ebert-Uphoff and Deng (2012a) introduced Bayesian Networks to the 

climate teleconnection community; relationships between four prominent daily-averaged 
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indices were demonstrated using the PC algorithm. Using a similar approach to this project, 

Ebert-Uphoff and Deng (2012a) propose independence graphs using structure learning in a 

graphical model framework as a way of eliminating indirect connections and returning 

functional networks, and suggest that BNs that focus on the flow of information throughout the 

network may perform better than correlation-based networks focusing only on node similarity. 

This approach was used recently to identify links between the NAO and MJO indices and an 

apparent state dependence in stratospheric linkages between the two (Barnes et al, 2019). 

Another seminal study produced evidence for a dynamically-driven impact of sea ice on 

Eurasian circulation using Causal Effect Networks (CENs) (Kretschmer et al, 2016), which 

makes use of a range of time lags to determine ‘causal’ drivers of variables. More recently, 

the combination of a causal discovery algorithm with a response-guided community detection 

scheme, whereby correlation maps run at different lags provide regions of spatial data likely 

to be driving variability in the chosen index of interest, has led to the prediction of weak 

stratospheric polar vortex states up to 30 days before (Kretschmer et al, 2017) and skilful 

prediction of the Indian Summer Monsoon on seasonal timescales (Di Capua et al, 2019). 

2.3.2 Terminology Differences between Climate and Computer Sciences 

 It is worth pointing out that statistical models, for example probabilistic graphical 

models like Bayesian Networks, are frequently referred to as ‘models’, and as such some 

confusion may exist regarding their distinction from numerical atmospheric models. 

Atmospheric model studies are fundamental to the interpretation of results presented in this 

work, so are frequently addressed in the discussion sections. This thesis attempts to make a 

clear distinction between the two, frequently prepending ‘atmospheric’ in front of ‘model’. 

‘Model accuracy’ or ‘predictive accuracy’ are however used to describe BN models throughout.  

Terms like ‘forecasting’ and ‘prediction’ have established meanings for climate 

scientists which imply the forecasting of climate conditions into the future. They can also refer 

to the n-step ahead forecasting method driven by BN inference (see section 2.2.1) that is used 

to assess network performance and accuracy in this project. The word ‘forecasting’ is 

therefore used only to mean subseasonal-to-seasonal forecasting (outside Chapter 2), and 

‘prediction’ or ‘predictive accuracy’ are frequently used instead to refer to BN performance, 

assessed using inference. ’Predictive accuracy’ is an assessment of the model fit: test dataset 

values are predicted using the structure and parameters learned from the train dataset and 

then compared against the observed test values. The accuracy of fit is quantified using sum 

of squared error (SSE) for each variable over all time resolutions. Because inference is used 

to assess network performance, all variables are predicted, unlike other climate science 

applications of statistical models where a single variable of interest (for example, jet stream 

latitude) would be predicted based on other input variables to establish them as predictors of 
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the response variable. As is explained above, BNs exploit conditional independence graphs 

and structure-learning, so there is no response variable in this manner. 

2.3.3 Chapter Outline 

 Chapters 3, 4 and 5 are the core data chapters and contain findings from increasingly 

complex network architectures. Chapter 3 presents a static BN analysis to test the structure-

learning phase of BN construction on a number of climate variables. In Chapter 4, DBN 

methods including HVs and different network architectures are applied to a simple 4-variable 

dataset to investigate Arctic-midlatitude linkages with a number of BN tools. A full investigation 

of the impact of Arctic variables on midlatitude atmospheric variability, relative to other remote 

drivers and internal variability, is carried out in Chapter 5. These findings are backed up by an 

analysis of tropical lead times and nonstationary Arctic-midlatitude linkages towards the end 

of Chapter 5. Each data chapter (3-5) has a summary of the results and their implications 

either for further study presented in later chapters, or for the AA-midlatitude research field as 

a whole. Chapter 6 therefore concludes the thesis by highlighting the contributions of the 

research presented, followed by an assessment of the limitations of the method and study 

design used, and finally a set of recommendations for future work to be carried out based on 

the findings of chapters 3-5. 
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Chapter 3: Learning Climate Network 

Structures with Static Bayesian Networks 

3.1 Introduction 

This chapter details the use of static Bayesian Networks (BNs) to detect relationships 

between geographically disparate climate datasets.  A network of 6 months’ data and two 

others of 35 years in length were built as an initial investigation into the appropriateness of the 

use of BNs for link discovery in a complex nonlinear system.  As such, the chapter represents 

the foundational work of the project undertaken for training in R programming, spatio-temporal 

(GIS) analysis and Bayesian Network analysis using the simplest form of BNs; static models. 

  The methodology employed here can be summarised in two main sections. The 

experiments are numbered as 1, 2a and 2b: 

 

1. A ‘draft’ network using 6 months of data and two spatially-averaged regions of 

atmospheric variability 

2. Two 35-year networks of (a) daily and (b) monthly summarised data using two jet 

stream proxy measurements over one region of variability. 

 

Linkages between Arctic Amplification (AA) and midlatitude weather extremes are the 

subject of continuing debate; clear cause-and-effect relationships are elusive because 

complex nonlinearities exist in linkages (Overland et al, 2016), presenting a number of 

problems.  Firstly, a large degree of variability in the climate system coupled with the small 

signal-to-noise ratio of AA due to its recent appearance as a phenomenon (since the late 

1990s) masks any simple linear relationships.  Intermittent forcing (i.e. AA processes active in 

certain seasons) and possible dependencies of drivers on background or concomitant 

processes (i.e. dependency on the Arctic Oscillation phase) are further considerations 

(Shepherd, 2014).  And finally, numerous influences from within the Arctic, midlatitudes and 

tropics (in particular sea surface temperatures) could be acting upon midlatitude atmospheric 

flow (Overland and Wang, 2015). 

System-level approaches like probabilistic graphical models may address many of 

these complexities.  The purpose of this chapter is to investigate the suitability of static 

Bayesian Networks for the research field, using networks with different data (variables) to 
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investigate the fit and climatological plausibility of the results.  A description of the variables 

used follows, with methods detailing static BNs and the steps employed, results showing 

graphical models and their fit, and a discussion of network performance and subsequent steps 

for continued research. 

3.2 Data 

 A total of 11 variables are used to determine the dependency relationships between 

drivers of North Atlantic circulation across several analyses.  Variable and spatial scale 

selection (where appropriate) was based on prior studies and expert knowledge; the purpose 

of this is to investigate Arctic-midlatitude with a novel graphical model approach, based on the 

datasets used by a range of studies that have claimed to find linkages between the two 

(Francis and Vavrus, 2012; Kretschmer et al, 2016; Hall et al, 2017).  A decrease in the upper 

level zonal winds (500 hPa) and a northwards displacement of the jet stream has been found 

in a number of studies (Francis and Vavrus, 2012; Tang et al, 2013), and whilst these results 

seem to depend on a number of specific methodological choices (Barnes, 2013; Screen and 

Simmonds, 2013), the claim that simple indicators of AA like sea ice extent can be linked with 

amplified upper-level Rossby waves and subsequently persistent midlatitude weather is worth 

investigating.  For summer jet stream variability, sea ice loss during autumn and February 

snow cover anomalies have been found to impact jet latitude (Hall et al, 2017).  During winter, 

Barents-Kara Seas SIC has been suggested as an important driver of atmospheric circulation 

through tropospheric-stratospheric coupling (Kretschmer et al, 2016).  With this in mind, 

further investigation of these variables in a static BN framework is undertaken. 

3.2.1 (1) 6-month ‘draft’ Bayesian Network 

 An initial dataset was constructed using a subset of the full date range (Fig. 3.1), with 

four cryospheric variables selected to represent the AA processes of sea ice extent decline 

and loss of snow cover. This was done for the express purpose of developing the method; six 

months of data is not anywhere near long enough to develop reliable results in a climate 

science context. Two regions of Arctic sea ice variability are selected: Barents-Kara SIC 

(BKSeasSIC) and North-East Greenland SIC (NEGreenlandSIC) based on the analyses of 

Kretschmer et al (2016) and Hall et al (2017).  Sea ice concentration data were from the 

Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave dataset, available at 

https://nsidc.org/data/NSIDC-0051/versions/1.  Snow cover extent for the North American 

(NAmericaSCE) and Eurasian (EurasiaSCE) regions was used, provided by NOAA’s Climate 

Data Record (CDR) of Northern Hemisphere Snow Cover Extent and retrieved from 

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00756. 

 Three major climate indices of importance to Northern Hemisphere atmospheric 

circulation are included in the dataset.  The Arctic Oscillation (AO), which denotes the north-

https://nsidc.org/data/NSIDC-0051/versions/1
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00756
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south orientation in the dipolar structure of the North Atlantic pressure field (Hurrell, 1995), 

and the North Atlantic Oscillation (NAO) are included as proxies of midlatitude circulation 

variability.  The NAO is calculated by differencing the sea-level pressure (SLP) of the 

Subtropical High and the Subpolar Low.  The El Niño Southern Oscillation (ENSO) 3.4 index 

is calculated using SST data from HadISST (Rayner et al, 2003), and provides the potential 

for tropical Pacific teleconnections which are known to influence winter North Atlantic 

circulation through the creation of large-scale Rossby wave trains (Trenberth et al, 1998; 

Scaife et al, 2017).  All three indices are made available at https://climexp.knmi.nl/. 

 Finally, for an initial approximation of atmospheric variability at the 500hPa level, the 

zonal component of the wind, or x-coordinate, was averaged over two regions – the North 

Atlantic (NAtlanticuWind) and Europe (EuropeuWind).  The U component of wind is the 

eastward speed of air in the horizontal plane measured in metres per second, provided by 

ECMWF’s ERA-interim reanalysis dataset (https://apps.ecmwf.int/datasets/data/interim-full-

daily/levtype=pl/).  A time range of 2016.01.01 - 2016.06.01 (1st January 2016-30th June 2016) 

was used for all variables, with data either downloaded or summarised as daily averaged 

values.  For the SCE dataset, this meant using linear interpolation to create daily values for a 

time series supplied by NOAA at a weekly resolution. In a geometric sense, linear interpolation 

is the generation of values through the use of a straight line between two adjacent points on 

a graph. It is appropriate here because the large-scale SCE patterns we are interested in are 

largely a function of seasonality; a weekly resolution in the unprepared NOAA dataset 

sufficiently captures SCE variability, but timesteps must match between prepared datasets. 

Figure 3.1 Map showing spatial scales used for (1) 6-month dataset: North American and Eurasian SCE in blue, 
North-East Greenland and Barents-Kara Seas SIC in blue over ocean, North Atlantic and Europe uWind in light 

blue and Nino 3.4 in red.   

https://climexp.knmi.nl/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/
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3.2.2 (2) 35-year Bayesian Networks 

Two more BNs using daily data summarised over (a) daily and (b) monthly time periods 

were built (Fig. 3.2) to test appropriate jet stream proxy measurements – jet latitude and jet 

speed, as described in Woollings et al (2010).  Briefly, zonal wind speeds from 900 to 700 hPa 

were used to identify the Polar Front Jet (PFJ) and exclude the subtropical jet at higher 

altitudes, and filtered using a 10-day Lanczos low-pass filter with a 61-day window in order to 

remove synoptic scale variability (Hall et al, 2017).  This approach works from zonal winds 

from 900 to 700 hPa from ERA-Interim data as raw input data 

(https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/). 

All climate indices (AO, NAO and ENSO) and cryospheric regions (SCE and SIC) used 

in experiment 1 are included in the following datasets, with the exclusion of the zonal 

component of wind as a midlatitude circulation proxy; jet latitude and speed replaced the two 

regions of uWind as more advanced indicators of circulation variability used to better effect in 

several recent studies (Hall et al, 2017; Samarasinghe et al, 2017; Barnes and Simpson, 

2017).  Both datasets (a) and (b) used a time range of 1981.09.01 – 2016.08.01 (1st September 

1981-1st August 2016), approximately 35 years. 

Figure 3.2 Map showing spatial scales used for (2) datasets: North American and Eurasian SCE in blue, North-
East Greenland and Barents-Kara Seas SIC in blue over ocean, Jet Latitude and Jet Speed in light blue (single 

box) and Nino 3.4 in red. 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/
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Table 3.1 Variables used in this analysis, data sources, the unit of measurement, spatial resolution (spatial data 
only) and regions used (in latitude and longitude) for all data.  Note: (1) denotes variables used only in (1) 6-

month ‘draft’ BN, a (2) those used exclusively for (2) 35-year BNs. 

3.2.3 Preparation of Spatial Data 

 All non-index, spatial data was prepared in R Studio in the following way.  Data was 

downloaded from the sources listed in Table 3.1 (or indirectly via KNMI’s climate explorer for  

the three indices), loaded in as a NetCDF file (‘ncdf4’ package) and converted to raster format 

(‘raster’ package) by first extracting the file’s dimensions.  Once in raster stack format, raster 

layers were named as their corresponding dates, cropped to appropriate geographical extents 

(‘Lat’ and ‘Long’ columns, Table 3.1) and spatially averaged.  This reduces the dimensionality 

and the variables effectively become an index, allowing for easy storage as a time series in a 

data frame.  The table of variables is split into ‘training’ and ‘testing’ datasets (detailed below); 

training datasets are used for parameter learning, and testing datasets examine the fit of the 

training set to determine the degree of overfitting that has taken place.  In contrast to the 

Variable Source Unit Spatial Res Lat Lon 

Arctic Oscillation NOAA Geopotential height (m) - 20-90°N All 

North Atlantic 
Oscillation 

NOAA Sea Level Pressure - - - 

El Niño Southern 
Oscillation 

NOAA (3.4) Sea Surface Temperature - 5°N - 5°S 170-120°W 

Eurasia Snow 
Cover Extent 

NOAA Fraction of snow-covered area 0.88 x 0.88 40-80°N 55-150°E 

North America 
Snow Cover 
Extent 

NOAA Fraction of snow-covered area 0.88 x 0.88 40-70°N 130-70°W 

Barents-Kara Sea 
Ice Cover 

ECMWF 
ERA-Interim 

Fraction of sea ice area 0.75 x 0.75 70-80°N 30-105°E 

North East 
Greenland Sea 
Ice Cover 

ECMWF 
ERA-Interim 

Fraction of sea ice area 0.75 x 0.75 80-90°N 35°W-0° 

Europe uWind (1) ECMWF 
ERA-Interim 

Zonal component of wind 0.75 x 0.75 40-70°N 0°-30°E 

North Atlantic 
uWind (1) 

ECMWF 
ERA-Interim 

Zonal component of wind 0.75 x 0.75 40-70°N 70-10°W 

North Atlantic Jet 
Latitude (2) 

ECMWF 
ERA-Interim 

Degrees (°) 0.75 x 0.75 16-76°N 60°W-0° 

North Atlantic Jet 
Speed (2) 

ECMWF 
ERA-Interim 

m/s 0.75 x 0.75 16-76°N 60°W-0° 
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dynamic networks built in subsequent chapters, no further formatting (i.e. detrending, 

anomalies) was carried out to create this series of static networks. 

3.3 Methods 

Networks were built in R using the ‘bnlearn’ package (Scutari, 2010).  Model structure 

learning was achieved with the Hill Climbing (HC) algorithm, which implements a greedy 

search that iteratively adds, removes and reverses arcs between all variables, finding the DAG 

with the best fit (Michalewicz and Fogel, 2013). This effectively means that a number of 

networks are created, each with a single change to a link to maximise the score of the network 

at each stage. Network scoring is achieved with the Bayesian Information Criterion (BIC), 

which penalises models for overfitting and approximates the DAG’s posterior probability 

(Schwarz 1978). Other network scoring approaches exist including the Akaike Information 

Criterion (AIC) (Akaike, 1974), simulated annealing (Bouckaert, 1995) and genetic algorithms 

(Larranaga et al, 1997). The BIC is used here because unlike the AIC, it uses the number of 

observations as a basis for the penalisation term. The structure-learning process results in an 

‘empty’ network structure of observed variables; DAG results are shown below for all dataset 

types. All variables are continuous data, and all edges shown were learned from the data 

using the HC algorithm as no whitelist or blacklisted arcs (edges that are either forcibly ‘set’ 

by the user and hard-coded into the network, or prevented from being set by the algorithm) 

were set in the model building process. User-determined edges were not necessary in this 

case as the data was fully observed (no hidden variables are used), and the dependency 

structures are completely learned from the data to assess the HC algorithm’s ability to pick 

out teleconnections between climate variables. 

The dependency relationships returned are spatial relationships that are predictive in 

an informative way, not in a causal sense (Milns et al, 2010).  Whilst the data selection relied 

on previous knowledge, all structures were intentionally learned from the underlying data 

rather than through the use of expert knowledge because of the differences in results between 

varying methodological approaches (e.g. Barnes, 2013). The object of using the HC algorithm 

was to apply a score-based local optimisation technique; HC is one of the most commonly 

used of these and the purpose of this chapter was not to investigate differences between 

score-based algorithms. After learning the DAG structure using the training dataset, the 

parameters are estimated from an observed sample – in this case, the testing dataset.  

Parameter estimates are produced using the maximum likelihood estimator, and the quality of 

estimates is strongly dependent on sample size (Scutari and Denis, 2014) which in this case 

is quite large due to the use of 35 years of daily data.  The results are then visualised as plots 

of predicted against observed values for analysis of model performance. 
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3.3.1 Training and Testing Datasets 

 Different splits in training and testing datasets were used to explore differences in 

model structure and fit.  For (1), a split of 5/1 months was used, whereas (2a) split the daily 

datasets into 1981-1994 for the training, and 1995-2016 for the testing.  (2b) includes two BNs 

built from monthly data, split by 1981-1994/1995-2016 and 1981-1999/2000-2016 

respectively. These two training and testing periods differ from each other (and differ from the 

80/20 split used in the following chapters) because the dates were purposely chosen to 

investigate the impact splitting the datasets outside and inside of the ‘AA Period’ would have 

on results. The observational record suggests the amplified warming signal in the Arctic 

relative to the Northern Hemisphere only developed in the late 1990s, with Cohen et al (2014; 

also see Fig 1.1) suggesting this transition date occurred around 1997. 

3.3.2 BIC Score 

 The Bayesian Information Criterion (BIC) is a criterion for scoring used to select 

candidate networks (Schwarz et al, 1978).  The likelihood function will increase as more 

parameters are added during network fitting, meaning that BNs and other statistical models 

can suffer from overfitting.  The BIC resolves this problem through the use of a penalty term 

for the addition of parameters in a model, effectively stopping structure-learning algorithms 

from creating over-connected BNs by biasing towards less complex models.  The operation 

that returns the lowest BIC score at each step is the operation (or ‘edge’) that will be present 

in the final DAG returned by the algorithm.  Here, the scoring function is increased in the form 

of the ‘K =’ argument to 5 and then 10 to investigate the differences in edges returned in the 

resulting DAGs, whereby a large penalising term of 10 would leave only the strongest 

connections in the network. 

3.4 Results and Discussion 

3.4.1 (1) 6-Month BN and (2a) 35-Year BNs: Daily 

 The 6-month BN run (Fig 3.3) resulted in a DAG structure that was not consistent with 

the background literature due to short time series used to create it (2016.01.01 - 2016.06.30).  

This initial BN, run over relatively few time points, clearly did not achieve a satisfactory level 

of predictive accuracy (Fig 3.4).  Observed over the full daily dataset, Fig 3.5 demonstrates 

another common problem; an overconnected DAG suggesting the penalising term (the BIC) 

was not suitable for data of the size used here.  Nodes with 5-7 arcs to and from other nodes 

are common in the network demonstrating this problem, and Fig 3.6 shows that no test set 

node was accurately predicted.  The full dataset shows the midlatitude variables – the jet 

speed, latitude and NAO – as child nodes, with the NAO as the parent of both jet nodes, 

consistent with the NAO being an important indicator of North Atlantic midlatitude variability.  
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Clearly, neither a 6-month subset nor the full time series of daily data over a 35 year period 

were appropriate for a static BN approach; the influence of the seasonal cycle in the full 12 

months of daily data, combined with the number of time points and the over-connectedness 

of nodes, has led to the structure-learning phase being dominated by overfitting.  Whilst 

increasing the scoring function resulted in fewer edges and less overfitting (Fig. A3.1), no 

discernible change in predictive accuracy could be achieved with score alone (Fig. A3.2), so 

the dataset was changed to mitigate some of the problems associated with the use of a dataset 

with so many time points. 

 

 

Figure 3.3 (1) 6-Month DAG. 
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Figure 3.4 (1) Predicted fit for all variables in 6-Month BN. 
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Figure 3.5 (2a) Daily 35-Year BN DAG.  Note over-connectedness of nodes. 
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3.4.2 (2b) 35-Year BNs: Monthly 

 The jet stream proxies – jet speed and latitude – are always fundamental to the network 

structures of Fig. 3.7 onwards appearing at the bottom of the DAGs.  It is clear that links 

between JetLat and both BKSeasSIC and the NAO (as well as NAmericaSCE in cases such 

as Figs 3.11, 3.12 and 3.13, and indirectly through another node other times) are important, 

reflecting the conclusions of a number of important linkage studies for both Northern European 

(Petoukhov and Semenov, 2010; Liptak and Strong, 2014) and Eurasian (Kim et al, 2014; 

Kretschmer et al, 2016) midlatitude circulation.  Whilst the connection to Eurasian extreme 

cold events is thought to occur primarily through the weakening of the stratospheric polar 

vortex, Barents and Kara sea ice variability was also found to be an important driver of the AO 

during winter within the troposphere using a Causal Effect Network (CEN) approach 

(Kretschmer et al, 2016).  This is not captured in any of the static BNs presented here for the 

North Atlantic region.  The link between BKSeasSIC and jet latitude is present in both Figs. 

Figure 3.6 (2a) Predicted fit for all variables in Daily 35-Year BN. 
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3.7 and 3.9, and arcs between BKSeasSIC and jet speed are present across all score types 

and data splits.  The connection between cold Asian winters and the intensification of the 

Siberian High due to sea ice depletion in the Barents-Kara Seas is perhaps the most 

consistently found result in the AA-midlatitude literature (see review in Cohen et al, 2018), 

although several papers have questioned whether this link represents a causal physical 

mechanism sooner than internal variability (Kolstad and Screen, 2019; Warner et al, 2020).  

Cold temperatures are associated with reduced sea ice in the Barents-Kara Seas in numerous 

studies (Kim et al, 2014; Handorf et al, 2015; Luo et al, 2016), with one study finding that 

regional sea ice loss more than doubles the chance of severe Eurasian winters (Mori et al, 

2014).  BKSeasSIC links with North Atlantic jet stream variability have been found for summer 

circulation with lagged correlation to the preceding autumn (Hall et al, 2017), but no consensus 

exists on the impact of AA in the North Atlantic region. 

 The lack of a direct link between EurasiaSCE and jet variability in the midlatitudes is 

supported by Hall et al (2017), albeit for the summer months.  Few studies exist linking snow 

cover to midlatitude circulation; over North America, spring anomalies in the 1000-500 hPa 

thickness range occur prominently over high-latitude land suggesting a response to earlier 

melt in the season (Francis and Vavrus, 2015).  For Eurasian extreme weather, the role of 

snow cover variability is complex and unresolved, but an increase in snow has been linked to 

increased Siberian SLP in winter (Kretschmer et al, 2016).  In contrast to the hypothesis that 

SLP in central Asia is influenced by late autumn snowfall (Cohen et al, 2014), other graphical 

model approaches have found no evidence for this link (Kretschmer et al, 2016).  

NAmericaSCE, however, is always central to the DAG structures shown in this chapter, and 

is suggested as an important driver of both jet proxies (Figs. 3.11, 3.12 and 3.13).  Whilst the 

dataset used here features no lead times for potential drivers of midlatitude circulation 

variability, high (low) February snow anomaly years are associated with high (low) Greenland 

Blocking Index (GBI) values, promoting meandering jet patterns during summer (Hanna et al, 

2013).  The DAGs shown here tentatively suggest that snow cover variability in the North 

American sector are important for North Atlantic midlatitude circulation, and that the influence 

from Eurasian snow cover is too small to be picked up in this analysis. 

 Whilst a number of arcs appear across all network types, like BKSeasSIC-JetSpeed, 

the value chosen to score the network selection process seems to have a greater impact on 

the resulting structure than the time period chosen to split the data by (i.e. the test dataset). 

Neither the k score nor the dataset split changed the predictive accuracy significantly for the 

monthly BNs; the only difference is the AO node, which is predicted poorly in Fig 3.8 and fails 

to be predicted entirely in Figs 3.10 and A3.3-3.6.  Given that the AO is only connected to 

three variables which effectively describe similar physical processes like the orientation of the 

North Atlantic pressure field and the zonal characteristics of midlatitude flow (Ambaum et al, 



 
41 

2001), it does not warrant inclusion in the BN investigations of following chapters.  This finding 

contrasts Kretschmer et al (2016), who found that Barents and Kara sea ice in autumn is linked 

within the troposphere to a weakening of the AO in winter.  High sea level pressure in the 

Arctic should make a negative AO more likely; in Fig. 3.7 however, both BKSeasSIC and the 

AO are parent nodes of important midlatitude processes like jet speed and latitude, but are 

not directly linked to each other. 

A few notable commonalities exist between the DAG structures produced here.  

BKSeasSIC is shown to have limited predictive accuracy in the variable scatters, but it is 

almost always important to the structure of the network.  EurasiaSCE is, without exception, 

always the parent node of NAmericaSCE, with no discernible physical explanation.  

Importantly, NEGreenlandSIC is never essential to the structure of the DAGs.  Its child node 

status, unlike BKSeasSIC, suggests it is not an important driver of North Atlantic atmospheric 

variability, in contrast to Hall et al’s (2017) study of summer circulation.  Hall et al (2017) 

included this region of sea ice as a result of correlation mapping carried out at the beginning 

of their study; it is likely the region used to average SIC data over for NEGreenlandSIC does 

not capture enough of the SIC variability for the North Atlantic sector of the Arctic (Fig. 3.2).  

Subsequent studies, for example, have used larger areas of near-surface temperature to 

represent similar physical mechanisms linked to lower latitude circulation for the North Atlantic 

region (Barnes et al, 2017; Samarasinghe et al, 2017). 

 As these BNs use datasets which are monthly- or daily-averaged time steps from full-

year time series, it is inevitable that variables which are important climatological drivers during 

a restricted time window would have a weaker yearly signal.  Nino3.4 was consistently the first 

node to be disconnected from the DAG when the penalising term was increased (Figs 3.9, 

3.11-3.13), most likely for this reason, despite being an important factor in winter circulation in 

the literature.  ENSO has a complex mixture of effects on Europe, the most consistent of which 

resembles the negative phase of the NAO in late winter (Bronnimann et al, 2007), with a 

weaker meridional jet dominating circulation.  ENSO is therefore expected to be more 

important in BNs constrained to the winter months, and could provide valuable insight into 

tropical influence on North Atlantic jet stream variability. 

 Recent studies have investigated similar metrics, Jet latitude and speed, using 

Granger causality methods (Barnes and Simpson, 2017, Samarasinghe et al, 2017).  As with 

the findings presented here, jet speed was found to be related to AA: causal discovery 

techniques revealed that a stronger jet in the North Pacific is associated with warmer Arctic 

temperatures (Samarasinghe et al, 2017).  By focusing on two-way linkages and feedback 

mechanisms, Samarasinghe et al (2017) demonstrate a relationship between jet latitude and 

Arctic temperatures (and a stronger influence vice versa) lagged by <25 days.  Whilst this 

study focuses on the North Pacific jet response, it advances the field in a number of ways: it 
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uses temperature averaged over 70-90°N rather than sea ice concentrations which are only 

partially driving AA trends (Francis, 2017), it accounts for two-way linkages found to be 

important for sea ice decline (Luo et al, 2017), and investigates links over a range of 

submonthly lags. 

   

 

 

 

 

 

Figure 3.8 (2b) Predicted fit for all variables in Monthly 35-Year BN. 
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Figure 3.9 (2b) Monthly 35-Year DAG K=5. 
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Figure 3.10 (2b) Predicted fit for all variables in Monthly 35-Year BN K=5. 
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Figure 3.11 (2b) Monthly 35-Year DAG (2000 Split). 
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3.5 Conclusion 

 This chapter has detailed an investigation into the suitability of static Bayesian 

Networks for application to the field of Arctic-Midlatitude linkages.  Networks using a range of 

variables and timescales were constructed to assess how well the results fit our current 

understanding of cryospheric drivers of midlatitude circulation anomalies and their linkage 

mechanisms. 

Figure 3.12 (2b) Monthly 35-Year DAG (2000 split) K=5. 
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 Barents-Kara Seas SIC and the NAO were both shown to be central to jet latitude over 

a robust range of timescales, which is supported by the background literature (Kim et al, 2014; 

Mori et al, 2014; Handorf et al, 2015; Luo et al, 2016) on Eurasian sea ice depletion and cold 

extremes in East Asia.  A lagged relationship between Barents-Kara SIC and jet latitude has 

been found for the North Atlantic, whereby summer jet latitude was influenced by the previous 

autumn’s sea ice concentration in this region (Hall et al, 2017).  Whilst the season and 

methodological approach differ for this study, the lagged association points to the need to 

investigate relationships between SIC and jet stream variables at a range of different lead 

times.  The DBN-based approach taken in following chapters that investigates different time 

lag associations attempts to resolve this problem.  Two studies using similar methodological 

approaches currently exist for the North Atlantic region: Barnes and Simpson (2017) and 

Figure 3.13 (2b) Monthly 35-Year DAG (2000 split) K=10. 
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Samarasinghe et al (2017) both focus on Arctic-midlatitude connections using a comparatively 

small number of variables.  Subsequently, an important research gap exists in the need for 

complex datasets with a range of Arctic, midlatitude and tropical variables to determine 

important drivers of midlatitude circulation variability with graphical model approaches. 

 A clear theme which emerges from the position of the NE Greenland SIC variable in 

all BNs is the need for a more advanced approach to selection of cryospheric variables like 

sea ice regions; NE Greenland SIC was not found to influence North Atlantic atmospheric 

variability at any of the timescales.  Hall et al (2017) used a correlation map approach, whereas 

this chapter bases variable selection (the data itself and spatial scales used) on the literature 

(Hall et al, 2017; Kretschmer et al, 2016; Luo et al, 2016).  A further investigation of parameters 

is required in future studies; potential regions of sea ice impact, subdivision of snow cover 

areas, spatial extent of jet variables and the addition and removal of useful tropical and sub-

Arctic data into networks will need to be explored to ensure results are robust. 

An important relationship between N American SCE and jet latitude was found only in 

the DAGs where the training/testing datasets were split up to 2000 (Figs 3.11-3.13); the impact 

of snow cover on seasonal timescales may be central to this relationship, so the effective use 

of climatological anomalies to mask the seasonality of the data and reveal the signal is a 

necessary data preparation step for chapters 4 and 5.  In contrast, Eurasian SCE appears not 

to have a significant impact on N Atlantic jet latitude or speed. 

The split of training and testing datasets clearly does not change the network 

structures in any fundamental way, as both SCE and SIC links are preserved in the 2000 split.  

This chapter used dataset splits that were approximately 50/50 in terms of training and testing 

datasets, rather than a more standardised 75/25 one, to investigate the impact of including 

the beginning ‘AA period’ (mid-1990s to 2000) in the training dataset.  The hypothesis that 

DAG structures will differ significantly when including the AA period has not been disproved 

by this analysis; instead, separate BNs created using data outside of (1981-1997) and within 

(1997-2016) the AA period would address this hypothesis more adequately.  Chapter 5 uses 

dynamic networks and dataset splits to investigate the period of AA and differences in DAG 

structures more thoroughly. 

 In summary, the BNs presented here lack several mechanisms that are key to the 

application of graphical models to climate data analyses. The teleconnections between 

cryospheric variables (North American SCE and Barents-Kara Seas SIC) and jet latitude and 

speed found in section 3.4 are central to subseasonal-seasonal forecasting, as the 

identification of reliable predictors of jet stream variability is a priority for operational weather 

forecasters (Jung et al, 2014; Overland et al, 2015).  However, a number of data preparation 

steps are missing from this analysis that fundamentally constrain the hypothesis testing and 

results drawn from it.  Given the importance of time lags and seasonally variable linkages in 
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the study of climate teleconnections, static BNs do not provide the tools necessary to analyse 

Arctic-midlatitude weather linkages which are regional and intermittent in nature and therefore 

rely on advanced time series analysis like dynamic graphical models (Cohen et al, 2018).  

Lagged correlations and causal drivers were central to the methodologies and findings of Hall 

et al (2017) and Kretschmer et al (2016) respectively, prompting the investigations into 

appropriate lead times for potential drivers of jet stream variability in chapters 4 and 5.  Further 

chapters aim to address the shortcomings in data and methodology through the introduction 

of a more advanced data preparation process and Dynamic Bayesian Network tools. 
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Chapter 4: Exploring Dynamic Bayesian 

Networks with Hidden Variables to Detect 

Arctic-Midlatitude Linkages 

4.1 Introduction 

The aim of the following chapter is to explain the application of BN methods in detail, 

with a particular focus on the application of BNs to time series analysis, to demonstrate how 

they might be used to investigate climate teleconnections. An attempt is made to show the 

workings of the approach; data preparation and analysis methods which yielded negative 

results are included, with findings emphasising DBN development and accuracy in light of 

these. Both positive and negative results are then used to inform a discussion focusing on the 

suitability of specific parts of the DBN method for the analysis of observational climate data. 

To extend the analysis of Chapter 3 to time series analysis, dynamic networks (HMMs 

and DBNs) are constructed. Models constructed with the same datasets detailed in Chapter 

3 performed poorly in terms of predictive accuracy; Fig. 4.1 shows observed values regressed 

against predicted for a HMM using the dataset from Chapter 3, with highly dispersed values 

suggesting that the model fit is inadequate. Subsequently, a number of improvements in data 

preparation and network construction aimed at investigating model fit are detailed in this 

chapter. 

A simple 4-variable network is used to reveal dependency structures between Arctic 

warming, North Atlantic jet stream variability and the El Niño Southern Oscillation. Four 

networks are designed to investigate the impact of increased model complexity on predictive 

accuracy. Structure-learning and hidden variables (HVs) are incorporated into dynamic 

networks, with model performance assessed at each stage. DBNs improve on static BNs by 

allowing for conditional dependencies across time slices when lead times are used for 

variables, as well as feedback relationships which are of fundamental importance for 

atmospheric processes. 
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DBNs with 1 or 2 HVs are constructed, with the value of the HV set at each time point 

to maximise the model fit (in terms of log-likelihood) to the data. As the HVs encoded within 

the networks are discrete, the hidden state shifts associated with HV phases point to changes 

within the system interactions of the particular nodes the HV is connected to (Trifonova et al, 

2019). For this reason, adding HVs and connecting them to different sets of variables can 

have an impact on how the DBN performs. Because HVs maximise the log-likelihood of the 

Figure 4.1 HMM predictive accuracy scatters showing predictions plotted against observed monthly data 
(experiment 2b in section 3.4.2) for all variables used in the analysis of Chapter 3. Model performance was low 

for all variables in the HMM, leading to a number of changes in data preparation and model construction 
detailed in this chapter. 
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network, graphical model approaches making use of them have great potential for climate 

data applications. Arctic-midlatitude weather linkages are difficult to reproduce in statistical 

analyses of the observational record because they are dominated by nonlinear interactions of 

drivers, noisy dynamics in midlatitude processes, and time constraints as the AA signal only 

emerges sometime in the late 1990s (Overland et al, 2017). With this in mind, Chapter 4 

represents an extensive analysis of time series DBN analysis, structure-learning, and HVs and 

the effect each has on model accuracy. A number of conclusions and recommendations are 

drawn from the experiments, many of which are used to structure the study design and 

analysis of Chapter 5. 

4.2 Data 

 Four variables of importance to Northern European winter weather patterns are 

selected for this analysis, with a further (the MJO) included to measure in impact of adding 

unconnected nodes on model structure and accuracy. 5-day averages were used for all data 

to focus on submonthly variability and to maximise the number of data points as this chapter 

focuses on changes in accuracy between different models. To this end, a number of 

Figure 4.2 Correlation map of 850-hPa temperature to jet latitude over the Northern Hemisphere using 5-
day averages for winter (DJF) months of 1981-2018 with no lead time.  White contours denote significance 

at 0.01 (1%) level. 
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improvements on data preparation are made from chapter 3. The winter months (DJF) were 

selected for all variables, with the 29th February removed from each leap year allowing for a 

total of 90 days in each year and 666 timesteps in total. 

Fig. 4.2 suggests the 850-hPa temperature over the south-eastern coast of Greenland 

is strongly negatively correlated to the latitude of the jet stream in winter months. In the sea 

ice record of the satellite era (1979-present), Baffin Bay and the east coast of Greenland have 

both undergone significant reductions in sea ice concentration (Fig. 4.3). The North Atlantic 

sector (defined as 280-350°E, 70-90°N) was therefore chosen to investigate the impact of 

regional AA on midlatitude circulation. Near-surface 850-hPa temperature from ECMWF’s 

ERA-Interim global atmospheric reanalysis (Dee et al, 2011) was used to represent regional 

AA, available at https://apps.ecmwf.int/datasets/data/interim-full-daily/. As a first step, the 

area-weighted spatial average was taken over the region, resulting in a 1-dimensional time 

series dataset. Next, anomalies were calculated by subtracting each timestep of the multi-year 

mean (1981-2018) from the value of the matching timestep, and the result was then detrended. 

 This marks an improvement on chapter 3’s dataset in the following ways: the use of 

850-hPa temperature ensures that the full AA signal is captured, and the preparation steps 

are standard practice in climate science to remove unwanted variability on different 

Figure 4.3 NSIDC sea ice concentration data for November of the years 1979-2016. A linear 
downward trend of 40% is shown for November, when autumn sea ice freeze-up takes place. 

Source: Overland and Wang (2018). 

https://apps.ecmwf.int/datasets/data/interim-full-daily/
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timescales, i.e. the seasonal cycle and long-term trends. Firstly, the AA signal is the result of 

local sensible heat fluxes, evaporation and the transport of heat and moisture into the Arctic 

from lower latitudes (Cohen et al, 2018a). The downward trend in sea ice concentration and 

resulting albedo feedback are only partially responsible for AA, whereas near-surface 

temperature captures the full range of AA drivers and signal. Secondly, using raw data means 

that the results will be dominated by the influence of the seasonal cycle, so anomalies remove 

the seasonality allowing data to be expressed in terms of the distance between the value and 

its mean (Wilks, 2011), which in this case is the multi-year mean of the matching date 

(timestep). The removal of the trend is similarly central to climate analyses as it distinguishes 

between ‘climate change’ – i.e. the large upward trend in Arctic temperature over the North 

Atlantic region of the Arctic – and interannual variability (Wilks, 2011), the natural signal to be 

considered for climate analyses. 

 To investigate potential links between AA and midlatitude circulation within a DBN, a 

proxy for Polar Jet Stream variability was included. Jet latitude was calculated using ERA-

Interim data (Dee et al, 2011) and defined over the region 16°–76°N, 0°–60°W. ERA-Interim 

zonal winds averaged over 900 to 700 hPa were filtered with a 10-day Lanczos low-pass filter 

using a 61-day window to remove both the synoptic scale variability and the higher-level 

Subtropical Jet (Woollings et al, 2010). Because the result is consistent across pressure 

levels, jet latitude is considered a robust way of investigating midlatitude circulation variability 

(e.g. Hall et al, 2017; Barnes and Simpson, 2017; Samarasinghe et al, 2018). The polar front 

Figure 4.4 Map of variables used in experiments 1-3 below: 1 North Atlantic 850-hPa temperature, NAt; 2 El-Niño Southern 
Oscillation, ENSO; 3 jet latitude, jet; 4 North Atlantic Oscillation, NAO (dotted green). 
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jet extends throughout the depth of the troposphere, thus sampling at these lower levels avoids 

confusion with the subtropical jet which is more vertically restricted. 

 Two indices known to have an impact on the Northern European climate during the 

winter were included in the networks. The El Niño Southern Oscillation (ENSO) 3.4 index, 

calculated with HadISST1 sea surface temperature data (Rayner et al, 2003), was included to 

represent tropical Pacific variability, retrieved from https://climexp.knmi.nl/. Large-scale 

planetary waves are triggered through intense convection in the tropical Pacific that can 

influence midlatitude circulation; the ENSO signal is indeed used for seasonal prediction of 

Atlantic and European weather when ENSO is active (Trenberth et al, 1999; Scaife et al, 

2017). The North Atlantic Oscillation (NAO), a metric derived from the surface SLP difference 

between the Subtropical High and the Subpolar Low, is the primary determinant of Northern 

European wintertime variability. For the purposes of this analysis, the NAO can be thought of 

as another proxy of midlatitude circulation, given that it delineates the position of the storm 

track and the Polar Jet Stream and describes their variability through phase shifts (Hall et al, 

2015). The principal component (PC)-based NAO index was obtained from 

https://climexp.knmi.nl/. 

Finally, the outgoing longwave radiation (OLR)-based MJO index (OMI) was used as 

a proxy for tropical convection associated with the MJO’s variability, retrieved from 

https://www.esrl.noaa.gov/psd/mjo/mjoindex/. The OMI is created by projecting 20-96 day 

band-pass filtered OLR onto the two leading EOFs of the 30-96 day eastward filtered OLR 

(Kiladis et al, 2014). The MJO signal has been linked to NAO forecasting (Lin and Brunet, 

2011) and variability (Jiang et al, 2017), and was included in the networks to reveal potential 

linkages to North Atlantic atmospheric circulation and to investigate the robustness of learned 

network structures. The OMI is a convection-based index, making it a suitable candidate for 

identifying teleconnections that originate in tropical convective heating associated with MJO 

phases (Kiladis et al, 2014; Tseng et al, 2018). 

The variables were standardised as a final data preparation step, so that each had a 

mean of 0 and standard deviation of 1. This ensures the data has equal means and similar 

ranges for the parameter learning stage of the DBN method, and allows for ease of 

visualisation of the results. 

4.2.1 Data Development 

  The Arctic Oscillation (AO) was found to frequently be a parent node of midlatitude 

metrics in Chapter 3, and static BNs showed that the AO-NAO relationship in particular was 

robust to different structure-learning algorithms and scoring strengths. This is expected, given 

that the two indices essentially describe a north-south orientation in the dipolar structure of 

the North Atlantic pressure field, without the Pacific centre of action in the case of the NAO 

https://climexp.knmi.nl/
https://climexp.knmi.nl/
https://www.esrl.noaa.gov/psd/mjo/mjoindex/
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(Hurrell, 1995; Ambaum et al, 2001). Both were initially included as a proxy definition of North 

Atlantic storm track variability, to capture the phase shifts of the jet which allow cold Arctic air 

to spill out into the midlatitudes. The AO was removed from this analysis for two reasons; 

firstly, the two indices are too similar in the sense that the inclusion of the AO adds nothing of 

value to the network because of the variability encapsulated by the NAO index, and could in 

fact capture less variability due to it having a zonal structure with the symmetric variations of 

an ‘annular mode’ (Thompson and Wallace, 2000). Secondly, the NAO can be ubiquitously 

identified in the patterns of local teleconnection and regional EOF analyses, suggesting that 

the NAO offers a more robust description of Northern Hemisphere variability than the AO 

(Ambaum et al, 2001), particularly for the North Atlantic region of interest in the present study. 

 Two Snow Cover Extent (SCE) datasets used in Chapter 3 were initially included in 

the analysis to investigate the cryospheric influence from land as well as the Arctic Ocean. 

Eurasian SCE (55-150°E, 40-80°N) and North American SCE (130-70°W, 40-70°N) were 

processed in the same way as other spatial data detailed above: the area-weighted average 

of each region was taken; the multi-year mean (1981-2018) was calculated for each timestep 

and subtracted from the matching date of each timeseries value; and the result was detrended. 

This method is regarded as an appropriate way of preparing spatial data for timeseries 

analysis in graphical model studies (e.g. Kretschmer et al, 2016; 2017). Despite this, the 

preparation steps created timeseries values that were almost always the same as the multi-

year mean subtracted from them, meaning that the anomalies were predominantly 0 (or close 

to 0, with variability in the hundredths or thousandths in decimal places: Fig. 4.5). As with the 

850-hPa temperature variable, the data generated was not sensitive to a different ordering of 

the preparation steps (i.e. spatial averaging and anomalising). The problem is therefore likely 

caused by the area used for spatial averaging being too large (see Figs. 3.1 and 3.2) for a 

single SCE value, despite the fact that the same or similar regions were considered 

appropriate in other studies using different time resolutions (Kretschmer et al, 2016; Hall et al, 

2017). 

 DBNs were run with both SCE variables included in them but returned no learned 

connections to any other data (not shown). The lack of SCE links may be due to state-

dependent or longer-duration relationships that are not showing up as a result of the lead 

times discussed in 4.3. A link between snow cover anomalies, particularly in October, and a 

negative AO response in the following winter has been found in observational studies (Takaya 

and Nakamura, 2008; Honda et al., 2009). Positive snow anomalies in October have been 

hypothesised to increase upward planetary wave activity, leading to the disruption of the 

stratospheric polar vortex and a resulting negative AO (NAO) pattern and equatorward shift of 
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the Atlantic jet stream in winter (Hall et al, 2015; Smith et al, 2016).  Furthermore, this link has 

been shown to be non-stationary in a correlation analysis (Peings et al, 2013). Both of these 

factors could have effectively prevented links from being identified in networks; the following 

analyses are run without the SCE variables due to the unsuitability of the prepared SCE data 

and lack of connectivity across models. 

4.3 Methods 

  A series of networks of increasing complexity were constructed, with BN techniques 

such as structure learning and hidden variables added at each stage. The impact of adding 

these approaches to networks is not found to increase the predictive accuracy for models 

using a small dataset of 4 variables; possible reasons for this are discussed below. The impact 

of adding unconnected nodes on network structure and accuracy is also investigated.  All 

models were constructed using the Bayes Net Toolbox (BNT) for MATLAB (Murphy, 2001b), 

with data preparation and plotting carried out in R 

Figure 4.6 Autocorrelation Function (ACF) plots for variables in experiments 1-3, 
detailed below. Timesteps are 5-day averaged data. 
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 As a first step, auto-correlation functions (ACFs) were plotted showing that all variables 

were strongly correlated to values lagged at a single timestep (Fig. 4.6) with 5-day timesteps. 

For this reason, autoregressive links are coded into the ‘inter’ matrix which dictates how the 

nodes are connected between time slices. Cross-correlation functions (CCFs) were plotted for 

each variable against jet latitude (Fig. 4.7) to determine whether lagged correlations existed 

which may result in conditional dependencies across time slices. These were interpreted 

carefully and in combination with previous studies to prevent spurious correlations over 

physically implausible time lags from being used for analysis. In the case of the MJO, which 

demonstrates a sinusoidal correlation signal, this includes a lead time of -59 timesteps or 295 

days. 

The ENSO CCF shows a clear, significant positive correlation which peaks at -31 

timesteps suggesting late June ENSO variability is most strongly linked in the case of early 

December jet latitude variability. This lead time is lengthier than most studies investigating 

ENSO impacts on European weather, where a common lead time is around 2-3 weeks 

(Baldwin and Dunkerton, 2001; Scaife et al, 2017), but has been found by others investigating 

jet latitude specifically (Hall et al, 2019). 3 lead times were initially tried for the MJO variable 

Figure 4.7 Cross-correlation Function (CCF) of all variables plotted against jet latitude. Timesteps 
are 5-day averaged data. 
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(-59, -36 and -1 based on the CCF plot, Fig. 4.7), with none connected to the networks 

returned by the structure-learning stage. The MJO variable was left unlagged to instead 

investigate whether adding unconnected nodes to the network would change the structures 

returned. For a full investigation into different lead times for tropical variables, see section 5.6. 

4.3.1 Experiments 

 After being prepared with the steps listed above, the data was loaded into BNT and 

split 80/20 into ‘train’ and ‘test’ datasets in order to build the DBN code based on the training 

dataset to be tested on the remainder of the data; the reason for the change from a 50/50 split 

in Chapter 3 is discussed in section 4.3.2 below. Four types of networks are constructed: 

1) HMM – a simple 4-variable autoregressive HMM with a single HV linked to all nodes 

and an imposed structure; the HMM was not run through the structure-learning 

stage.  

2) DBN1HV – a 4-variable autoregressive DBN with a single HV liked to all nodes to 

investigate the impact of learning the structure and a HV from the data on predictive 

accuracy. 

3) DBN2HV – a 4-variable autoregressive DBN with two HVs: the 1st linked to the jet, 

NAO and NAt variables, the 2nd linked to all nodes. A second HV is learned from the 

data to explore its impact on accuracy in small networks. 

4) DBNMJO – a 5-variable autoregressive DBN with a single HV linked to all nodes to 

analyse how robust the network structures returned in (2) and (3) are to the addition 

of a second unconnected node (the MJO and ENSO).  

 For experiments 2-4, the first step was to learn the dependency relationships from the 

data using a structure-learning algorithm. In the case of experiment 1, a simple structure was 

coded into the model as ‘control’ run which allowed for comparison between the predictive 

accuracy of BNs with the structure learned from the data (2-4), and those without (1). The 

DBN structures used the PC algorithm (Spirtes and Glymour, 1991) and an alpha value of 

0.01 to ensure that only significant relationships were identified. The structure-learning phase 

was guided with the ‘fisher z’ test for conditional independence. HVs with autoregressive links 

were coded into DBNs to address the hypothesis that model accuracy would improve with 

additional parameters in a simple DBN structure. HVs allow for structures that may be 

significantly more similar to the complex nonlinearities of the climate system that we are trying 
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to model (Tucker and Liu, 2004), as HVs may act to reduce noise in highly variable child nodes 

by ‘explaining away’ extreme outliers that lie well outside the SD of the inferred hidden states. 

 Because DBN structures learned using the PC algorithm return pDAGs, or ‘Partially 

Directed Acyclic Graphs’, bidirectional arcs had to be removed. DBNs required fully directed 

graphs, DAGs, to run. The jet latitude variable was consistently found to be a child node with 

multiple parents, so edges pointing towards it were preferentially retained to preserve the 

‘explain away’ effect and create a usable DAG. DBN code cannot run with undirected arcs as 

DBNs require acyclic graphs (Scutari and Denis, 2015), so the removal of important collider 

node structures would undermine the individual probability distributions that make up a BN. 

 Different HV structures were experimented with for the DBN2HV, some of which did 

not work during the testing phase (not shown), but the learned structure remained unchanged 

regardless of which nodes each HV was connected to. Experiment 3 has 1 HV connected to 

the jet, NAO and NAt nodes and a 2nd connected to all to represent a set of HV states with 

and without the tropical influence (ENSO). A 2nd HV was initially added due to the DBN runs 

having relatively low predictive accuracy, and the results are shown below. Next, the 

parameters and HV states were inferred from the data using the EM algorithm, and the 

resulting DBN was then tested on the data not included in the training stage (the test dataset). 

Model validation was achieved by comparison of predicted values to the observed (test) 

dataset, and by calculating the sum of squared error (SSE) for each variable across 

experiment runs according to: 

𝑆𝑆𝐸 = ∑(predicted − observed)2 

4.3.2 Model Development 

 A number of steps were taken to develop the methodology and improve the practicality 

of the models including the shift from HMMs to DBNs, i.e. from an imposed structure to a 

learned DAG, and the full preparation of data for a more robust set of results. In Chapter 3, 

static BN performance was assessed with a 50/50 split in training and testing datasets, 

whereas a more standard 80/20 split is used to build and check the networks shown here 

(Chen and Pollino, 2012). The motivation for this is simply to reduce overfitting; dividing the 

dataset into two parts prevents the overfitting of the model to the full dataset. Fitting to the 

training dataset and then validating it allows for an unbiased estimate of the generalisation 

error, as the two datasets have as similar distribution as possible and are independent of each 

other (Shalizi, 2013). This is a well-used approach because no external validation set needs 

to be found which is identical to the input dataset, and because it ensures that the test data 

are not part of the network construction. 

 To have non-autoregressive models, the ‘inter’ relationships between nodes at 

different timesteps would have to be learned from the data as with the ‘intra’ ones learned 
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using the PC and HC algorithms. All HMMs and DBNs presented in Chapters 4 and 5 are 

autoregressive firstly because the ACFs justify this choice of structure for all variables (Fig. 

4.6), and secondly due to method limitations. Only one structure-learning algorithm exists for 

DBNs in BN toolbox for MATLAB (Murphy, 2001b): the REVEAL algorithm developed by Liang 

et al (1998). REVEAL requires all nodes to be discrete and observed, meaning that all input 

data would have to be discretised into bins. Discretisation is not a practice applied to observed 

climate data; discretisation of continuous data can add imprecision to a model by removing 

variability within an interval for example, and the interval choice itself requires subjective 

supervision to ensure the bins fit the objectives of the experiment (Chen and Pollino, 2012). 

Because of these drawbacks, full structure learning in a DBN including the inter-slice 

connections was considered unsuitable for application to climate data, and autoregressive 

models with learned intra structures and fixed inter connections were used instead. 

4.4 Results 

The DAG structure results show either the hard-coded architecture in the case of the 

HMM, or the graph returned by the PC algorithm for the DBNs. In these plots, grey nodes 

denote hidden variables and blue the observed variables. In the DBNs, dotted lines represent 

hard-coded edges (HV links) and solid ones show those returned by the structure-learning 

stage (non-HV links). Edges represent conditionally dependent relationships between 

variables rather than explicitly showing causal drivers (Scutari and Denis, 2015). The DBN 

DAGs show only the intra-slice structure rather than a 2 time-slice DBN because they are 

autoregressive models with user-defined inter-slice connections where only the intra topology 

was learned. 

 The structure-learning phase initially returned a pDAG due to the use of the PC 

algorithm, with undirected edges between the NAt and jet nodes and between the jet and 

NAO. As DBNs require fully directed edges however, detailed above, cyclical links were 

removed in the direction of jet-NAt and jet-NAO to preserve the collider structures that make 

the jet node central to the network’s probability distributions. The undirected edges returned 

by the PC algorithm may be capturing a positive feedback between the Arctic and midlatitudes, 

reflected in other machine learning approaches for Eurasian (Kretschmer et al, 2016) and 

North Pacific (Samarasinghe et al, 2019) circulation anomalies. In a study which used an 

approach similar to that employed in this chapter, Samarasinghe et al (2019) find a positive 

feedback loop between 850-hPa temperature averaged over the entire Arctic region and jet 

speed and latitude over the North Pacific basin using the PC algorithm. They suggest that a 

southward shift of the jet in response to Arctic warming is responsible for this relationship, as 

jet displacement results in meridional atmospheric circulation which can in turn warm the 

Arctic. Recent studies have emphasised the midlatitude-Arctic link as an important driver of 
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AA processes; advection of warm air and moisture from the midlatitudes significantly 

contributes to AA and seems to be especially pronounced through the North Atlantic pathway 

(Kim et al, 2017; Yang and Magnusdottir, 2017). Atmosphere-only models also point to 

midlatitude circulation trends as a strong influencer of Arctic warming during winter, 

particularly at non-surface (low-middle) layers of the atmosphere, using relaxation 

experiments (Ye and Jung, 2019). 

 No link between either of the tropical variables and NAt, the jet and NAO were found 

in the networks using the structure-learning process. Despite this, the results of the DBNMJO 

a) b) 

c) d) 

Figure 4.8 The DAG structures for all model types: a) a hidden Markov model (HMM); b) Dynamic Bayesian Network 
with one HV (DBN1HV); c) DBN with two HVs (DBN2HV); d) Dynamic Bayesian Network with one HV with the addition 

of the MJO node (DBNMJO). 
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experiment are included (Fig. 4.8d) to demonstrate how robust the PC algorithm is to the 

inclusion of unconnected data. Other graphical model approaches like Causal Effect Networks 

(CENs) can return different graphs based on the choice of settings during network construction 

(Kretschmer et al, 2016) or on the inclusion of new variables. In contrast, the DBNs produced 

DAGs that were consistent despite the introduction of the MJO; the graph effectively had two 

‘unrelated’ variables, and yet the dependency relationships between the NAt, jet and NAO 

nodes were identical despite the addition of HVs and variables. Fig. 4.8 clearly recommends 

DBNs as a robust tool to learn relationships from data for climate science applications that are 

consistent regardless of the number of unconnected nodes. Chapter 5’s results suggest that 

the main difference between the small 4-variable DBNs shown here and those using larger 

datasets of 5 or more variables is the predictive accuracy of the DBN itself rather than the 

structure returned by the PC algorithm. 

4.4.1 Model Comparison 

 The HMM seems to predict all variables with the most accuracy and SSE generally 

increases for variables with model complexity (Table 4.1). The DBN1HV offers similar 

predictive accuracy and even outperforms the HMM in the case of the NAt and NAO nodes, 

but is significantly less accurate at predicting the variability of the jet which is central to the 

analysis. This means that the addition of structure and hidden variables actually decreased 

the predictive capability of the models, seen most obviously for the jet variable. There are two 

possible explanations for this. The structure learning process may have returned a graph 

structure that decreased the accuracy of the model because the dependency relationships 

contained within it did not recreate those seen in the climate system. The jet variable, for 

example, loses accuracy when connected to the NAt node in the DBNs shown here, the 

opposite of what one would expect if jet variability was dependent on AA processes occurring 

in the North Atlantic region. The Jet and NAt are indeed the worse predicted variables in all 3 

DBNs.  

 The SSE results suggest that the predictive accuracy of the DBNs may have been 

influenced by overfitting (Table 4.1; also see appendix Table A4.1 for a comparison of train 

and test dataset SSE). In this case, pursuing a more complex model has resulted in a loss of 

accuracy when a simpler model (the HMM) better predicted a new sample (the test dataset). 

Rather than an error in the structure used to estimate the conditional probabilities and 

parameterise the model, which would have more of an impact with BNs with a greater number 

of variables, the problem may rest with the high number of edges relative to the small number 

of variables included. Apart from the DBNMJO, all models have 4 input variables and the 

number of edges increases significantly with model complexity: 4 for the HMM, 7 for the 

DBN1HV and 10 for the DBN2HV. 10 edges may simply be too many in a DBN with only 4 
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observed variables; the ENSO variable is significantly better predicted than the rest of 

DBN2HV possibly as it has fewer parents. 

Chen and Pollino (2012) point out that ‘cases’, or events in which nodes change 

according to the variability of the parent node, vary in observed datasets even when the same 

combination of parent states occur multiple times. This is because the climate system is the 

result of complex, nonlinear processes governed by stochastic forcing (Franzke and O’Kane, 

2017), making any meaningful relationships hard to capture when using long timeseries. 

Accordingly, the accuracy of the BN’s conditional probabilities can increase as a result of a 

larger number of cases (Chen and Pollino, 2012); Cain (2001) recommends a minimum of 20 

cases for each combination of parent node states to prevent overfitting. 

The DBN analysis in Chapter 5, conducted on a 7-variable dataset, suggests that the 

dependency relationships are not the reason for the drop in predictive accuracy shown in 

Table 4.1 because an almost identical pDAG structure is returned between the NAt, jet and 

NAO nodes (see Fig. 5.3). As the only difference between the pDAGs of Fig. 4.8b and Chapter 

5’s 5-day jet DBN is the NAO-jet edge seen in Fig. 4.8b, the overfitting of edges seems like 

the only logical explanation for the under-performance of the DBNs shown here. Overfitting 

was indeed a problem for the DBNs run with 2 HVs which are detailed briefly in Chapter 5, 

whereby the test code would not even function to allow for model assessment. No loss of 

predictive accuracy occurs among the equivalent DBNs of chapter 5 with a single HV. 

Table 4.1 Sum of squared error (SSE) of all climate variable predictions 
generated by the HMM, DBN1HV, DBN2HV and DBNMJO.  

 
HMM DBN 1HV DBN 2HV DBN 1HV MJO 

850 NAtlantic 1708.86 1474.08 1019.55 1487.97 

ENSO 26.77 27.41 0.58 27.57 

Jetlat 59.8 185.87 391.29 236.96 

NAO 60.94 55.1 32.35 56.27 

MJO NA NA NA 104.48 
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 Clearly, the relatively small number of nodes included in this analysis prevents 

networks of increasing complexity from improving their accuracy; in other words, there were 

too few nodes for the number of edges found in the structure-learning stage and overfitting 

occurred. In another study with a similar methodological approach, Trifonova et al (2019) 

found that model performance scaled with network complexity. In Trifonova’s study, a DBN 

with 2 HVs outperformed all other network architectures; the application of DBNs to the field 

of ecosystem modelling however meant that 28 observed variables were required for the 

analysis. 

4.5 Discussion and Conclusion 

 In this chapter, networks were extended to DBNs to investigate the use of time series 

BN analysis, structure-learning and hidden variable models on climate data. A simple 4-

variable network was used to demonstrate a positive feedback mechanism between Arctic 

warming and North Atlantic jet stream variability. Undirected edges from both the jet and NAO 

nodes to the NAt may be indicative of a positive feedback relationship which points to the 

midlatitude-Arctic pathway as being of importance. Currently, the transport of heat and 

moisture into the Arctic from midlatitude and even tropical sources is understated in the body 

of research on Arctic-midlatitude weather linkages (Cohen et al, 2018a). This may be because 

traditional methods used to research it, such as correlation and trend analyses (e.g. Francis 

and Vavrus, 2012; Tang et al, 2013) and model studies studying midlatitude responses to sea 

ice forcing (e.g. Mori et al, 2014), are unable to capture feedback mechanisms. The 

importance of remote heat transport into the Arctic relative to other factors like local heat fluxes 

and evaporation has not been definitively quantified but is understood to be a significant 

contributor to AA (Cohen et al, 2018a). Graphical model techniques seem to identify this 

feedback process at three major longitudinal regions of interest; the North Atlantic sector of 

the Arctic, as shown here, the North Pacific (Samarasinghe et al, 2019) and Eurasia 

(Kretschmer et al, 2016). 

 Secondly, data preparation steps were improved significantly from Chapter 3, as lead 

times were investigated with CCFs and added for ENSO, with appropriate steps taken to 

prepare spatial data for analysis with graphical models. Calculating anomalies to extract the 

seasonal cycle and isolate the signal rendered the SCE data unusable at a daily resolution for 

both the North American and Eurasian datasets. The spatial extent of the areas used to 

average both SCE datasets over is very likely to be the cause of this; a large amount of the 

spatial variability of snow cover is lost when averaged over such regions, particularly obvious 

for the larger Eurasian SCE region (Fig. 3.1). Feature selection algorithms may prove to be a 

useful tool to select regions of SCE which have an impact on the response variable, in this 

case the jet, without biases. The Response-Guided Causal Precursor Detection (RGCPD) 
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scheme, which identifies regions of spatial data that precede changes in the response 

variable, has been used to identify predictors of the stratospheric polar vortex at sub-seasonal 

lead times (Kretschmer et al, 2017), and features that provide predictability of Indian summer 

monsoon rainfall (Di Capua et al, 2019). Smaller sub-regions of SCE variability might be 

detected as drivers using a causal precursor detection algorithm, which would allow for 

meaningful anomalies to be calculated and the impact of SCE on midlatitude variability to be 

investigated in DBN or CEN models. 

 Contrary to expectation, an increase in model complexity resulted in a decrease in 

accuracy as the HMM outperformed all subsequent DBNs. The overfitting of parameters in 

DBNs with only 4 variables led to a loss of predictive accuracy, despite the addition of 

structure-learning and HVs intended to improve it. The dependency relationships shown in 

Fig. 4.8 are likely to be valid, as Chapter 5 suggests, so an increase in SSE with model 

development points to over-parameterised models as the cause, most obvious in the results 

of the DBN2HV. The dependency relationships returned by the PC algorithm were found to 

be robust across all DBN architectures and did not change when 2 unconnected nodes were 

included in the network (i.e. the DBNMJO). 

 Robust results in terms of structure for Arctic and midlatitude variables and an obvious 

bias in overfitting suggests that the application of DBNs to climate teleconnection analyses is 

worth further investigation. Chapter 5 expands on this analysis by adding a number of 

variables thought to have an impact on winter midlatitude circulation, by averaging the data 

over a number of time resolutions to analyse submonthly drivers, and through the addition of 

an extensive assessment of DBN robustness, HVs and data selection. In doing so, Chapter 5 

also details a vast improvement in model performance when compared to the results of the 

simple 4-variable DBNs presented here. 
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Chapter 5: Using Dynamic Bayesian Networks 

to Investigate the Relative Impact of Arctic 

Amplification on Midlatitude Circulation in the 

Euro-Atlantic Basin 

5.1 Introduction 

 The Arctic has warmed at more than twice the speed of the global average since the 

mid-20th century, and at more than six times the average between 1998 and 2012 (Huang et 

al, 2017). This process, known as ‘Arctic Amplification’ (AA), is particularly strong in boreal 

winter. Concurrently, the heavily populated regions of western Europe and the eastern coast 

of the US have experienced several cold outbreaks during the winters of recent years. A 

multitude of studies are supportive of a link between AA and midlatitude circulation (e.g. 

Samarasinghe et al, 2019; Blackport and Screen, 2019), cold air outbreaks (e.g. Kim et al, 

2014; Chen and Luo, 2017) and the North Atlantic Oscillation (NAO) (e.g. Pedersen et al, 

2016). The strength of the connection between AA and midlatitude circulation remains 

uncertain; the importance of the linkage relative to other factors such as internal midlatitude 

variability, tropical forcing and the stratospheric polar vortex (Messori et al, 2018) currently 

represents a striking gap in our knowledge. In addition, the regional and intermittent nature of 

linkages means that direct effect attribution studies using Arctic processes like sea ice loss 

will not provide a way forward for the research area (Overland et al, 2016). Establishing the 

Arctic’s impact on jet stream variability, relative to these factors, is a complex but essential 

research endeavour as observational analyses often consider these factors in isolation. 

Warming of tropical oceans, in particular above-average sea surface temperatures 

(SSTs) in the Pacific, are known to impact midlatitude flow through intense convection and 

latent heat release which generates planetary-scale Rossby waves (Trenberth et al, 1998). 

The El Niño-Southern Oscillation (ENSO) (Scaife et al, 2017a) and other tropical Rossby wave 

source regions (Scaife et al, 2017b) provide predictive skill in seasonal midlatitude circulation 

forecasting, and ENSO has a stronger role in winter. Arctic sea ice concentration has also 

been put forward as an important driver of meridional jet stream configurations (Francis and 
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Vavrus, 2015). Low sea ice concentrations expose more open water which absorbs additional 

heat, leading to a greater exchange of heat and moisture between the ocean and atmosphere 

in autumn and thus an anomalously warm Arctic. More recently, studies have emphasised the 

importance of considering warming over the Arctic as opposed to sea ice trends (Barnes and 

Simpson, 2017; Cohen et al, 2018a), chiefly because AA is the result of a complex 

combination of local sensible heat fluxes, evaporation and the remote transport of heat and 

moisture from lower latitudes (Cohen et al, 2018a). Anomalous midlatitude circulation drives 

intrusions of warm, moist air into the Arctic which play an important role in the feedback 

between Arctic warming and sea ice retreat (Rigor et al, 2002; Zhang et al, 2008), with 

transport thought to be particularly pronounced along the North Atlantic pathway due to 

Atlantic blocking deflecting midlatitude cyclones polewards (Kim et al, 2017; Yang and 

Magnusdottir, 2017). Intrusion events have measurable impacts on sea ice within several days 

of an event (Kapsch et al, 2016), in turn strengthening AA and any potential midlatitude 

feedback. 

Sea ice loss in the Barents-Kara Seas, a region of pronounced variability, can expand 

and intensify the Siberian High through the initiation of vertically propagating Rossby waves 

and the disruption of the stratospheric polar vortex (Kim et al, 2014; Kretschmer et al, 2016). 

The southward flow of Arctic air that results from this has been associated with intensified cold 

events over East Asia (Overland et al, 2015). Over North America meanwhile, AA processes 

increase the likelihood of Alaskan and Greenland blocking events which can reinforce and 

prolong cold events (Chen and Luo, 2017; Overland and Wang, 2018). It is becoming 

increasingly clear that AA has an impact on the strength and position of the North Atlantic 

eddy-driven jet in winter (Barnes and Simpson, 2017; Blackport and Screen, 2019), although 

the existence of numerous potential drivers of the jet itself (Hall et al, 2015; Smith et al, 2016) 

means that the importance of the AA contribution remains unresolved. 

 As robust linkages are difficult to detect, novel statistical analysis of the observational 

climate record has been put forward as a potential way to move the Arctic-midlatitude field 

forwards (Overland et al, 2016; Kretschmer et al, 2016; Cohen et al, 2018a), acting as a 

supportive tool for large coordinated modelling projects. Studies which rely on correlation 

analysis are subject to autocorrelation bias, as well as misleading results due to indirect links 

or common drivers of correlated variables which were unaccounted for in the analysis (Runge 

et al, 2014). Such linear relationships are also directionless, so offer less information than 

graphical models. Atmospheric model studies, whilst well regarded as tools for identifying 

causal linkages, are not immune from potential shortcomings: they may not accurately 

represent ocean-atmosphere coupling in the Arctic (Cohen et al, 2018a), may respond too 

weakly to sea ice forcing (Screen et al, 2018; Mori et al, 2019), may underperform in terms of 

stratosphere-troposphere coupling (Zhang et al, 2018), and focus on the impact of sea ice 
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removal which may not capture the complex intermittencies thought to define Arctic-

midlatitude linkages (Overland and Wang, 2018). 

This chapter applies Dynamic Bayesian Networks (DBNs) with hidden variables (HVs) 

to the North Atlantic and European midlatitude circulation research area. Structure-learning 

algorithms are employed to identify regions of AA that might influence winter jet stream 

variability. A number of Arctic, midlatitude and tropical variables are included to investigate 

the relative role of AA as a driver compared to internal atmospheric variability and other remote 

forcings. Other graphical model approaches focus either entirely on potential Arctic drivers of 

midlatitude circulation responses (Kretschmer et al, 2016; Barnes and Simpson, 2017; 

Samarasinghe et al, 2019) or on tropical teleconnections like the MJO-NAO link (Barnes et al, 

2019). The aim of this study is to establish how effective DBNs with structure learning 

algorithms are for investigating this research area, and to measure the impact of hidden 

variables on model accuracy which is a priority due to the low signal-to-noise ratio of AA 

linkages and their intermittent nature (Overland et al, 2016). We demonstrate a feedback 

relationship between North Atlantic midlatitude circulation and two important regions of Arctic 

warming occurring in winter at submonthly timescales. Finally, the implications for further 

study are discussed. 

5.2 Data 

A number of climatological variables which are understood to have an influence on 

European midlatitude weather during the winter months are included in this analysis. Four 

nonoverlapping time average resolutions consisting of 5-day, 10-day, 15-day and monthly 

averages were used to ensure a robust set of conclusions that include variables that may act 

at a range of timescales. The 29th February was removed from each leap year, allowing for a 

total of 90 days in each year using only the winter months (December to February, DJF) from 

the years 1981-2018. 

To investigate the relative impact of the Arctic on midlatitudes, tropical indices formed 

part of a network of non-local drivers (Fig. 5.1). Both ENSO (Brönnimann, 2007) and the 

Madden-Julian Oscillation (MJO) (Lin et al, 2015) have been found to explain significant 

amounts of North Atlantic Oscillation (NAO) variability during wintertime through Rossby wave 

excitement (Trenberth et al, 1998). A standardised Niño 3.4 Index is included, calculated using 

data from HadISST1 (Rayner et al, 2003), retrieved from the KNMI climate explorer 

(https://climexp.knmi.nl/). The Real-Time Multivariate Madden-Julian Oscillation (MJO) index 

devised by Wheeler and Hendon (2004, available at http://www.bom.gov.au/climate/mjo/) is 

generated by identifying the PCs of two combined empirical orthogonal functions (EOFs) of 

equatorially-averaged 850-hPa zonal wind, 200-hPa zonal wind and outgoing longwave 

radiation (OLR) anomalies. The two PC time series (RMM1 and RMM2) are used to define the 
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MJO amplitude, equal to √(𝑅𝑀𝑀12 + 𝑅𝑀𝑀22). The principal-component (PC)-based NAO 

Index (Hurrell, 1995), based on the difference in surface sea-level pressure (SLP) between 

the Subtropical High and the Subpolar Low, provides a secondary indicator of North Atlantic 

atmospheric variability and was also obtained from KNMI’s climate explorer. 

To measure the impact of Arctic variability, near-surface 850-hPa temperature from 

ECMWF’s ERA-Interim global atmospheric reanalysis (Dee et al, 2011) was included in the 

networks, available at https://apps.ecmwf.int/datasets/data/interim-full-daily/. 850-hPa 

temperature is used in place of sea ice concentration to capture the full effect of AA. Arctic 

near-surface warming is thought to be a better indicator of AA than sea ice variability because 

the AA signal is made up of a number of factors which include sea ice retreat, and the impact 

of heat and moisture transport from lower latitudes is fully accounted for (Cohen et al, 2018a). 

All data were compiled as 1° x 1° gridded spatio-temporal data and then processed. The entire 

Arctic region was prepared alongside important subsections as regional sea ice loss is known 

to be an important factor in midlatitude circulation responses (Pedersen et al, 2016; Screen, 

2017). Three regions of Arctic 850-hPa temperature were therefore used: the Arctic (180°W-

180°E, 70-90°N), the North Atlantic sector (280-350°E, 70-90°N) and the Barents-Kara Seas 

region (30-90°E, 70-85°N). These capture three key areas of sea ice concentration loss: Baffin 

Bay; the east coast of Greenland; and the Barents-Kara Seas (see Fig. 2 in Overland and 

Wang 2018). An area-weighted spatial average was taken over these regions, and anomalies  

Figure 5.1 Map of all variables used in DBN experiments: 1 Arctic (dark blue); 2 Barents-Kara Seas, BK; 3 North 
Atlantic, NAt; 4 stratospheric polar vortex, POV (brown); 5 jet latitude, Jet; 6 Meandering Index, MI (dotted blue); 7 

North Atlantic Oscillation, NAO (dashed green boxes); 8 Madden Julian Oscillation, MJO; 9 El-Niño Southern 
Oscillation, ENSO. 

https://apps.ecmwf.int/datasets/data/interim-full-daily/
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were calculated from the resulting univariate time series by subtracting each timestep 

of the multi-year mean (1981-2018) from the value of the matching timestep. This was done 

for each time resolution, with each then detrended to create a time series for the variable. 

 As a proxy for stratospheric variability, the polar vortex (PoV) was included to examine 

the impact that stratospheric circulation might have on tropospheric midlatitude circulation. 

The PoV index uses ERA-Interim geopotential height anomalies from the Arctic region 

(180°W-180°E, 65-90°N) averaged over 6 pressure levels from 10 to 100 hPa, with the 

resulting time series used to create anomalies at each time average and detrended. As such, 

the PoV opens up the potential for linkages through tropospheric and stratospheric pathways, 

and allows for comparison with previous studies that identify a link between the PoV and 

midlatitude circulation (Kim et al, 2014; Kretschmer et al, 2016). 

Variable Abbreviation Source Unit 

Arctic 850hPa temperature Arctic ECMWF ERA-

Interim 

Temperature (°C) 

Barents-Kara Seas 850hPa temperature BK ECMWF ERA-

Interim 

Temperature (°C) 

North Atlantic 850 hPa temperature NAt ECMWF ERA-

Interim 

Temperature (°C) 

Stratospheric polar vortex PoV ECMWF ERA-

Interim 

Geopotential height (m) 

Jet latitude Jet ECMWF ERA-

Interim 

Degrees (°) 

Meandering Index MI ECMWF ERA-

Interim 

-  

North Atlantic Oscillation NAO NOAA Sea level pressure 

Madden-Julian Oscillation MJO NOAA MJO amplitude 

El Niño Southern Oscillation ENSO NOAA Sea surface temperature 

Table 5.1 Variables used, their abbreviations, source and unit of measurement. 
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Two metrics were used to represent North Atlantic midlatitude circulation in the 

networks. The first, jet latitude, was calculated from ERA-Interim data and defined over the 

region 16°–76°N, 0°–60°W. Jet latitude was determined using the approach taken by 

Woollings et al (2010): zonal winds were height-averaged over 900 to 700 hPa and filtered 

with a 10-day Lanczos low-pass filter using a 61-day window to ensure that synoptic scale 

variability is excluded. The use of lower level winds isolates the eddy-driven jet as the data is 

not contaminated with the signal of the subtropical jet. Jet latitude output is consistent across 

pressure levels, and many jet-focused studies have made use of this metric (Hall et al, 2017; 

Barnes and Simpson, 2017; Samarasinghe et al, 2019). 

 The second metric of jet variability is the Meandering Index (MI), a measure of 

tropospheric circulation variability that uses geopotential height contours to capture the 

maximum waviness at each timestep, taking into account the full spatial position of each 

contour (Di Capua and Coumou, 2016). The input data used was ERA-Interim 500-hPa 

geopotential height (gph) for the region 16°–76°N, 10°E–70°W. The MI calculates the length 

of each isohypse (gph contour) on a 2-D grid, which is then normalised to the Earth’s 

circumference at 60°N. The maximum value of this calculation on the vertical profile (e.g. from 

4800m to 5600m) is then taken as the MI, allowing for accurate differentiation between 

strongly meridional (north-south) deviations and consistently zonal configurations. A full 

description of the MI can be found in Di Capua and Coumou (2016). The following analysis 

included both the jet latitude and MI to ensure linkages revealed by the DBN technique were 

robust to the use of different metrics. The two metrics also describe different aspects of 

midlatitude circulation; the jet latitude by definition describes the latitudinal position of the jet 

on a given day, whilst the MI focuses on waviness of the middle troposphere, and thus may 

reveal the waviness of the jet but cannot be used as an indicator of the jet core location. 

 All data were standardised as a final stage of data preparation, so that each variable 

had a mean of 0 and a standard deviation of 1. This was done to maximise model accuracy in 

the parameter learning stage by giving all variables equal means and similar ranges. 

5.3 Methods 

To test the hypothesis that a number of important climatological relationships exist 

between North Atlantic atmospheric variability and remote Arctic and tropical drivers, we built 

a series of networks of increasing complexity. This ensured that any relationships captured by 

the structure-learning algorithm were consistent across models, and robust in terms of their 

predictive accuracy. All networks were constructed using the Bayes Net Toolbox (BNT) for 

MATLAB (Murphy, 2001b), with all data preparation and plotting carried out in R. 

Auto-correlation Functions (ACFs) were used to determine that all variables depended 

linearly on their values from the previous timestep (not shown). Thus, autoregressive links 
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were coded into the models for all variables. Cross-correlation Functions (CCFs) were then 

plotted for each variable against jet latitude to determine the number of timesteps (if any) at 

which each variable should be lagged (Fig. 5.2). The appropriate lead time for each variable 

Figure 5.2 Cross-correlation functions (CCFs) between all variables and jet latitude, used to determine the lead 
time, if any, for each dataset. Blue dotted line denotes significance at the 0.05 level. 
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was then used to build the datasets used for all analyses; where no clear maximum lag value 

was returned in the CCFs, the nearest significant lag was selected for the dataset. For the 

MJO, with a sinusoidal pattern of correlations, a lead time of 45 days was chosen. This lead 

is slightly longer than links between the MJO signal to NAO forecasting (Yu and Lin, 2016) 

and variability (Jiang et al, 2017). Section 5.6 below is dedicated to investigating different lead 

times for the MJO and ENSO using expert-guided lags taken from previous literature. Further 

5-day networks were thus run with a range of lead times to ensure tropical influences were 

not missed simply as a result of CCF lead selection. 

5.3.1 Experiments 

After being prepared with the steps listed above, the data was loaded into BNT and 

split into training and testing datasets (80/20) to allow for an unbiased estimate of the 

generalisation error and prevent overfitting (Shalizi, 2013). All DBNs were run first with jet 

latitude, then with the MI swapped in its place. Four main sets of networks are constructed 

which broadly follow the experimental design of Chapter 4, but are aimed at investigating the 

impact of networks with or without a learned structure, with or without a hidden variable and 

Arctic variables averaged over the entire Arctic or smaller subregions: 

 

1) Hidden Markov Model – a HMM with autoregressive links and a fixed structure 

imposed on the network. 

2) A ‘control’ run – a DBN with autoregressive links and no HV to act as a control run 

and examine the impact of adding a HV on predictive accuracy. 

3) The entire Arctic – a DBN with autoregressive links and one HV linked to all variables 

with the full Arctic area (70-90°N) included and Arctic subregions removed (Barents-

Kara Seas and North Atlantic), to examine differences in structure and model 

accuracy. 

4) Arctic regions – A DBN using Arctic subregions (full Arctic removed) with 

autoregressive links and one HV linked to all variables by default, to identify state 

shifts in Arctic-Midlatitude linkages and model the learned structure as accurately as 

possible using the full suite of tools that graphical model approaches provide. 

 

As a first step for the DBNs, the structure was learned using the PC algorithm, using 

the ‘fisher z’ test for conditional independence and an alpha value of 0.01. Results were robust 

to the choice of alpha between 0.01 and 0.05. In the case of (3) and (4), a HV with links to all 

variables and to itself in each time slice is coded into the structure, as in Uusitalo et al (2018). 

Next, any bidirectional (cyclical) links are removed from the learned structure by necessity as 

DBNs require acyclical graphs. DAGs by definition cannot include loops and have bipartite 



 
76 

structures (Scutari and Denis, 2015). Bidirectional arcs occurred for the jet latitude variable 

and were removed such that only those arcs pointing towards the jet were preserved. The 

structure revealed the jet node to be a multiple collider node, and as such the links into it 

needed to be kept to preserve the ‘explain away’ effect for the parent nodes. Doing otherwise 

would have significantly reduced the accuracy of the DAG structure; removing arcs from 

collider nodes with multiple inbound conditionally dependent relationships undermines the 

individual probability distributions that make up a BN. 

The parameters are then learned with the EM algorithm and the model is tested on the 

remainder of the data (the test dataset). BNs perform prediction using inference (Friedman et 

al, 2000); predicted values are used for model validation by plotting predictions against the 

(observed) test dataset. Model fit is shown in the predictive accuracy scatter plots below, and 

assessed using sum of squared error (SSE) calculated for each variable at each time 

resolution for all network types using the following: 

 

𝑆𝑆𝐸 = ∑(predicted − observed)2 

 

It is worth noting that different HV setups were investigated, and a DBN with two HVs 

and multiple HV structures was initially incorporated into the analysis (not shown). This 

resulted in the model being overly parameterised, with not enough data to fit the model, as is 

the case with Chapter 4’s ‘DBN2HV’ results. Clearly for the data and resulting graph structures 

presented here, a single HV is the limit. 

As a final step, an analysis of variance (ANOVA) was conducted on all networks of 

experiment (4) to estimate the relative importance of each relationship found. Linear 

regressions, using all parent nodes as independent variables to predict dependent variable 

(child node) values, were calculated for all edges in networks across all time resolutions. An 

incremental sum of squares table was produced using ANOVA for each regression model, 

and the proportion of variance worked out by dividing the sum of squares for each independent 

variable by the total sum of squares scaled by 1 (Montgomery, 2012). Strength estimates are 

limited by the fact that independent variables were determined using the directions set at the 

DAG stage of network construction, and that ANOVA examines only linear relationships. Here, 

they are used to assign edge weights (arrow widths) to the DAG plots below. 

5.4 Results 

Graphical models provide an easily interpretable interface, allowing for visualisation of 

climate teleconnections as DAG structures. Nodes representing the variables are coloured to 

indicate their relative geographical position for ease of interpretation. Faint edges represent 

relationships hard-coded into the model, i.e. the HV connections, and solid edges show those 
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learned by the structure-learning algorithm in the case of all non-HV links. Two nodes 

connected by the latter can be said to be conditionally dependent on each other, but BN arcs 

do not show cause-and-effect relationships (Scutari and Denis, 2015). Two stages of the 

network are shown: the partially directed graph (pDAG) returned at the structure-learning 

stage which includes the HV and tropical nodes (MJO and ENSO; Fig. 5.3), and DAGs 

showing learned relationships used to run the DBNs in the second stage (no HV or tropical 

variables; Figs. 5.4 and 5.5). 

5.4.1 Network Structures: the DAG Results 

The control run (no HV) DBNs generated the same learned structures as seen in Fig. 

5.3; model accuracy changes with the addition of HVs is discussed below. Arctic-midlatitude 

linkages were only captured by the DBNs when regions of AA were used (BK and Nat in Fig. 

Figure 5.3 pDAG returned by the PC algorithm for the 5-day Jet HV DBN. Faint lines indicate edges coded into 
the model (i.e. HV edges), solid represent learned edges. Nodes are coloured by their relative geographical 

location: the tropics (yellow), midlatitudes (green) and the Arctic (blue). Only the jet DBN is shown here; the MI 
DAG plot is identical at this stage. 
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5.1). For experiment 3, DBNs using the entire Arctic revealed no links between the Arctic and 

the jet or MI, showing only an Arctic-NAO linkage over 5-day averages (not shown). 

Midlatitude circulation responses to AA are known to be sensitive to the regions selected 

(Pedersen et al, 2016; Screen, 2017). The results for the entire Arctic therefore suggest that 

Arctic-midlatitude linkages are sensitive to the location of sea ice loss and amplified warming. 

In the full networks of experiment 4 (Fig. 5.3), both the jet and MI DBNs capture a 

relationship between BK, NAt and jet latitude for 5-day averages, pointing to a covariability 

between important regions of AA and the jet stream’s latitudinal position. Prior to the removal 

of cyclical links, the stage of network construction which allows DBNs to function as detailed 

above, these links were undirected which may indicate that simplistic cause-and-effect 

relationships do not explain interactions between AA regions and jet variability (Overland and 

Wang, 2018). This is not the case for the MI DBNs; the meridional component of the jet stream 

is conditionally dependent on NAt, a region of rapid warming and sea ice loss which includes 

Baffin Bay, and seems to impact temperature over the Barents-Kara Seas at 5-day resolutions 

(Fig. 5.5a). BK is identified as a potential driver of the MI at 10- and 15-day averages, when 

the direct link between NAt and the MI is lost. 

Figure 5.4 DAGs for the Jet HV DBN at a) 5-day, b) 10-day, c) 15-day and d) monthly time averages, with the HV and 
unconnected tropical variables removed for visualisation purposes. Arc direction is indicated by arrows, and inset tables 

show relative strength in terms of proportion of variance used to define arrow width. 
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 Evidence of tropospheric-stratospheric coupling with short lead time of 5-10 days is 

also found across all DAGs excluding the 15-day MI DBN (Fig. 5.5c). Indirect links via a 

stratospheric pathway are missing however as no links pass through the PoV, which is either 

a parent or child node depending on the time resolution (Figs. 5.4 and 5.5). The PoV becomes 

the strongest link as a driver of jet variability at monthly intervals, but the vast increase in PoV 

SSE at 10- and 15-day intervals (Table 5.2a) suggests the direction of the jet-PoV arc is 

incorrect, as in monthly MI SSE (Table 5.2c). The DAG structures between Arctic (BK, NAt), 

midlatitude (jet, MI and NAO) and stratospheric (PoV) variables (Fig. 5.3) were found to be 

robust to the addition of extraneous variables with no learned links; i.e. they did not change 

when unconnected variables were deliberately added. Whilst these structures were found 

across networks, there is a noticeable difference between submonthly timescales where AA 

variables seem to have a stronger link to midlatitude circulation, and monthly DAGs which 

suggest that the PoV connection is strongest (see proportion of variance tables inset in Figs. 

5.4 and 5.5). 

 Neither of the tropical variables are found to be conditionally dependent on any other 

variable for both the jet and MI DBNs over all time averages. This result was also robust to 

the choice of alpha value between 0.01 and 0.05, choice of score or constraint-based 

algorithms (only results for PC are presented here), and particular MJO index used (the RMM 

Figure 5.5 As with Fig 5.4, but for MI HV DBNs at a) 5-day, b) 10-day, c) 15-day and d) monthly time averages. 
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index is shown here). Figs. 5.4 and 5.5 thus remove the HV and tropical links for ease of 

visualisation. This finding is consistent across model runs and is discussed in detail below. 

5.4.2 Network Performance: Predictive Accuracy 

Comparison of predictive accuracy at different time averages shows a notable 

decrease in accuracy towards lower time resolutions. Figs. A5.1-A5.8 (see Appendix) show 

the predicted values plotted against the observed values for each variable from the test 

dataset to assess model fit, as the structure learning and model parameterisation used only 

the training dataset. It is obvious from Figs. A5.1-A5.4 that the 5-day DBN performed the most 

accurately, with both the jet and PoV variables losing accuracy in Figs. A5.2 and A5.3 and the 

slope of the BK, NAt and NAO variables showing an increasingly worse fit. A similar decrease 

is obvious for the MI DBNs (Figs. A5.5-A5.8). This decrease in accuracy suggests that the 

structure of the 5-day DBNs most accurately describes the underlying conditional 

dependencies of the data, as the BK, NAt and PoV variables seem to optimise model 

performance as parent nodes (Fig. 5.4a). Given that the main difference in the 10- and 15-day 

DAGs was the loss of the BK (10-day) and BK and NAt (15-day) nodes as parents of the jet 

variable, alongside the reversed direction of the PoV-jet arc, Figs. A5.2 and A5.3 affirm the 

importance of Arctic-midlatitude teleconnections for network analyses of midlatitude 

variability. 

Interestingly, the MJO and ENSO remain relatively well predicted throughout the 

resolution steps for both the jet and MI DBNs, despite only being connected to the network 

through the HV in all DBN DAGs. Highly autoregressive nodes continue to be more easily 

predicted throughout the loss of resolution, and this is especially true of ENSO which exhibits 

long periods of stability in terms of its periodicity compared with the rest of the time series’ 

lengths. 

In contrast to Chapter 4, where the autoregressive HMM outperformed DBNs for a 

simple 4-variable network, the jet and MI HMMs were by far the worst performing models in 

terms of SSE (Table 5.2). Clearly, the structure provides significant improvements in the 

predictive capability of the networks as the SSE greatly increases when structure is removed, 

particularly significant for the 5-day averaged results for the two HMMs.  

Obvious disparities in SSE may also provide information about structure. Large 

increases in SSE can be seen in Table 5.2a for the PoV variable for 10- and 15-day time 

averages, where the PoV-jet relationship shown in the 5-day averaged data is reversed (Fig. 

5.4). This suggests that the jet-PoV direction is the one that provides the most predictive power 

for this set of DBNs at submonthly time resolutions. The same is true for the MI-BK 

relationship, which seems to impede accuracy for the 5-day averaged MI DBN runs, but not 

for 10- and 15-day where the PC algorithm returned the same relationship in the opposite  
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5 day 10 day 15 day monthly 

a) Jet HMM     

850 BKSeas 80.77 34.56 36.12 14.6 

850 NAtlantic 87.01 60.18 52.59 28.54 

POV 44.88 11.56 14.44 14.27 

Jet 49.19 26.89 26.21 12.62 

NAO 56.56 39.05 41.64 21.38 

MJO 71.99 40.81 28.96 21.67 

ENSO 44.76 17.02 11.16 9.9 

b) MI HMM     

850 BKSeas 102.89 50.13 52.94 19.96 

850 NAtlantic 114.23 66.24 58.82 28.26 

POV 68.62 10.41 19.13 16.23 

MI 145.95 54.48 58.55 32.99 

NAO 87.92 38.05 80.94 35.84 

MJO 95.46 41.12 28.22 22.28 

ENSO 58.03 16.95 16.32 7.66 

c) Jet HV DBN 
    

BK 25.46 26.67 18.41 13.46 

NAt 44.52 35.4 43.97 10.95 

POV 1.68 20472.46 34495.65 4.84 

Jet 28.12 258.23 31.21 9.38 

NAO 34.49 16.54 35.78 23.66 

MJO 7.67 15.77 12.35 10.76 

ENSO 0.37 0.1 0.08 0.54 

d) Jet no HV DBN 
    

BK 34.46 31.79 22.56 9.9 

NAt 52.29 53.18 40.37 21.15 

POV 1.66 166086.63 608.01 9.4 

Jet 31.11 235.46 85.98 9.18 

NAO 26.44 31.03 28.03 31.87 

MJO 11.05 17.09 17.93 21.43 

ENSO 0.56 0.66 0.85 1.68 

e) MI HV DBN 
    

BK 17627.71 25.29 25.33 14.87 

NAt 44.13 46.65 44.34 9.15 
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POV 0.71 3.65 16.51 259469.81 

MI 96.25 154.68 505.25 371.19 

NAO 383.63 31.26 51.61 26.54 

MJO 4.56 13.41 9.52 14.53 

ENSO 0.11 0.41 2.81 2.95 

f) MI no HV DBN 
    

BK 1887.33 31.79 22.56 9.9 

NAt 52.29 53.18 40.37 21.15 

POV 1.66 4 5.22 16.68 

MI 70.55 140.54 56.51 34.06 

NAO 81.94 32.18 28.03 26.31 

MJO 11.05 17.09 17.93 21.43 

ENSO 0.56 0.66 0.85 1.68 

direction (i.e. BK-MI; Fig. 5.5a). In essence, Table 5.2 shows us that the skill of networks can 

be reduced by falsely imposing the direction of relationships. 

The DBN with a HV (Fig. 5.4) had the most accurate performance for the jet DBNs in 

terms of SSE (Table 5.2), indicating that the inference engine was able to accommodate the 

increase in model complexity. MI DBNs without a HV performed marginally better overall 

although a few variables were predicted with less accuracy, most notably the MJO and ENSO 

nodes. The drop in SSE for the MI DBNs seems to be a result of PoV variability dominating 

the hidden state switches, discussed below in the HV analysis; Fig. 5.5 demonstrates that the 

PoV node is less important for MI variability in contrast to jet latitude, where the PoV is 

connected throughout the time resolutions. The DBN without a HV outperformed it because 

the strongest influence on the hidden state means and switches was the PoV, which is not as 

central to the learned structure of the MI models as the jet ones. This explanation, paired with 

the generally worse predictive accuracy of the MI DBNs, also suggests that the MI-BK link in 

5-day averaged data is more accurate the other way round (i.e. BK-MI) as in the jet 5-day 

DAG, and points towards the jet DBN with a HV being the most accurate model learned in this 

analysis. Clearly, there are caveats to using HVs as model accuracy is not guaranteed to 

increase across all variables; this finding is reflected in Trifonova et al’s (2015) SSE results 

for biomass prediction and the ‘DBN2HV’ results in Chapter 4 which suffered from overfitting. 

Table 5.2 SSE for each variable at the 5-day, 10-day, 15-day and monthly time resolutions for a) Jet HMM b) MI 
HMM c) jet DBN with a HV d) jet DBN no HV e) MI DBN with a HV and f) MI DBN no HV. 
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 HV ‘states’ are the three possible values the discrete HVs can take, inferred from the 

observed data to maximise model fit. Timeseries of all variables were split into each HV state, 

and the three states were then summarised in terms of mean and standard deviation (sd) to 

investigate what they represent (Table 5.3). For the jet DBNs, state 3 represents ‘average’ 

conditions with values close to the mean values of the whole training dataset timeseries for 

the BK, NAt, PoV and jet nodes. State 1 is associated with higher than average PoV 

geopotential height anomalies (slower than average stratospheric polar vortex), lower 

temperatures over the NAt region and a higher average jet latitude. Conversely, state 2 

indicates a negative PoV geopotential height anomaly pattern (faster than average polar 

vortex), higher NAt temperatures and average jet conditions. Both states 1 and 2 have values 

within one standard deviation of the mean, but the HV nonetheless captures three distinct 

states defined mainly by the PoV, NAt and jet variables. The MI HV states are less clear, but 

both sets of models are characterised by switches between states 1 and 3 (Fig. 5.6); two 

obvious differences are that the MI stays in state 1 for longer on average, and that the values 

for state 1 of the MI HV are closer to each variable’s mean value for the whole dataset than 

those of the jet HV. 

 

 

5.5 Discussion 

The DBNs provide a relatively robust set of results in terms of network structure and 

model accuracy. The results described hereafter generally focus on 5-day averages unless 

otherwise specified. One of the most consistent linkages picked up by the structure-learning 

HV state BK NAt POV Jet/MI NAO MJO ENSO 

a) Jet DBN        

1 -0.44 -0.48 440.47 49.06 0.2 1.47 -0.04 

2 -0.94 0.98 -490.58 47.83 0.3 1.39 0.09 

3 -0.01 0.25 114.27 47.68 0.19 1.36 -0.01 

b) MI DBN 
       

1 -0.3 -0.31 -41.52 1.67 0.24 1.32 0.01 

2 0.15 0.81 -178.6 1.64 0.05 1.37 -0.03 

3 -0.14 0.22 289.96 1.73 0.19 1.42 -0.02 

Table 5.3 Hidden state mean values of each variable for a) Jet DBN and b) MI DBN. 
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phase points to the relationship between the Arctic regions of the North Atlantic and Barents-

Kara seas, and the jet, MI and NAO nodes. Atmospheric responses in Northern Europe to 

anomalous sea ice loss in the Barents-Kara region were thought to develop through changes 

in surface turbulent heat fluxes (Petoukhov and Semenov, 2010; Liptak and Strong, 2014), 

although recent evidence casts doubt on this (Blackport et al, 2019). However, the 

bidirectional edges of the BK and NAt to the jet (Fig. 5.3) point to a positive feedback of Arctic-

midlatitude impacts, matching Samarasinghe et al’s (2019) findings over similar timescales (5 

to 15 days) for the Pacific, which captures the thermodynamic effect of temperature and 

moisture advection from lower latitudes and the modulation of Arctic temperatures (Kapsch et 

al, 2016; Gong et al, 2017; Cohen et al, 2018a). This feedback occurs on timescales of <5 

days (Kapsch et al, 2016), suggesting Fig. 5.3 captures a pathway thought to occur at similar 

time resolutions in model studies; one that may dictate the nature of the two-way relationship 

between AA and the midlatitudes. 

 The NAt-jet linkage, found in both the jet and MI 5-day DBNs and for 10-day averages 

in the jet, may represent an Arctic-jet connection known to develop intermittently and cause 

cold outbreaks through the assisted formation and support of blocking patterns (Chen and 

Lou, 2017; Ballinger et al, 2018). Higher geopotential heights in the Greenland and Baffin Bay 

regions increase the likelihood of Greenland blocking events, contributing to the increased 

waviness of jet stream patterns (higher MI values) and in turn the persistence of cold events 

on the eastern coast of the US (Chen and Luo, 2017; Overland and Wang, 2018). The 

meridional component of the jet stream (the MI) is conditionally dependent on AA over the 

North Atlantic region, a region of rapid warming and sea ice loss which includes Baffin Bay, 

and seems to impact temperature over the Barents-Kara Seas at 5-day resolutions (Fig. 5.5a). 

Interestingly, BK is then identified as a potential driver of meridional patterns at 10- and 15-

day averages, when the direct link between NAt and the MI is lost. 

 The NAO, an index reflecting both jet latitude and speed variability (Woollings and 

Blackburn, 2012), is central to the network structures in both sets of DBNs. Whilst the NAO is 

likely influenced by a complex set of nonlinear drivers (Smith et al, 2016), near-surface Arctic 

temperature seems to have a significant impact on the NAO via the troposphere. The NAO is 

conditionally dependent on the high sea ice variability region of the Barents-Kara Seas, 

estimated to be the strongest link in 5- and 10-day jet DAGs and all submonthly MI intervals 

(Figs. 5.4 and 5.5). The response of atmospheric circulation indices to AA is constrained 

entirely within winter in this study as in Blackport and Screen (2019); in contrast, others have 

found that autumn sea ice conditions provide predictive skill of winter NAO variability in 

statistical models (Wang et al, 2017; Hall et al, 2017). Fig. 5.5 shows that NAt and MI are 

conditionally independent given the NAO node, but that they are connected via the NAO 
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throughout the time averages as the BK and NAt nodes impact NAO variability even to monthly 

resolutions. This is almost identical for jet latitude up to 15-day intervals. 

This conditional independence, added to the strength of the AA-NAO links, implies that 

NAO phase shifts summarise the AA-midlatitude connection well at lower time resolutions. 

The negative phase of the NAO is indicative of a southerly displacement of the jet, which has 

been linked to colder, more severe winters in northern Europe and the eastern US and warmer 

conditions over Greenland and the Barents-Kara region (Cohen et al, 2018b). Whilst the 

overall effect of AA and a warming world should be that cold outbreaks become less intense 

(Ayarzaguena and Screen, 2016), AA may favour a shift towards meridional circulation 

patterns which can promote the increased frequency and persistence of cold air outbreaks 

(Cohen et al, 2018a). However, a shift to negative NAO patterns is by itself a potentially 

misleading trend as the warming trend may offset any dynamical cooling influence (Screen, 

2017). 

5.5.1 Tropical Influence and Stratospheric Teleconnection Pathways 

No conditionally dependent relationships are found for the tropical variables; this was 

robust across all time averages, jet descriptors, and lead times used. This likely reflects on 

aspects of the data and the model design process, rather than simply pointing to a weak 

tropical influence on Arctic temperature and jet variability relative to Arctic-midlatitude 

covariability. Combined effects and long-duration teleconnections through the stratosphere 

may have been effectively masked by the time series approach. A consistent lack of ENSO 

influence across networks is significant given that skilful prediction of the wintertime NAO 

(Scaife et al, 2016) and AO (Sun and Ahn, 2015) can be achieved with the inclusion of tropical 

variability, and tropical rainfall has been found to explain a significant amount of NAO 

variability in linear relationships (Scaife et al, 2016; Hall et al, 2017). Likewise, an increase in 

MJO intensity in the Indian Ocean region has been linked to the positive NAO phase in winter 

averaged (DJF) data (Lin et al, 2015), and composite analyses of blocking over the North 

Atlantic and Europe have found that MJO phases play a significant role in blocking occurrence 

during winter (Henderson et al, 2016). 

 The stratospheric polar vortex has been shown to project onto the NAO and increase 

the likelihood of Atlantic blocking during vortex weakening events through tropospheric-

stratospheric coupling (Kidston et al, 2015). The stratosphere exhibits much more stability 

than the troposphere below it, requiring Rossby wave activity from below to cause significant 

disruptions to the flow of the polar vortex. A large body of studies favour the tropics as the 

predominant source of Rossby waves necessary to trigger sudden warming events (Liu et al, 

2014; Hitchcock and Simpson, 2014; Scaife et al, 2017b; Jiang et al, 2017; Hardiman et al, 

2019), NAO variability (Scaife et al, 2017a) and Arctic warming itself (Yoo et al, 2012). It is 
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highly probable that uncaptured tropical teleconnections contribute to the strength of the PoV 

to jet, MI and NAO linkages; El Niño events can force the Aleutian low to strengthen and move 

eastwards, causing enhanced vertical wave transport and negative NAO conditions through 

the disruption of PoV flow (Scaife et al, 2017b; Hardiman et al, 2019). Similarly, enhanced 

tropical convection associated with the MJO may weaken the PoV and disturb the NAO (Liu 

et al, 2014; Jiang et al, 2017) depending on the background state of the PoV (Barnes et al, 

2019), although NAO events do not depend solely on tropical convection. Only the final stage 

of these teleconnections via the stratosphere are captured in DBN structures. 

5.5.2 The Implications of Hidden State Switches 

The HV state switches did not show a clear delineation between an ‘AA’ or ‘pre-AA’ 

period (Fig. 5.6a and 5.6b); i.e. a shift to an amplified warming state signalled in the BK and 

NAt variables. This is precisely the type of underlying state switch one would expect to be 

identified in a HV but may have been filtered out by the detrending step of data preparation. 

The HVs also hint that the proportion of variance estimates (Figs. 5.4 and 5.5) may not fully 

represent the importance of stratospheric variability at submonthly timescales as the PoV 

seems to dictate the hidden state switches by shifting from average (state 3) to slower 

anomalous PoV flow in state 1 (Fig. 5.6c). Added to this, Fig. 5.4 shows the PoV is connected 

throughout the time resolutions, and the lack of arcs between the PoV and MI in Fig. 5.5b and 

5.5c may have caused the drop in model performance (Table 5.2c) with the addition of a HV 

to the MI DBN. The HVs maximise model fit by inferring their state from the observed data. 

The low predictive accuracy of the MI variable in Table 5.2c, particularly towards lower time 

resolutions, could therefore be a result of the lack of links between the PoV and MI combined 

with the strong influence of the PoV on state switches. 

It is worth noting that recent studies have suggested the covariability between regions 

of AA and midlatitude flow characteristics could simply be a result of internal variability, with a 

forced component originating in the tropics which was uncaptured in the networks. The 

relationship between BK and the NAO was found to be a recent and weak feature in 

reanalyses and ensemble simulations (Kolstad and Screen, 2019). Warner et al (2020) 

concluded that internal variability in the Atlantic sector combined with tropical Pacific forcing 

was more likely to cause BK-NAO covariability than sea ice forcing. Non-simulated 

contributions from remote forcing could not be ruled out in these studies, but strong anomalous 

tropical forcing continues to provide skill for forecasting in contrast to extratropical drivers, 

which remain limited by their low signal-to-noise ratio resulting from natural variability 

(Trenberth et al, 1998). 
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5.6 Literature-based Networks 

 As discussed above, the lack of a tropical influence from the MJO and ENSO variables 

was an unexpected but consistent finding across all network types. Whilst the CCF analysis 

was conducted simply to investigate appropriate lead times for variables in relation to the jet 

and MI datasets, and was not used in the core BN analysis, CCFs can still return spurious 

relationships due to autocorrelation bias (Runge et al, 2014). An example of this is the CCF 

for the MJO variable, which demonstrates a sinusoidal pattern of correlations (Fig. 5.2). CCFs 

provided consistent results for other variables however, including the finding of a possible 

feedback relationship between the AA variables (BK and NAt) and the jet within the winter 

season on 5-day timescales. Another way of ensuring the appropriate lead times are found 

for all variables is to run the same network on multiple datasets with different lead times, which 

has been used in other graphical model approaches (e.g. Kretschmer et al, 2016; 2017). 

 To this end, multiple lead times were investigated for the tropical variables by 

constructing three new datasets with differing lead times based on several impactful studies. 

For ENSO impacts on North Atlantic circulation during the winter period, a response time of 2 

weeks has been found for both stratospheric (Baldwin and Dunkerton, 2001) and tropospheric 

(Scaife et al, 2017) teleconnection pathways. It is important that both of these pathways are 

considered, as the stratospheric pathway is thought to impact NAO variability through the 

stratospheric polar vortex during La Niña events, whilst the tropospheric pathway is most likely 

the dominant of the two for strong El Niño events known to trigger Rossby wave trains into the 

North Atlantic (Hardiman et al, 2019). 

 For the MJO, Jiang et al (2017) found the MJO influences NAO events at timescales 

of up to 30 days, whilst Tseng et al (2018) suggest that a robust teleconnection between MJO 

phases 1, 2, 5 and 6 and 500hPa geopotential height over the North Pacific and adjacent 

regions provides predictive skill for forecasting at 2-3 week lead times. Finally, high amplitude 

circulation patterns and an increase in blocking frequency are associated with phase 3 of the 

MJO for the Atlantic region with a lead time of 10-15 days (Henderson et al, 2016). 

5.6.1 Experiments 

 Using the same experimental design and data as detailed in this chapter, further 

analysis was carried out to investigate the robustness of the DBN structures shown here. 

CCFs were substituted with expert knowledge taken from the papers detailed above, which 

was used to determine appropriate lead times for the MJO and ENSO variables. Three 

datasets with differing lead times were constructed with this intention: 

 

1. 10-day MJO lead time and 14-day ENSO lead time 

2. 15-day MJO lead time and 14-day ENSO lead time 
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3. 30-day MJO lead time and 14-day ENSO lead time 

 

The lead times were applied to daily data before preparation for the winter (DJF) 

months of the years 1981-2018. All data was sourced and prepared in exactly the same way 

as above for the 5-day averaged dataset: the spatio-temporal variables were spatially 

averaged, summarised as 5-day averages, the multi-year mean of 5-day averages was 

subtracted from the time series, and the result was then detrended (Table 5.1). 7-variable BNs 

were constructed using the BK, NAt, PoV, jet, NAO, MJO and ENSO variables listed in Table 

5.1. For the sake of comparison, the previous lead times used were 45 days (9 timesteps) for 

the MJO and 155 days (31 timesteps) for ENSO at 5-day averages, based on the nearest 

significant value in the CCFs to jet latitude for each variable. The lead times identified in the 

literature that are used here are significantly shorter, especially for ENSO, adding to the need 

for further analysis based on expert knowledge. 

The same training and testing dataset split was used (80/20), and BNs were run first 

with jet latitude and then with MI as the midlatitude circulation proxy, although the results for 

MI were identical in terms of the tropical variables so are not shown here. All models were 

constructed in the ‘bnlearn’ package in R (Scutari, 2010). As in Chapter 3’s experimental 

analysis, the structure was learned with the PC algorithm using an alpha of 0.05, but networks 

were not extended to DBNs through parameter-learning and predictive accuracy analysis due 

to the lack of tropical links. For this reason, bidirectional arcs returned by the PC algorithm 

were also not corrected for as no further DBN construction was necessary. Results were 

robust to the use of two algorithms: the HC (hill-climbing) algorithm, a score-based algorithm 

detailed and used in Chapter 3, was used to check whether tropical links could be identified 

with hill-climbing optimisation. 

5.6.2 Tropical Variables: A Lead Time Analysis 

 Partially directed acyclic graphs, or pDAGs, are shown for the three datasets used, 

whereby nodes are labelled as the corresponding variable, and relationships between 

variables represent conditional dependencies between nodes either in the form of arrows 

(directed arcs) or lines (undirected edges). As these pDAGs are essentially static BNs, they 

are comparable to the ‘intra’ structure findings detailed above, and no ‘inter’ structure needs 

to be defined as the networks were not unrolled to DBNs. 

 The structure between variables where the lead time was unchanged matches the 

findings for 5-day averaged jet DBNs shown above, before removal of cyclical structures (i.e. 

the jet to AA links). A positive feedback mechanism is again obvious for the AA variables (BK 



 
90 

and NAt) and the jet latitude node, matching Samarasinghe et al’s (2019) findings for North 

Pacific jet variability. The proxies of midlatitude circulation (jet latitude and the NAO) are again 

identified as child nodes. Just as above, however, the MJO and ENSO are completely 

unconnected from the rest of the graph structure for experiments 1, 2 (Fig. 5.7) and 3 (Fig. 

850 BKSeas 850 NAtlantic POV

Jetlat

NAO

MJO ENSO

Figure 5.7 pDAG for experiments 1 and 2: 10- and 15-day lead time for MJO, 14-day for ENSO. 
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5.8), where a bidirectional conditionally dependent relationship was found between the tropical 

variables lagged at 30 and 14 days for MJO and ENSO respectively. 

 It is clear from the pDAG results that the findings detailed above regarding the lack of 

an influence from the MJO and ENSO are not likely to be a fault of the methodology employed; 

850 BKSeas 850 NAtlantic POV

Jetlat

NAO

MJO

ENSO

Figure 5.8 pDAG for experiment 3: 30-day lead time for MJO, 14 for ENSO. 
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specifically, that the CCF results used to determine the lead times for all variables are not 

causing the DBNs produced to display unconnected tropical nodes. Possible reasons for this 

have been discussed above, but a likely cause is the time series-based approach used (DBNs) 

which may mask intermittent tropical teleconnections. Studies which have identified tropical 

influences often use forms of non-continuous (or ‘broken’) time series analysis to split the data 

up into weather events; Henderson et al (2016) for example use only days with an RMM 

amplitude greater than 1 to assess blocking frequency (as defined by Wheeler and Hendon, 

2004), and Barnes et al (2019) discretise MJO data into active and inactive periods to 

investigate pathways between the MJO and NAO. If the absence of tropical teleconnections 

is a result of the continuous time series approach masking intermittent but significant linkages, 

it is important to note that DBNs consistently pick up the AA-midlatitude covariability. Arctic-

midlatitude linkages are thought to be similarly intermittent in nature as they rely on the 

background jet stream pattern to act as a bridge between thermodynamic forcing and 

persistent midlatitude extremes (Overland et al, 2016; Overland and Wang, 2018; Kolstad and 

Screen, 2019). In this research, this did not prevent their identification at submonthly 

timescales. 

5.7 Data Split Analysis 

 The above analyses use 37 years of data and an 80/20 split in training and testing 

datasets to investigate potential drivers of midlatitude atmospheric circulation. One of the 

problems associated with this approach is that potential linkages between cryospheric or 

tropical variables and midlatitude proxies are likely to be nonstationary in nature (Coumou et 

al, 2018). This has been suggested as the cause for the lack of a robust interdecadal link 

between ENSO and the Euro-Atlantic sector, where the ENSO signal is much stronger and 

can be found further poleward in the post-1970s period than before it (Greatbatch et al, 2004). 

This is also true for the lagged relationship between Eurasian snow cover and the AO, which 

only emerges as a plausible teleconnection in the observational record from the 1970s 

onwards (Douville et al, 2017). 

 The signal of Arctic Amplification itself has only separated from the trend for the rest 

of the Northern Hemisphere in recent decades (Fig 1.1); enhanced warming of more than six 

times the global average has occurred since the late 1990s (Huang et al, 2017). Francis and 

Vavrus (2015) note that the AA signal is distinguishable from the noise of internal variability 

from approximately 1995 onwards for surface processes and from 2000 onwards for the lower 

troposphere, leading them to describe an ‘AA era’ as opposed to a pre-AA era in which natural 

variability dominates. Given that this is the case, teleconnections between Arctic and 

midlatitude variables are likely to be highly nonstationary, and the linkages identified may be 

highly dependent on the start and end dates of the period used as input for DBN analyses. 
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Kolstad and Screen (2019) point out that nonstationarity may have an impact on the reliability 

of all machine learning applications; the predictive skill of NAO forecasts using dynamical 

models varies noticeably over time for example, so the NAO signal itself may be the result of 

nonstationary linkages. 

5.7.1 Experiments 

 To test the extent to which the linkages identified in the above analyses were 

nonstationary in nature, the dataset used above was split into a ‘pre-AA’ and ‘AA’ period and 

the experiments were re-run. The same dataset, sourced and prepared as detailed above, 

was used: 7-variable DBNs were constructed using 5-day averages of the BK, NAt, PoV, jet, 

NAO, MJO and ENSO variables for the winter months (DJF) of the years 1981-2018 (Table 

5.1). The dataset was then split into two half periods: 

 

1. Pre-AA – 1981.12.03 to 2000.01.12 to capture the period before a strong AA signal 

develops 

2. AA – 2000.01.17 to 2018.02.26 to capture the period of AA identified in the 

observational record 

Figure 5.9 DAG of the Pre-AA DBN (1). Dotted lines indicate edges coded 
into the model (i.e. HV edges), solid represent learned edges. 
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DBNs were constructed, again using an 80/20 split whereby the network structure and 

parameters were learned using 80% of the data, and the model fit was tested on the remaining 

20%. Splitting the data resulted in fewer timesteps, but the total number in each dataset was 

equal to the 10-day averages (333 timesteps) shown above, which managed to predict most 

variables accurately for the jet DBNs with a HV. Network structures were inferred from the 

data using the PC algorithm using the ‘fisher z’ test for conditional independence and an alpha 

value of 0.01. Results were dependent on the choice of alpha value as significant overfitting 

of the networks occurred with alpha values of >0.01. This contrasts the 5-day jet and MI DBNs, 

which had twice the number of timesteps for the full time series (1981-2018). Bidirectional arcs 

were removed from the learned structure to preserve the ‘explain-away’ effect, as above, to 

create an acyclical structure and run the DBN. The EM algorithm was then used to fit the 

parameters of the model, and the DBN was tested on the test dataset to examine the degree 

of overfitting contained within the model. As a final step, model validation was achieved by 

plotted predictive DBN output against the observed values for the test dataset, and SSE was 

used to assess model performance in terms of each variable. 

Figure 5.10 DAG of the AA era DBN (2). Dotted lines indicate edges coded into the model (i.e. 
HV edges), solid represent learned edges. 
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5.7.2 Results: Before and During the AA Period 

 The DAGs produced for 5-day DBNs in the pre-AA (1981-2000) and AA (2000-2018) 

periods suggest that splitting the data in this way changes the DAG structures in fundamental 

ways that are similar to averaging the data over different time resolutions. The pre-AA DAG 

(Fig. 5.9) differs greatly from the 5-day Jet DBN above (Fig. 5.3): all but one (BK-NAO) of the 

arcs that make up the Arctic-midlatitude feedback relationship are not identified, whilst the 

links between the PoV and jet latitude and NAO variables are still captured. The structure is 

therefore most similar to the monthly-averaged jet DBN results (Fig 5.4d). 

 For the DBN trained on data during the AA period however, the same structure shown 

by the 5-day jet DBNs (Fig. 5.10) can be seen for the BK, NAt, NAO and jet variables, although 

unlike Fig. 5.3 the jet node arcs (BK-jet, NAt-jet) were not bidirectional. Fig. 5.10 suggests that 

the BK and NAt regions can influence North Atlantic circulation at 5-day timescales within the 

winter months (DJF). No feedback relationship was identified, suggesting that DBNs trained 

only on the AA period do not capture the thermodynamic effect of temperature and moisture 

advection into the Arctic driven by high amplitude jet stream configurations (Kim et al, 2017; 

Cohen et al, 2018a). There is no climatological reason why the Arctic variables should be 

identified only as parent nodes or drivers with the AA dataset in contrast to the feedback 

mechanism between the AA and jet variables identified with the full 37-year dataset. Recent 

work using atmospheric models has indeed pointed to the reverse scenario as more likely for 

colder midlatitude winters: by attempting to reconcile conclusions drawn from model and 

observational analyses, Blackport et al (2019) suggest that the covariability between sea ice 

and midlatitude temperatures occurs due to anomalous midlatitude circulation patterns acting 

as a driving force of sea ice variability rather than a response to it. Whilst this chapter suggests 

a covariability between Arctic near-surface temperatures and midlatitude circulation proxies 

for the North Atlantic, rather than regional temperature anomalies, several recent studies 

highlight the importance of midlatitude-Arctic linkages (Woods and Caballero, 2016; Kim et al, 

2017; Ye and Jung, 2019) and caution against ubiquitously considering Arctic variables as 

drivers of midlatitude circulation anomalies (Cohen et al, 2018a; Fyfe, 2019). 

 ENSO is identified as a driver of NAO variability in the AA period DBN, in contrast to 

all other DAG structures presented in Chapters 4 and 5. As already discussed, ENSO can 

influence the North Atlantic midlatitude region via the troposphere through planetary wave 

initiation (Scaife et al, 2017b) and via the stratosphere through the disruption of the 

stratospheric polar vortex (Baldwin and Dunkerton, 2001; Hardiman et al, 2019). The ENSO-

NAO connection identified here is a long-duration teleconnection indicating that late June 

ENSO variability can impact the early December NAO signal, as Hall et al (2019) found for jet 

latitude anomalies. The ENSO-NAO link may have appeared only in this DBN due to the 
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shorter time series used for the AA period (2000-2018); the ENSO influence on the Euro-

Atlantic sector is known to be nonstationary in nature (Greatbatch et al, 2004), meaning that 

time series-based approaches using multi-decadal datasets are unlikely to pick up ENSO 

teleconnections. 

It should be clarified that to fully eliminate the possibility that internal variability created 

the differences between the two periods, further processing like random sampling 19-year 

periods across the AA and pre-AA periods would be necessary to determine how large the 

differences in networks can be outside of the impact of AA. Basing such conclusions solely on 

a 19-year period would be misleading given events like the Northern Hemisphere continental 

cooling which occurred during the 1930s-1940s; a pattern that reversed in the following 

decades (Wegmann et al, 2018). The lack of an Arctic-midlatitude covariability in Fig. 5.10 is 

evidence that internal variability may be having an impact on network structure, as this 

covariability is the most consistent finding in the networks of chapters 4 and 5. Caution is 

therefore advised in the interpretation of this result, as further analysis is needed to quantify 

the role of internal variability. 

Table 5.4 SSE for each variable in the pre-AA DBN, AA DBN and AA DBN with arc deletions. 

 
pre-AA AA 1 AA 2 

850 BKSeas 57.21 40.72 45.24 

850 NAtlantic 53.42 41.85 45.54 

POV 31.9 11.76 9.49 

Jetlat 34.88 416406.73 13.34 

NAO 46.74 12564.6 22.63 

MJO 6134.95 51.68 54.02 

ENSO 65.58 22.44 19.14 
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5.7.3 Model Performance in the AA period 

 The model fit was assessed for all networks using SSE (Table 5.4), as in the above 

analyses. The MJO node was badly predicted by the pre-AA DBN, suggesting that the NAt-

MJO link shown in Fig. 5.9, which does not appear in any other DBN structure, may not be 

valid as the NAt node provides low predictive skill as a parent to the MJO. For the AA period 

(‘AA 1’), the jet latitude and NAO variables were predicted with significantly less accuracy than 

the rest of the variables. To investigate this, the ENSO-NAO and NAO-Jet arcs were deleted 

from the DAG structure (Fig A5.9), and the parameters and SSE were recalculated for the 

resulting modified DBN named ‘AA 2’ in Table 5.4. The SSE of both variables increased 

significantly, suggesting that these arcs drastically reduced the predictive skill of the DBN 

trained only on the AA period, in particular the midlatitude circulation indicators. The ENSO-

NAO teleconnection identified here may therefore be a spurious link, as the midlatitude 

components were predicted more accurately during the AA period with only the AA variables 

as parent nodes. 

5.8 Conclusion 

This study represents the first foray into Arctic-midlatitude weather linkages using a 

graphical model approach paired with hidden variables. A robust covariability between regions 

of amplified Arctic warming and midlatitude circulation characteristics is found, suggesting this 

feedback has a significant influence on variability both in the Arctic and the North Atlantic 

midlatitudes at submonthly timescales. The two-way nature of the link suggests uni-directional 

interpretations need revising in favour of one that takes into account the central importance of 

poleward heat and moisture fluxes into the Arctic. Of the relationships found, BK-NAO has the 

strongest impact on the DBNs at 5- and 10-day intervals, with the PoV-jet link becoming the 

strongest at monthly resolutions. Midlatitude circulation responses at submonthly timescales 

are driven by AA processes within winter rather than a lagged response to sea ice losses 

during autumn. Links to tropical modes of variability were not identified using a range of lead 

times and methods, but this in no way implies that their impact on observed jet variability is 

small. The DBNs found no evidence for a clearly defined ‘AA’ and ‘pre-AA’ period through 

hidden variables included in model architectures. 

Clearly, these results only give us part of the picture. Stratospheric polar vortex 

variability dominated the HV state switches, shifting from average conditions to slower 

anomalous PoV flow, higher NAt temperatures and slightly higher jet latitude values. The HVs 

hint that strength estimates may underrepresent the importance of the PoV, with no lagged 

connections to midlatitude flow identified through the stratosphere. The findings focus on 

submonthly timescales and as such may miss stratospheric links thought to be important for 

North Atlantic circulation (Scaife et al, 2017a; Hardiman et al, 2019). As a form of time series 
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analysis, the DBNs may not have picked up state-dependent linkages or combined effects like 

those shown in simulation analyses (e.g. Lee et al, 2015), which could have masked potential 

tropical influences like ENSO-PoV. Furthermore, input data was averaged over large areas 

chosen to maximise the amount of variability captured, which may not represent the true 

complexity of midlatitude circulation influences. 

A number of improvements are made from the 4-variable DBN analysis in Chapter 4, 

including the use of more data from Arctic, midlatitude and tropical sources, a proper 

investigation into appropriate lead times for all variables, an analysis of the hidden state values 

and their impact on the networks, and finally a study of the AA era and the impact it has on 

the relationship between Arctic and midlatitude linkages. The lack of a robust tropical influence 

on the DBNs was found not to be an artefact of the method used to ascertain lead times for 

variables, as the use of expert-guided lead times for the MJO and ENSO did not change the 

DAG structure results. Splitting the dataset into a pre-AA and AA period results in a pre-AA 

DAG that is similar to the monthly-averaged jet DBNs, and an AA DAG that reproduces the 5-

day jet DBN Arctic-midlatitude structure without bidirectional links indicating that the North 

Atlantic jet influences AA processes on 5-day timescales within winter. The reason for this is 

unclear, but the disparity between the two periods implies that the Arctic-midlatitude linkages 

shown here for the North Atlantic region are likely to be nonstationary in nature (Coumou et 

al, 2018; Kolstad and Screen, 2019). This could be a result of the recent appearance of the 

AA signal in the observational record (Huang et al, 2017), or intermittent teleconnections 

between the Arctic and the midlatitudes that are dependent on the background atmospheric 

flow characteristics as a bridge between thermodynamic forcing and amplified midlatitude flow 

(Overland et al, 2016). 
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Chapter 6: Conclusion 

 Summaries of the results and their implications for the research field have already 

been discussed in the conclusions of the preceding three chapters. This chapter therefore 

focuses on the contribution of this thesis to the Arctic-midlatitude field and wider climate 

science research area. This is followed by an assessment of the limitations of the method and 

study design, and finally a recommendation for future work to tackle a number of gaps in the 

research field with suggestions for a potential way forward. 

6.1 Research Contributions 

6.1.1 Dynamic Bayesian Networks with Hidden Variables 

 The Arctic-midlatitude research area is constrained by a low signal-to-noise ratio of AA 

to internal variability, and intermittent linkages that may be dependent on the state of the 

background atmospheric flow in the midlatitudes (Overland et al, 2016). This thesis has 

presented evidence for a robust wintertime link between important regions of AA and 

midlatitude circulation on submonthly timescales using Dynamic Bayesian Networks with a 

single hidden variable. The results are suggestive of a feedback loop between enhanced 

Arctic warming at the near-surface, and large-scale atmospheric circulation anomalies. In 

terms of relative strength, the BK-NAO link was the strongest in DBNs at 5- and 10-day 

intervals, whilst the PoV-jet link seems to be the most important at monthly resolutions. AA-

midlatitude covariability occurs entirely within winter (DJF) when the AA signal is strongest 

(Serreze et al, 2009) in contrast to other studies which find a lagged response to autumn sea 

ice loss (Kretschmer et al, 2016; Hall et al, 2017), although longer-duration autumn-to-winter 

DBNs were not specifically constructed. This was because the CCF analysis revealed no long-

duration linkages between AA regions and jet variability as the BK and NAt variables were 

strongly correlated to jet latitude only within a few timesteps (i.e. within winter). On this basis, 

DBNs with structure-learning algorithms prove to be a useful tool for investigating complex, 

nonlinear climate teleconnections in a network which includes Arctic, midlatitude and tropical 

variables, and may prove to be a valuable alternative to correlation-based networks and 

studies (Ebert-Uphoff and Deng, 2012a). 

The application of DBNs and HVs to the Arctic-midlatitude research field also revealed 

a number of important caveats, which may be pertinent to future graphical model studies. 

Firstly, when DBNs are used to model climate relationships with a high number of edges and 

a low number of input variables (≤4) they can be over-parameterised, which has a significant 

impact on model performance and error rate as Chapter 4 shows. Furthermore, the addition 

of HVs to graphical models does not guarantee that model accuracy will increase. HVs were 
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added to dynamic networks to optimise model performance and maximise the likelihood that 

the AA signal would be picked up in the learned network structures. The MI DBNs with a HV 

in Chapter 5 performed slightly worse than the control run with no HV. The variability in HV 

state switches was dominated by the stratospheric polar vortex shifting from average to 

anomalously slow flow. This result, combined with the relative strength analysis which 

suggests the PoV-jet link is the strongest in monthly jet DBNs, strongly hints that the Chapter 

5 results underrepresent the importance of stratospheric variability which may predominantly 

be driven by tropical influences. In summary, researchers using HVs need to ensure that graph 

structures returned by a DBN are as accurate as possible by conducting extensive sensitivity 

analyses. This may include multiple structure-learning algorithms, different proxies of similar 

physical mechanisms, a range of time resolutions and lead times, and data averaged over 

different regions. 

6.1.2 The Relative Impact of AA on Midlatitude Circulation 

 Whereas other graphical model studies focus on potential Arctic drivers (Kretschmer 

et al, 2016; Barnes and Simpson, 2017; Samarasinghe et al, 2019) or possible tropical 

teleconnections (Barnes et al, 2019) using models with two variables, this project proves that 

DBNs can accurately model relationships between climate datasets with larger numbers of 

variables. In further contrast to these studies, a number of Arctic, midlatitude and tropical 

variables are included which provide insight into the relative role of AA processes. The lack of 

a robust tropical influence in DBNs, whilst likely not to be a result of a flaw in methodology, 

may suggest that teleconnections to tropical indices will not be found using a DBN approach 

based on continuous timeseries due to intermittent or state-dependent linkages. Arctic-

midlatitude linkages are also likely to be intermittent in nature and dependent on background 

flow characteristics (Section 5.7; Kolstad and Screen 2019) yet are consistently picked up in 

DBNs at submonthly timescales in chapters 4 and 5. This could reflect the importance of 

poleward heat and moisture fluxes into the Arctic with amplified jet stream patterns and 

blocking regimes (Kapsch et al, 2016; Yang and Magnusdottir, 2017) rather than an 

interpretation that favours the unidirectional influence of AA processes on jet stream 

configurations (as in Francis and Vavrus, 2015). Support for this hypothesis is found in the 

fact that bidirectional AA-midlatitude links are found in all the networks of chapters 4 and 5 

(with the sole exception of section 5.7.2). 

 For subseasonal-to-seasonal atmospheric circulation prediction, sea ice concentration 

provides predictive skill for the winter NAO in both atmospheric (Scaife et al, 2014) and 

statistical models (Hall et al, 2017; 2019; Wang et al, 2017). Considerable uncertainty remains 

surrounding the relative importance of AA as a driver, however, and DBNs could play a part 

in identifying regions of AA that provide predictive skill. Regions of sea ice loss, like the 
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Barents-Kara Seas, can provide predictive skill from the preceding autumn even when no 

direct causal link can be found in atmospheric modelling studies (Blackport and Screen, 2019). 

Links between the Barents-Kara region and the NAO are found for up to monthly-averaged 

timescales in Chapter 5. Furthermore, the North Atlantic and Barents-Kara regions of the 

Arctic and stratospheric polar vortex variability are found to be robustly linked to midlatitude 

circulation at submonthly timescales. The proportion of variance analysis conducted in 

Chapter 5 may point to a difference in submonthly to monthly drivers; at submonthly 

timescales, the Barents-Kara Seas and NAO (and thus the ‘phase’ or speed and latitudinal 

position of the jet stream) share a strong interdependence, whilst at monthly averages the 

stratospheric polar vortex has a greater influence through flow weakening and downward 

wave propagation which projects onto a negative NAO pattern. This suggests two paths 

forward for analysis: firstly, establishing whether the BK-NAO covariability is simply a 

manifestation of internal variability as suggested in Warner et al (2020), and secondly to 

quantify the relative importance of stratospheric flow influences which include tropical (e.g. 

Scaife et al, 2017b) and midlatitude (e.g. Kim et al, 2014) sources. 

6.2 Study Limitations 

 DBNs with a single HV were found to have a relatively high predictive accuracy when 

used to investigate climate teleconnections, picking out informative relationships between 

large areas of climatic variability. As with other statistical approaches and atmospheric models 

however, they are limited by some drawbacks.  

• Data Quality The biggest problem with graphical model approaches as applied to 

climate data is the averaging of data over large areas, whereby the weighted spatial 

average over a ‘gridbox’ of latitude and longitude is taken. All non-index data (spatio-

temporal NetCDF files) was processed in this way by necessity, to produce 1-

dimensional time series for BN analysis. Some datasets, most noticeably Eurasian 

snow cover extent which is used in several important studies (Kretschmer et al, 2016; 

Hall et al, 2017), are averaged over regions that cannot possibly be informative in 

terms of the complex patterns of variability they are designed to capture at daily 

resolutions. As detailed in Chapter 4, the gridboxes used for snow cover meant that 

the method used for calculating anomalies rendered these datasets useless as 

indicators of snow variability. Whilst this did not seem to be the case for other datasets, 

care must be taken when averaging over such large regions. 

• Stratospheric Drivers No long-lead (>10 days) linkages were identified for the 

variables included in BNs. The submonthly timescale focus of this research may miss 

important long-lead relationships, especially those thought to act on midlatitude 

extremes through the stratosphere (Kim et al, 2014; Kretschmer et al, 2016). None of 
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the variables were connected to midlatitude circulation through the stratosphere, so 

the timescale focus may have biased the results in favour of tropospheric linkages, 

and could be part of the reason that no tropical influences were found. 

• Structural Uncertainties The ideal reconstruction of the North Atlantic midlatitude 

climate system is an impossible task, at least using observed data and a network 

approach. Whilst this project attempted to represent as many potential drivers of Euro-

Atlantic midlatitude circulation as possible, results are hampered by noisy data and the 

complexity of the climate system being modelled, and the selection of variables may 

have relied too heavily on the literature and expert knowledge. 

• Edge Deletion Finally, the results of the structure-learning phase with the PC 

algorithm, whilst interesting from a climatological perspective, meant that the DBN 

code would not run as the graph was not fully directed. Bidirectional arcs were removed 

to turn the pDAG produced into a DAG to allow the DBNs to run. This was done 

manually to ensure that collider structures were maintained. Ebert-Uphoff and Deng 

(2012a) also used this approach to establish edge direction and create fully directed 

graphs. ‘bnlearn’ (Scutari, 2010) has an operator that can infer the direction of an 

undirected edge based on the lowest p-value, the highest score or highest bootstrap 

probability, which could be useful if the pDAG does not contain collider structures that 

make direction choice obvious for the user. Studies that are intent on proving causality 

with a graphical model approach use multiple lagged copies of the same dataset to 

use conditional independence tests as indicators of causal relationships (e.g. Barnes 

et al, 2019). Whilst this method has other problems, direction is clear in the structure 

results as the express purpose is to look for drivers of response variables. 

6.3 Future Work 

6.3.1 Recommendations 

 A number of recommendations for future work seem appropriate given the findings and 

limitations of the research presented here. To allow for the inclusion of large-scale variables 

like Eurasian and North American snow cover extent, and to increase the complexity of 

variable selection, the Response-Guided Causal Precursor Detection (RGCPD) scheme 

(Kretschmer et al, 2017; Di Capua et al, 2019) could remove the need for large gridboxes of 

spatial data. RGCPD detects regions of spatial data that drive variability in a response 

variable, for example the jet stream. A number of tropical datasets could then be identified as 

causal precursors, potentially including sea surface temperatures (SSTs) and precipitation 

(Hall et al, 2017) or outgoing longwave radiation (OLR). Data, especially SSTs, may be too 

noisy for any significant relationships to be picked up. Global gridded precipitation datasets, 

which could be used as a proxy for tropical variability if detected as a causal precursor by the 
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RGCPD method, have a number of inconsistencies detailed in Sun et al (2017) which limit 

their reliability for use in climate teleconnection studies and model validation. RGCPD must 

also be used in conjunction with expert knowledge, and care must be taken when using it to 

identify regions of interest as it can return spurious correlations. 

 Further study looking to build on this analysis would also benefit greatly from better 

automation of the lead and lag process. Whilst bidirectional edges were found for AA and 

midlatitude variables throughout this study in the structure-learning phase of networks, a 

single direction was required for all of them to function as DBNs and perform inference to 

quantify model accuracy. Running a number of lead and lag times for variables could 

potentially establish direction; for example, regions of AA could hypothetically impact the jet 

at short lead times with the jet in turn becoming a driver of AA at short lag times. Indeed, CCF 

plots may have captured this as the maximum lag value in Fig. 5.2 (i.e. 0 lag), resulting in 

bidirectional edges. In reality, these kinds of results can be rare in graphical model analyses 

and users should make sure they are not tampering with parameters until the results meet 

expectations. Full automation of the lead and lag process however could have removed some 

of the longer-duration linkages like the ENSO-jet maximum correlation (-155 days, see section 

5.3) which likely do not reflect a physical teleconnection in light of the 2-week North Atlantic 

midlatitude circulation response found in other studies (Baldwin and Dunkerton, 2001; Scaife 

et al, 2017a; Hardiman et al, 2019; see also section 5.6 above). 

 A simple extension of this project could be the addition of more variables. Whilst 

problems with overfitting occurred with relatively small numbers of variables (4 or 5 in Chapter 

4), the 7-variable networks of Chapter 5 performed accurately with a single hidden variable. 

Datasets missing in this study, like the QBO and multi-decadal modes of natural variability, 

could be included in future analyses (see Smith et al, 2016; Hall et al, 2015; 2017) but the 

near-term focus must be the identification of a tropical signal using graphical model 

approaches to fully measure the relative contribution of remote drivers in observational data. 

More complex networks with a larger number of variables like the 12 predictor datasets used 

in Hall et al (2017) are possible using a DBN approach, as Trifonova et al (2015; 2017; 2019) 

show. 

 Another simple variation on the research presented here would be the use of 

contiguous (non-continuous) timeseries. Overland and Wang (2018) suggest finding 

climatological explanations for individual cold midlatitude, anomalously warm Arctic events for 

example, rather than investigating the seasonal averages of indices. Individual events, or 

contiguous timeseries of similar events over the past 40 years for example, can be analysed 

in a DBN setup where individual arcs found in a DAG could be quantified in terms of their 

strength or score contribution if using ‘bnlearn’ (Scutari, 2010). 
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Datasets can also be manipulated in simple ways to reveal potential linkages between 

midlatitude circulation proxies and remote drivers. Discretising datasets, as Barnes et al 

(2019) do for the NAO, stratospheric polar vortex and MJO indices, significantly reduces noise 

which can lead to more relationships between variables in the structure-learning phase. Whilst 

this may work in the case of the MJO, where amplitude can be summarised to turn it into a 

binary variable where MJO forcing is either ‘on’ or ‘off’, this may be less applicable and even 

inadvisable for other metrics like jet stream latitude. 

6.3.2 A Way Forward 

 This study can be seen as part of a growing effort to understand the Arctic contribution 

to jet variability using machine learning approaches (Kretschmer et al, 2016; 2017; Barnes 

and Simpson, 2017; Samarasinghe et al, 2019; Francis et al, 2018; Barnes et al, 2019). 

Graphical models paired with structure learning algorithms prove to be a robust tool for 

investigating complex climate teleconnections in a network which includes Arctic, midlatitude 

and tropical variables, and may provide a valuable alternative to correlation-based networks 

and studies (Ebert-Uphoff and Deng, 2012a). DBNs with a single HV were found to have 

predictive accuracy, subject to a number of important caveats; their addition does not 

guarantee network accuracy will increase. Network performance was high despite the noisy 

internal variability of North Atlantic flow and the low signal-to-noise ratio of AA-midlatitude 

covariability, suggesting any nonlinearity in linkages did not substantially interfere with 

accurate node prediction in the test dataset. HVs should be considered for inclusion in leading 

graphical model packages like ‘bnlearn’ (Scutari, 2010) in R and ‘TiGraMITe’ (Runge et al, 

2015) in the python language; both are modern, fully open source packages and written in 

open source languages. Studies using them could then increase the reproducibility of their 

results by uploading the code online. The Bayes Net Toolbox (Murphy, 2001b), solely due to 

being written in MATLAB, prevents this option for this project. Open source languages and 

packages are generally considered good practice for scientists to publish in a transparent 

manner. 

 Finally, further study should continue to use a definition of AA that captures its full 

signal and include non-Arctic drivers in analyses with methods suitable for non-linear linkage 

detection (Cohen et al, 2018a; Overland and Wang, 2018). Sea ice does not adequately 

capture the full AA signal, so observational and atmospheric model approaches should move 

beyond simply using sea ice to drive midlatitude circulation variability or extreme surface 

temperature anomalies. This project has found robust teleconnections using near-surface 

temperature to represent AA variability, inspired by Barnes and Simpson (2017), suggesting 

that this might be a more appropriate AA metric. 
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  Atmospheric models will be the primary method through which robust teleconnection 

mechanisms central to midlatitude circulation and extreme weather will be found, due to the 

large date ranges simulations can be run for and their ability to reliably detect causal 

relationships. Coordinated model experiments using atmosphere-ocean coupled models are 

therefore of great importance to the progression of the Arctic-midlatitude field and the 

establishment of a consensus regarding the relative importance of Arctic processes, and a 

number of modelling groups are already working towards this end (Cohen et al, 2018a). DBNs 

are found to be a consistent and reliable method for analysing climate teleconnections, 

especially when good practice is observed regarding the use of structure-learning and hidden 

variables detailed above. Further study seeking to apply DBNs should note they can suffer 

from over-parameterisation and will lead to inaccurate variable prediction where graph 

structure deviates significantly from the climate system we are trying to model, as shown in 

the jet-PoV links in Chapter 5 results. Graphical models would prove themselves more than 

capable in a supporting role as the results from large coordinated modelling projects are 

published in the near future. 
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Appendix 

A1 Chapter 3 Figures 

 

 

 

 

 

 

Figure A3.1 Daily 35-Year DAG K=7.  
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Figure A3.2 Predicted fit for all variables in Daily 35-Year K=7 BN. 
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Figure A3.3 Predicted fit for all variables in Monthly 35-Year BN (2000 split). 
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Figure A3.4 Predicted fit for all variables in Monthly 35-Year BN (2000 split) K=5. 
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Figure A3.5 Predicted fit for all variables in Monthly 35-Year BN (2000 split) K=10. 
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A2 Chapter 4 Figures 

 

 
 

HMM DBN 1HV DBN 2HV 

a) Train data    

850 NAtlantic 0.67 1.23 7.36 

ENSO 0 0 0.01 

Jetlat 0.15 1.48 4.9 

NAO 0.09 0.05 0.09 

b) Test data 
   

850 NAtlantic 3.21 2.77 1.92 

Nino3.4 0.05 0.05 0 

Jetlat 0.11 0.35 0.74 

NAO 0.11 0.1 0.06 

Table A4.1 Sum of squared error (SSE) for each variable in the HMM, DBN1HV and DBN2HV networks 
described in 4.3.1 split into a) Train data and b) Test data. All data is normalised (divided by the sample 

size) for direct comparison between training and testing datasets. 



 
112 

A3 Chapter 5 Figures 

  

 

 

 

 

Figure A5.1 Predictive accuracy scatter plots for all variables of the 5-day Jet HV DBN; predicted test dataset 
values plotted against the observed values to visually assess predictive skill among models. 
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Figure A5.2 As with Fig. A5.1, but for the 10-day Jet HV DBN. 
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Figure A5.3 As with Fig. A5.1, but for the 15-day Jet HV DBN. 



 
115 

 

 

 

 

 

 

 

 

Figure A5.4 As with Fig. A5.1, but for the monthly Jet HV DBN. 
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Figure A5.5 Predictive accuracy scatter plots for all variables of the 5-day MI HV DBN; predicted test dataset 
values plotted against the observed values to visually assess predictive skill among models. 
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Figure A5.6 As with Fig. A5.5, but for the 10-day MI HV DBN. 
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Figure A5.7 As with Fig. A5.5, but for the 15-day MI HV DBN. 



 
119 

 

 

 

 

 

 

 

Figure A5.8 As with Fig. A5.5, but for the monthly MI HV DBN. 
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HV state BK NAt POV Jet/MI NAO MJO ENSO 

a) Jet DBN        

1 3.8 3.81 3295.51 8.16 0.7 0.74 0.8 

2 3.91 3.16 2784.57 7.73 0.88 0.69 0.67 

3 3.5 3.44 2756.17 7.99 0.77 0.7 0.6 

b) MI DBN        

1 3.28 3.62 3109.53 0.44 0.79 0.68 0.64 

2 3.47 3.67 2611.93 0.43 0.8 0.75 0.59 

3 3.76 3.49 2837.93 0.47 0.74 0.73 0.68 

Table A5.1 Hidden state sd values of each variable for a) Jet DBN and b) MI DBN. 
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Figure A5.9 DAG of the AA era DBN with edges deleted (5.7.3). Dotted lines indicate edges 
coded into the model (i.e. HV edges), solid represent learned edges. 
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Figure A5.10 Predictive accuracy scatter plots for all variables of the pre-AA DBN (1); predicted test dataset 
values plotted against the observed values to visually assess predictive skill among models. 
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Figure A5.11 As with A5.10, but for the AA DBN (2). 



 
124 

 

 

 

 

 

 

 

 

Figure A5.12 As with A5.10, but for the AA DBN with edges deleted. 
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 Table A5.2 SSE for each variable at the 5-day, 10-day, 15-day and monthly time resolutions for 
a) jet DBN training data b) jet DBN testing data c)MI DBN training data and d)MI DBN testing 

data. All data is normalised (divided by the sample size) for direct comparison between 
training and testing datasets. 

 
5 day 10 day 15 day monthly 

a) Jet DBN train data     

850 BKSeas 0.21 0.4 0.42 0.39 

850 NAtlantic 0.32 0.57 0.48 0.65 

POV 0.01 54.08 2283.1 0.42 

Jetlat 0.24 0.54 12.36 0.65 

NAO 0.31 0.62 0.46 0.7 

MJO 0.05 0.18 0.24 0.64 

ENSO 0 0 0 0.06 

b) Jet DBN test data     

850 BKSeas 0.05 0.1 0.11 0.15 

850 NAtlantic 0.08 0.13 0.25 0.13 

POV 0 77.84 197.12 0.06 

Jetlat 0.05 0.98 0.18 0.11 

NAO 0.07 0.06 0.2 0.27 

MJO 0.01 0.06 0.07 0.12 

ENSO 0 0 0 0.01 

c) MI DBN train data     

850 BKSeas 168.76 0.29 0.33 0.5 

850 NAtlantic 0.33 0.55 0.64 0.68 

POV 0.01 0.05 0.17 327.72 

MI 0.84 3.21 1.79 2.03 

NAO 3.91 0.59 0.42 1 

MJO 0.04 0.23 0.25 0.49 

ENSO 0 0.01 0.01 0.21 

d) MI DBN test data     

850 BKSeas 33.32 0.1 0.14 0.17 

850 NAtlantic 0.08 0.18 0.25 0.11 

POV 0 0.01 0.09 2982.41 

MI 0.18 0.59 2.89 4.27 

NAO 0.73 0.12 0.29 0.31 

MJO 0.01 0.05 0.05 0.17 

ENSO 0 0 0.02 0.03 
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