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Summary 

The aims of the lectures are: 

(i) to explain what concentration fluctuations are; 
(ii) to illustrate their importance in environmental impact assessment; 

(ii i)  to discuss some factors relevant to the quantitative description 
of concentration fluctuations; 

  (iv) to describe a framework for this description. 

It will be clear from the lectures, and from others later in the Workshop that there is 
rapidly increasing awareness of the importance of concentration fluctuations and, 
consequently, much research activity into their properties. Not surprisingly there are 
still many unsolved problems, and a by-product of the lectures will be to highlight one 
or two of the most important. 
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Lecture 1.       Concentration Fluctuations in the Atmosphere1. 

1. TURBULENCE AND ATMOSPHERIC DISPERSION 

The Earth's atmosphere is in turbulent motion. This means that the velocity T(x,t) of the   
air at every point x and every time t is a random variable. This fact is a matter of          
common experience, and there is no contradiction between it and the further fact that the 
evolution of T(x, t) with x and t is governed by the laws of mechanics. For the         
atmosphere the most important of these laws are those of conservation of mass almost   
always adequately represented by 
∇ .T = 0 (1) 
in the atmosphere (equation of continuity), and Newton's Second Law (which becomes the 
Navier-Stokes equations for fluids like air). 
In these two lectures it will not be necessary to use the Navier-Stokes equations. (But          
note that they are necessary in a full description of an air pollution problem.) From our      
point of view, it is necessary only to recognize that the randomness of the velocity field   
causes the concentration Γ (x,t) of a pollutant in the atmosphere to be random also. The 
pollutants considered in these lectures will be those - the vast majority in                         
practice – whose concentrations are determined by two processes, namely the random 
transport (advection) by the air that has already been mentioned, and molecular diffusion.         
I do not, in particular, consider processes like chemical reactions. The equation governing      
Γ (x,t) is then 

,).(
t

2Γ∇=Γ∇Τ+
∂
Γ∂ κ         (2) 

κ  is the molecular diffusivity.   In addition there are boundary and initial conditions. where 
A selection of some typical data records of concentrations is given in Figures l(a) to l(f).      
While there are interesting and important differences between these records, of which            
some will be discussed later, each of them clearly indicates the randomness of Γ (x,t).            
This randomness is driven by the term involving T in (2). 
Given that the concentration of a pollutant in the atmosphere is not predictable, it is       
necessary to consider (a) whether the unpredictability is important and, if so, (b) how it           
can be incorporated into quantitative work on environmental impact assessment. 

Before considering these questions it will be useful to introduce some notation and to        
make some fundamental points. 

2. BASIC CONCEPTS AND NOTATION 
ΓWhether or not the unpredictability of (x,t) is practically important, its quantitative     

scientific description clearly requires the use of statistics. Statistical ideas and techniques 
are applicable only in relation to an underlying population, or ensemble. For the 
situation of atmospheric dispersion that we are considering, the ensemble is a precisely 
defined set of "experiments". The definition serves only to determine unambiguously 
whether, or not, any particular release is a realisation within the ensemble (and therefore 
covered by the statistical description). From the scientific point of view, what the         
definition is does not matter; from the practical point of view it is crucial. The               
definition is then likely to include, apart from obvious points like the location(s) of the     
sources and the relevant local geography, details of the releases (nature, duration etc.) and      
the meteorological conditions. Further discussion of the ensemble concept is given by 
Chatwin (1982) [J. Haz. Mat.6, 213-230] and Cam and Chatwin (1985) [J. Haz. Mat.       
11, 281-300]. 
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Given the ensemble, there is a definite (albeit unknown) probability distribution describing 
the possible values of  (x,t);  in particular there is a probability density function  (pdf), Γ
denoted by  p(θ;x,t),  and defined for each θ ≥ 0 by 

θd
dP ( θ; x , t )  = {prob[ (x,t}≤θ}.      (3) Γ

Another, perhaps more useful, interpretation of p(θ;x,t) is obtained by noting that         
p(θ;x,t)δθ is the probability that θ≤ (x,t) < θ + δθ (for δθ small and positive). I                Γ
shall discuss many aspects of the pdf in my second lecture, and it is only necessary to          
note some obvious properties and definitions here. Since concentrations cannot be        
negative 

p(θ;x,t) = 0 for all θ < 0 ;       (4) 

since p(θ;x,t) is a pdf 

∫
∞

=
0

.1),;( θθ dtxp  (5) 

In practice there will be a maximum possible concentration θ (x,t) but, because max
equation (2) cannot be solved for general T(x,t), its precise value is unknown. Clearly 
p(θ;x,t) = 0 for all θ > θ  so the upper limit in (5) can be replaced by θ  if max  max
required, but this is not usually useful. The ensemble mean (or simply mean) 
concentration will be denoted by C(x,t) and is obtained from p(θ;x,t) in the standard way: 

∫
∞

=
0

.d)t,x;(p)t,x(C θθθ  (6) 

The concentration fluctuation  c(x,t)  is defined (following the classical definitions of  
Reynolds for the turbulent velocity field) by: 

Γ (x,t) = C (x,t) + c (x,t)  . (7) 
2c (x,t) and is obtained from p(θ;x,t) by   The mean square fluctuation will be denoted by 

the equation 

∫∫
∞∞

−=−=
0

22

0

22 .)t,x(Cd)t,x;(pd)t,x;(p)]t,x(C[)t,x(c θθθθθθ  (8) 

2c 2c (x,t)} is the variance of Of course (x,t) and { (x,t)} - the rms concentration - is its Γ
2cstandard deviation. The ordinary statistical symbols for C and  would be µ and σ2 

respectively; unfortunately this usage is not yet conventional in work on turbulent          
diffusion, including atmospheric dispersion. 
 
It requires emphasis that, as the notation suggests, p(θ;x,t) does depend explicitly on x             
and t for most ensembles; so therefore do statistical properties of (x,t) like C(x,t) and          Γ

2c (x,t). This is true, for example, when the ensemble is concerned with dispersion              
following sudden release of a finite quantity of pollutant into the atmosphere.          
Consideration of this type of ensemble is relevant in assessing the environmental     
consequences of the accidental release of flammable materials (like liquid natural gas) from    
either a fixed container (like a storage tank) or a mobile one (like a ship or a lorry). In            
such a case the pollutant cloud tends to spread, and therefore dilute, as it is dispersed by
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the atmospheric turbulence and the pdf must change with t at each point x (and with x            

2cat each time time t). Figure 2 shows estimates of C(x0,t) and (x0,t ) at one location             
X0 for Thorney Island; the fact that the estimates depend on t illustrates the Comments    

2cabove. For such an ensemble estimates of statistical properties like C and  can be   
obtained only by taking appropriate averages of the results of many repeat experiments;        
in essence this was the method used to obtain the estimates shown in Figure 2. 

There are some ensembles where p(θ;x,t) does not depend explicitly on t, or where this is         
a reasonable practical approximation. This has to be regarded as an exceptional    
circumstance, but it is sometimes appropriate in considering the environmental consequences 
of a continuous release of material like smoke from a factory chimney. Clearly the      
weather characteristics, and the rate of release of material, must, on average, not change     
with t during the dispersion period of interest; the technical term for such an ensemble             

2cis statistically stationary. Although statistical properties like p, C and can still be      
estimated by averages over repeat experiments, it is much more convenient (and much 
cheaper) to obtain such estimates by exploiting a mathematical property that holds for        
such ensembles, namely that ensemble means can be estimated from the results of one 
experiment by appropriate time averaging. For statistically stationary ensembles, the   
statistical properties do not depend on t; thus, for example, C(x,t) = C(x), and it can be 
estimated by Ĉ(x;T), where 

∫
+

−
=

T
2
1t

T
2
1t

,dss)Γ(x,
T
1T)(x,Ĉ         (9) 

where the integrand Γ (x,s) is obtained from the record of a single experiment. 

Because statistically stationary ensembles are the simplest type conceptually, and because 
they are the cheapest to investigate experimentally, there has been undue emphasis on        
their properties. (For example, all the data records in Figure 1 are from such            
ensembles!) Partly for this reason, it is very often assumed that all averages (or means) 
considered in studies of phenomena like atmospheric dispersion that involve turbulence are 
time averages. Such an assumption is wrong and potentially dangerous. 
I want to make one further comment on this important point. Not only is the simplest          
(and most natural) theory of atmospheric dispersion not concerned with time-averaged 
quantities, but these quantities are themselves random variables with their own statistical 
theory (which is not simply related to that given above). It is still, unfortunately,           
common to see the word "concentration" used without qualification in papers dealing with 
safety standards or, inexcusably, papers reporting original research, and only careful perusal 
makes it clear that what is meant is a "time-averaged concentration". Moreover the          
period over which the time average is taken is often not stated, or difficult to discover.             
(I have seen periods ranging from 10s to 1hr!) However, as noted, the time-averaged 
concentration is a random variable, whose statistical properties depend explicitly on the   
period of integration, i.e. on T in equation (9). This is illustrated by Figure 3. Hanna        
(1984) [Atmos. Envir., 18, 1091-1106] quotes evidence that, even when T is as large as 1      
hr, the time-averaged concentrations can exhibit a factor of two variability even for a         
fixed hourly average wind velocity. If time-averaged concentrations are to be considered,        
it should be because they are what is relevant to the assessment of a particular     
environmental hazard and then the choice of T should be determined by the same 
considerations. The subject of the last few paragraphs is discussed further by Chatwin and 
Allen (1985) [Tellus, 37B, 46-49]. 

3. THE IMPORTANCE OF CONCENTRATION FLUCTUATIONS 
All experimental evidence known to me shows that the degree of unpredictability in  is     Γ
not small. One measure of unpredictability is the intensity I(x,t), where 
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.t)t)}/C(x,(x,c/{t)(x,I 2=         (10) 

Typically values of I are of order unity, as evidenced for example by the 0.07s data in 
Figure 3. The variation of I with x in statistically stationary ensembles is interesting. 
Consider, as a specific example, the plume downwind of a factory chimney. At a fixed 
distance x downwind, experiments show that I has a minimum value on the centre-line         
whose value depends on factors like the chimney diameter and is usually of order 1. As 
distance from the centre-line increases, so do the values of I; some typical profiles are          
shown in Figures 4 and 5. The variation of I with downwind distance x along 
the centre-line is a problem that has generated some controversy; that controversy will not               
be discussed here since it is difficult to understand why some researchers regard it as so 
important. 
There is therefore no doubt nowadays that the magnitude of the statistical variability in                  
any measurement of (x,t) is (at least) comparable with the value of the measurement                Γ
itself. There is therefore very much purely scientific interest in gaining a deeper             
understanding of the quantitative behaviour of properties like  (x,t) and p(θ;x,t). 2c

But is it necessary to take account of variability in assessing the environmental impact of                
air pollution? Or is it adequate for practical purposes to continue to use, and to refine,               
models - like Gaussian plume models - that consider only the mean concentration (or                  
time-averaged concentrations) and take no account of fluctuations? To some extent the           
answers to these important questions depend on the particular pollutant and on the                
particular hazards that are of concern. But I am in no doubt that, in general,                        
fluctuations ought to be an integral part of air quality models, and I shall devote the             
remainder of this lecture to discussing two particular examples. 

4.        FLAMMABLE GASES 

A mixture of a  flammable  gas  like  methane (CH4) and  air  will  support a flame  in the  
presence of an ignition source only if the concentration by volume of the flammable gas             
lies between the appropriate flammable limits (or stoichiometric limits) for that gas, i.e. 
only if 

,)t,x( 21 θθ <Γ<          (11) 

where θ1, and θ2 are properties of the gas. For CH4, θ, = 0.05 and θ2 = 0.15. With                          
the statistical viewpoint considered in these lectures, it follows that the probability P(x,t)                
that flammable conditions (i.e. potential danger) exist at point x at time t in a gas-air                
mixture is given by 

.d)t,x;(p)t,x(P 2

1

θθ
θ

θ∫=         (12) 

Thus P(x,t) is equal to the area between that part of the curve of p(θ;x,t) agaionst θ,                         
and the θ -axis, that is bounded by the lines θ = θ1, and θ = θ .  2

This definition is illustrated in Figure 6, taken from Birch, Brown and Dodson 1980 [18th 
International Symposium of the Combustion Institute, Waterloo, Canada; also Report No.            
MRS E 374 (June 1980), Midlands Research Station, British Gas]. This section of the               
lecture is based on that work. The shaded area in two of the diagrams in Figure 6 is                     
equal to P(x,t) defined in equation (12). By means of a series of experimental                
measurements of p(0;x,t), Birch, Brown and Dodson were able to evaluate P(x,t) by          
integration, and the solid curves in Figures 7(a) and 7(b) show some of their results.                     
(The methane jets used in these experiments were statistically stationary so, in fact, p and 
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P are independent of t. Also the curves are smooth because numerical interpolation and 
smoothing techniques were applied to the values of P determined through use of (12).) 
Birch, Brown and Dodson also made direct measurements of P(x) by counting the    
proportion of 400 repetitions in which a spark of fixed duration and energy (l00mJ) led          
to flame formation or ignition. The results are shown by the solid points (and associated    
error bars) in Figures 7(a) and 7(b). It can be seen that there is very good agreement     
between the two independent sets of measurements of P(x). This is strong experimental 
confirmation for the validity of the statistical description of the dispersion process that led     
to equation (12). 
By contrast, Birch, Brown and Dodson asserted that the mean concentration C(x) is "of      
little value in assessing flammability", and this remark, that invalidates many conventional 
methods, is based on comparisons like that shown in Figure 7(b) where the dashed curve, 
which is the profile of C(x), bears no relation to the data. 
 
5. TOXIC GASES 
This section summarizes some results in three papers [Griffiths and Megson 1984 Atmos. 
Envir. 18, 1195-1206; Ride 1984 J. Haz. Mat. 9, 235-240; Griffiths and Harper 1985                
J. Haz. Mat. 11, 369-372]. 
Early models of the degree of harm produced in a population by exposure to a toxic gas     
were based on the dosage, defined as the product of the "concentration" and the time of 
exposure. Use of this definition presumed - wrongly - that the concentration was a        
constant, but it was for other reasons that such models were replaced. In particular           
limited experimental data indicated that it was necessary to account for the different 
physiological response to high concentrations by weighting the concentration in the    
definition of dosage. This led to the consideration of a new dosage (which Ride calls 
"dosement" to distinguish it from the earlier usage) D where, for a time of exposure T to          
a concentration , Γ

∫ Γ=
T

0

n ,dtD           (13) 
and the index n is greater than 1 and depends on the gas. Understandably (and          
fortunately) there is little experimental evidence to fix values of n, but Griffiths and       
Megson suggest 2.00-2.75 for NH3 and 2.75 for C12, while Ride quotes a value of 1.8            
for HCN. 
In practice, use of D continued to assume that Γ in equation (13) was constant in time so       
that D was replaced by ΓnT. As is obvious from Figures l(a) to l(f) this assumption is 
manifestly incorrect. The papers quoted above showed by very simple (and still         
unrealistic) modelling that inclusion of the fluctuations in Γ would give greatly enhanced 
mortality rates. Figure 8, taken from Griffiths and Harper, shows the type of argument          
that was used. It was based on comparing the effects of the two different exposure          
patterns shown in the top diagram, and the remarkable change in mortality rates is shown        
in the bottom diagram. In technical terms, the differences in the exposure patterns          
illustrate the phenomenon of intermittency, to be considered in some detail in my second 
lecture. 
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Lecture 2.  Air Pollution Probability Density Functions 

 
1.  SOME THEORETICAL CONSIDERATIONS 

Given that it is important for practical, as well as scientific, reasons to know more about       
the statistical properties of Γ (x,t), this lecture will consider some of the problems involved    
in this, and some recent theoretical and experimental research. Although I have not, and    
shall not, put primary emphasis on complicated mathematics, I do want at the beginning        
of this lecture to discuss briefly some theory because it provides a clear context for the 
remainder of the lecture. 

Manipulation of equation (2), using equation (1) and (in some situations) the Navier-Stokes 
equations, establishes equations for the statistical properties that are of concern. In the       
same way that C and c denote - see equation (7) - the mean and fluctuating components          
of Γ, I use U and u to denote, respectively, the mean and fluctuating components of the 
velocity field T, so that T = U + u. Both U and u are functions of x and t, and both                
can be shown to have zero divergence, i.e. they satisfy the equation of continuity                       
- equation (1). Then equation (2) is the same as 

.cC}C. 22 ∇+∇=+++∇+
∂
∂

+
∂
∂ κκucuUc{UC

t
c

t
c      (14) 

The mean of equation (14) - and I emphasize again that the term "mean" signifies a  
probability average like those in equations (6) and (8) and not a time-average (or a           
space-average) – is 

,Cκuc{..(UC)
t
C 2∇=∇+∇+
∂
∂ }        (15) 

Where the overbar denotes an ensemble mean (or probability average) as is still 
(unfortunately) the conventional notation - see the remarks after equation (8).  

Equation (15) is perhaps the simplest equation in the whole of turbulence that exhibits the 
closure problem which bedevils all theoretical research into the subject. Even if it can be 
assumed that the mean velocity field U(x,t) is known, or if it can be modelled with         
sufficient accuracy, the term involving uc has introduced a new unknown field that is    
important (for otherwise there would be no effect of turbulence) and is not closely related          
to C(x,t). It is easy to obtain an equation for uc but that introduces new unknowns that             
are important. There is no known way of terminating the process that is theoretically 
satisfactory in the sense, particularly, that the termination process (or closure hypothesis)        
that may be chosen for equation (15) does not lead to any scientifically well-based     
termination process for equations - see equations (16) and (17) below - for other             
statistical properties of  Γ(x,t), equations that also exhibit - but more severely - the             
closure problem. This serious objection applies to the concept of eddy diffusivity that is 
frequently used - and with some success - to close equation (15). I will therefore make              
no further reference to eddy diffusivities in these lectures, although I expect other         
Workshop lecturers to do so! 

It is straightforward to derive equations for other statistical properties. Those for 2c (x,t)       
 and p(θ;x,t) are: 

,)c(2)c(C.uc2}uc{.)Uc(.
t

c 22222
2

∇−∇=∇+∇+∇+
∂
∂ κκ     (16) 

and 
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.θ]}-t)(x,[ΓδΓ)({
θ

κpκ}θ])tx,([Γδu{.(Up). 2
2

2
2 ∇

∂
∂

−∇=−∇+∇+
∂
∂  ( 1 7 )  

In equation (17), the symbol 6 denots the Dirac delta function. 
The left-hand sides of both equations (16) and (17) exhibit the closure problem in the  
same way that equation (15) does, namely by the appearance of new unknown terms 
involving combinations of the velocity and concentration fields. But in those equations 
there are also new closure problems with the last term on the right-hand side of each 

2cequation. The term in equation (16) represents the dissipation of through the action     
of molecular diffusion; this is an essential process in understanding the behaviour of          

2c  (x,t). Except for the mean concentration C(x,t) - the term involving K in equation         
(15) can probably be neglected for all practical purposes - molecular processes are 
important to the proper understanding of all statistical properties of Γ(x,t). Unfortunately 
such understanding is not yet available (except for special circumstances not relevant to 
atmospheric dispersion). 
Further discussion of the points summarized above, and more mathematical details, are 
given in Pope (1985) [Prog. Energy Combust. Sci. 11, 119-192] and Chatwin (1989) 
[Lecture Series 1989 -03, Turbulent Shear Flows, von Karman Institute for Fluid 
Dynamics, Rhode-St-Genese, Belgium; also Brunei University Department of Mathematics 
and Statistics Technical Report TR/02/89]. 

2.     THE EXPERIMENTAL DETERMINATION OF p(θ;x,t) 
Given that the theoretical difficulties associated with the full equations governing p(θ;x,t) 
and the other statistical properties of Γ(x,t) have so far proved insuperable, progress must 
be made in other ways. This section deals with experimental methods. 
Laboratory determinations of p(θ;x,t) for statistically stationary ensembles have been 
commonly made for about 15 years. Some examples have already been seen in Figure 6, 
and others are shown in Figures 9 and 10. These graphs show many interesting features.     
In the first place, it is obvious from Figure 6 that the shape of the graph of p against θ    
varies substantially from place to place in the flow. On the centre-line, the graph has a  
single maximum (is unimodal) at a non-zero value of  θ, and has approximately the shape 
associated with the familiar Normal distribution. (Since concentrations cannot be negative 
the distribution cannot be exactly Normal, and the graph has indeed a slight negative 
skewness with a tail towards low values of θ.) As one moves away from the centre-line,    
the value of p that is measured at θ = 0 first becomes non-zero and then increases.           
Also the position of the maximum moves towards θ =0, the value of p at this maximum 
decreases,  and  two of the curves  have  as a  consequence  two  maxima  (are bimodal), one 
at θ = 0. The explanation of these facts is easy to understand, at least qualitatively, and 
applies to all pdfs of concentration including those in Figures 9 and 10, and all those that 
apply to atmospheric dispersion. As dispersion progresses following release, the turbulent 
motion causes more and more clean fluid (i.e. ambient air in atmospheric dispersion) to   
mix with the pollutant. This mixing is more "advanced" at the edges of a cloud or         
plume (because the ambient fluid is "nearer"); hence the probability of encountering       
clean fluid (corresponding to θ = 0) is greater at the edges than in the centre. This 
explanation does not predict that bimodal distributions are inevitable in some parts of the 
cloud or plume and, indeed, there are many investigations in which the experimentally 
determined curves of p against θ are everywhere unimodal. The maximum is at θ = 0      
near the edges and, in some cases, at all points. In other cases the position of the     
maximum switches to a non-zero value of θ at points near enough to the centre, and this 
value of θ increases as the centre is approached. 

Most experimental determinations of p are made by smoothing histograms like those shown 
in Figure 10, but other methods have been used. The curves in Figure 6, for example,     
were obtained by determining the first eight central moments of Γ (x,t) as functions of x, 
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and then applying a maximum likelihood procedure. Given the enormous number of        
readings of Γ that can now be handled with modern computing techniques, there is a       
need for more research into the most efficient way of estimating p, and into the statistical     
errors associated with the chosen method. 
Another factor in such experimental work is the types of instrument response that can 
contaminate experimental readings of Γ. One type is instrument smoothing, occurring       
because the input concentration signal is averaged, sometimes over time, sometimes over  
volume (and sometimes both). Such averaging is also inevitable because there is very             
fine-scale spatial (and temporal) structure within dispersing distributions of pollutant, down       
to scales of order 10-4m, and no existing instrument can yet resolve such scales with     
guaranteed accuracy. The records in Figures 1(c) to 1(f) are, of course, output signals of 
concentration that have  resulted from such smoothing; even if, as is likely, these records           
do not reproduce the input signals with total integrity, they do indicate the presence of              
the fine-scale structure. A second type of instrument response is noise arising from a           
variety of sources including physical vibrations and electronics. Such noise is itself           
random, and has its own pdf. Even if there were no instrument smoothing the output                 
pdf would be the convolution of the input pdf (which is what is required) and the noise            
pdf. It is therefore necessary to consider methods of deconvolution; any such method     
obviously requires independent knowledge of the noise pdf which can be obtained by     
operating the measurement system in the absence of pollutant. The histograms in                 
Figure 10 are believed to be significantly affected by noise. Unfortunately many      
experimenters account for noise in an unsatisfactory way by choosing a threshold value θT       
of concentration and assuming that all measured values of concentration below θT are         
really zero. Leaving aside doubts about the precise choice of θT,  which sometimes          
appears to be very arbitrary, the whole procedure cannot be acceptable since it does not 
distinguish between true zero values of concentration (if any - see discussion of        
intermittency later) and small non-zero values below θT. This objection has added weight          
in those frequent situations where the maximum of the graph of p against θ is observed               
to be at θ = 0 (but see the discussion below). Moreover it allows the inclusion of             
measured values of Г above  that, because of contamination by noise, are really below          Tθ
θT All the questions in this paragraph have been investigated for several years by a               
team at Brunei that includes myself and Dr. Nils Mole. A paper by Mole is to appear              
soon in Atmospheric Environment and earlier papers can be obtained by writing to me. 
For reasons of cost and convenience, much experimental work whose results are intended          
to be relevant to atmospheric dispersion is carried out in wind tunnels. Clearly the value             
of the results for atmospheric dispersion depends on the accuracy with which salient         
features of the real situation are modelled. Nowadays there is little fundamental difficulty       
with reproducing terrain or topography or source characteristics, although each requires         
great care and effort by the experimental team. But it is difficult, perhaps impossible, to       
model certain features of the air flow in the atmosphere especially those that involve large   
scales of the order of tens of metres, or even kilometres. Such features include the deep 
convective mixing associated with unstable atmospheres and, above all, the meandering of          
a plume or cloud caused by relatively large--scale horizontal eddies. In a wind tunnel               
such motions are inevitably inhibited by the presence of the roof and the side walls. (By 
meandering is meant the motion of the plume (or cloud) as a whole, and this              
phenomenon is normally responsible for a substantial fraction of the intensity of the 
concentration fluctuations, the remainder being due to within-plume structure. See, for    
example, Ride (1988) [J. Haz. Mat. 19, 131-137].) 
2. INTERMITTENCY 
All the concentration records in Figures l(a) to l(f) have a characteristic feature, namely           
that there are periods of high "activity" separated by periods of quiescence. This feature              
is invariably described as intermittency and measured by the intermittency factor γ(x,t),     
defined by  
 
γ(x,t) = prob[Γ(x,t) > 0]  .        (18)  
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(This definition is consistent with the use of the symbol γ in Figure 8.) As will be seen   
briefly in the next section, the concepts of intermittency and intermittency factor are      
widely used in models of p(θ;x,t) for the assessment of air quality. 
However Chatwin and Sullivan (1989a) [Phys. Fluids Al, 761-763) and (1989b) [7th 
Symposium on Turbulent Shear Flows, Stanford Univ., 29.4.1 - 29.4.6] have recently cast 
doubt on the validity of the definition in (18). I believe the points we made there are 
conceptually so important that I would like to indulge myself by summarising them here.  
First of all, for reasons discussed above, the presence of noise and fine-scale spatial     
structure has led many experimenters to use a concentration threshold θT, so that they  
replace (18) in practice by 

γ ( x , t )  = prob[Γ(x,t) >θ ]  .       (19) T

For reasons discussed in the second of our papers cited above, use of (19) gives measured 
values of γ that must depend significantly on the choice of θT. This is not satisfactory      
since θT is not connected with the real concentrations of the pollutant. 

However there is an even more fundamental objection to either (18) or (19). It is                
well-known that the presence of molecular diffusion (the term in equation (2) involving κ) 
ensures that Γ(x,t) is everywhere positive, i.e. equation (18) strictly applied gives 

γ  (x, t)  =  1          (20) 

for all x and all t > t1 (where t1 is the time when dispersion began with a steady          
continuous source represented by t1 = -∞). Thus equation (18) is a meaningless          
definition. 

These objections are not to the concept of intermittency itself but to the use of the        
definition (18) of intermittency factor to quantify the concept. In fact intermittency is    
intended to measure a property of the dispersion of a pollutant that is entirely           
independent of the existence of molecular diffusion, but depends only on the statistical 
properties of the turbulent velocity field T(x,t) and factors such as the source geometry         
and the pollutant release details. In the hypothetical situation in which there is no        
molecular diffusion and in which the pollutant has concentration θ1 at release, there is no 
mechanism for transferring pollutant from one fluid (air) volume to another. This    
hypothetical situation is illustrated schematically in Figure 11 and it is clear that then      
p(θ;x,t) has the simple form: 

.)(δ]γ[1)θ(θδγp 010 t)(x,t)(x, −+−=     (21) 

Here γ0 is the intermittency factor defined by equation (18) - which is sensible when           
there is no molecular diffusion - and depends only on the velocity field and on source 
properties. A consequence of (21) is that the mean concentration C(x,t) is related to γ0                    

 by γ But, as already noted, C(x,t) is the one statistical property of the        0 .1 C=θ  

concentration field unaffected by molecular diffusion. Sullivan and I then took the natural    
step of proposing a new definition of intermittency factor in real situations with molecular 
diffusion that was consistent with this result for the hypothetical situation. This new    
definition to replace (18) is: 

γ(x,t)   = C(x, t) /θ    .         (22) 1

The practical worth of the ideas in this section awaits further testing. 
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4.     THE STRUCTURE OF p(θ;x,t)  IN ATMOSPHERIC DISPERSION 
It has been conventional to use the intermittency factor in models for p(θ;x,t) for use in 
atmospheric dispersion. The model used has been 

( ) ( ) ,tX,θ;gt)](x,γ[1tX,θ;ft)(x,γt)x,p(θ( −+=      (23) 
where f and g are themselves pdfs with the properties given in equations (4) and (5).   
Equation (23) is an obvious generalisation of equation (21) and f is the conditional pdf of       
Γ when attention is restricted to cases where, using the conventional (but misguided) ideas 
that motivate equation (18), Γ(x,t) is positive; in the same way g(θ;x,t) must then be 
δ(θ). 
Fortunately, when equation (22) is adopted as a definition of γ(x,t), equation (23) is an      
exact representation of p(θ;x,t). However, while f and g still have the properties in      
equations (4) and (5), their interpretations are somewhat different. Thus f(θ;x,t) is the           
pdf of Γ(x,t) conditional on the concentration in the hypothetical situation, identical in all 
respects except for the absence of molecular diffusion, being equal to the source  
concentration θ1; it follows, for example, that 

,   t)dx,;(f  t)(x,C
0f θθθ∫
∞

=        (24) 

is the ensemble mean concentration over the fluid (air) particles that emanate from the   
source. The function g(θ;x,t) is the conditional pdf when the hypothetical concentration is 
known to be zero; the presence of molecular diffusion in the real situation means that               
it can no longer be exactly δ(θ). 
Irrespective of the invalidity of the definition of γ in equation (18), there can be no            
doubt of the potential practical utility of equation (23). Much attention has been focussed      
on the ability of a simple structural form for f(θ;x,t) to model adequately hazards arising         
in practice. By the term "simple" is meant a pdf in which only a few parameters need              
to be specified, e.g. two or three. Such parameters include, for example, the            
(conditional) mean and variance. Among the forms for f that have been, and are being, 
investigated are the lognormal, the truncated (or clipped) Normal and the beta. Details            
of some recent investigations can be found in many of the references cited in these        
lectures but there is no sign yet of a consensus. I would hope to be able to discuss              
some of the issues in this research in conjunction with my lectures. 
 
I would like to thank Dr. Tirabassi for inviting me to give these lectures, and 1CTP for 
arranging financial support. The research of myself and my colleagues in the areas of   
turbulent diffusion and atmospheric dispersion has been sponsored by many organisations    
and I would particularly like to acknowledge the UK Ministry of Defence, the Common 
Market, the Natural Science and Engineering Research Council of Canada and NATO. 
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Fig.  1 .  Example  of  typical  s t r ipchar t  of  concentra t ion as  a  funct ion of  t ime.  

 
From: Hanna, S.R.1984 Concentration fluctuations 
    In a smoke plume. Atmos Envir.  18,1091-1106. 



  
  
 Groundlevel concentration fluctuations from a buoyant and a non-buoyant source   
 

Figure 1 (b) 

 
Fig. 7. Upper Profile of C in an experiment with non-buoyant effluent, at X = 1.33. Lower, photograph of 

fluorescing dye within the laser beam at the same lime. 
From: Deardorff, J.W. and Willis, G.E. 1984 Groundlevel concentration 

fluctuatuons from a buoyant and a non-buoyant source within a 
laboratory convectively mixed layre. Atmos. Envir. 18, 1297-1309 

 
 



 
    Figure 1 (c) 

 
 Figure 7. Simultaneous ion concentration measurements at vertically separated points. Upper trace, 1.5 m;1ow 

μ1.45 m; ion collectors, 30 m downwind of a continuous point source of ~0.15 A at 2.2 m height; wind spe 
2-5 m/s; slightly unstable conditions, 22.8.75. 
F r o m :  J o n e s ,  C . D .  1 9 7 7  I o n  c o n c e n t r a t i o n  v a r i a t i o n  a t  s h o r t      

D i a t a n c e s  d o w n n i n d  o f  c o n t i n u o u s  a n d  g u a s i - i n s t a n t a n e o u s  
p o i n t  s o u r c e s .  P e s t i c .  S c i .  8 ,  8 4 - 9 5  
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Figure 1 (d) 

 
Fig. 1. Concentration signals on plume centre line, showing effects of fetch and source size. Elevated Source, 
= 0.19 H (i) d = 3 mm, x/z  = 2, (ii) d = 8.5 mm, x/z  = 2, (iii) x/z, = 16 (iv) x/z, = 32. 50 m s per  zs s s

division. 
 

F r o m :  F a c k r e l l ,  J . E .  a n d  R o b i s ,  A . G .  1 9 8 2  T h e  e f f e c t  o f  s o u r c e  
Size on concentrat ion f luctuat ions in  plumes.  Bound.-Lay.  
Meteor. 22, 335-350. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 Figure 1 (e) 

 
Fig. 2. An example of the signal which appears in the seven detectors in the cross-wind direction during one minute. 
 

From: Dina r ,  N . ,  Kap l an ,  H .  and  k l e i ma n ,  M .  1 9 8 8  c h a r a c t e r i z a t i o n  
o f  c o n c e n t r a t i o n  f l u c t u a t i o n  o f  a  s u r f a c e  p l u me  i n  a  n e u t r a l  
b o u n d a r y  l a y e r .  Bound .  - Lay .  M e t e o r .  45 ,  157 -175 .    

 



 
 

Figure 1 (f) 
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F r o m :  M y l n e ,  K . R .  1 9 8 9  E x p e r i me n t a l  me a s u r e me n t  o f  

c o n c e n t r a t i o n  f l u c t u a t i o n s .  I n  p r o c .  4 t h  I n t .  W o r k s h o p  
o f  w i n d  a n d  W a t e r  T u n n e l  M o d e l l i n g  o f  A t m o s p h e r i c  
f l o w  a n d  D i s p e n s i o n  ( K a r l s m h e  1 9 8 8 ,  e d i t e d  b y  A . G .  
Robins). 



 

 

Fig. 3 Estimates of C and ( )2
1

c   for the mast at (400m, 250m) in 
trial 019.  Data taken at 0.4m height. 
3(a): ------ data; ------  ∧c

 3(b): ------ data; ------ ( )212c  
Recall that the dashed curves in these two figures are 
estimates for the 5 trials that were combined, and 
therefore do not vary from trial to trial for a given 
sensor location.  Of course the solid curves do vary 
from trial to trial since they are the observed values 
of concentration. 

 
From: Cam, K.K., sterrell ,  S.J.  and Chatwin, P.C.1988 Analysis of 

Therney isaland data: variability and box models.  In stably 
S t r a t i f i e d  F l o w  a n d  D e n s e  G a s  D i s p e r s i o n  ( O U P ,  e d i t e e  b y  
J.S. pultock ), 205-231.
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 From: Sawford,B.L., Frost,C.C. and Allan, T.C. 1985 
   Atmospheric boundary-layer measurements of  
   concentration statistics from isolated and multiple 
   sources. Bound.-Lay. Meteor. 31,249-268. 
 
 

 

Figure 5 

 
 
 
 
 
 



 

 

Figure 6 

From: Buch, A.D., Brown, D.R. and Dodson M.G. 1980 
  Ignition probabilities in turbulent mixing flows. 18th

International symposium of the combustion Institute, 
  Watedoo, Canada. 
   

    NOTE  
For each  diagram the value of r/d is given, where r 
denotes distance from the jet centre-line and d is the jet 
diameter. Each set of data is taken at 10d downwind of 
the source. 



Figure 7 

7(a) 

7(b) 

 
 

Source as in Figure 6. Z denotes downwind motance. Other 
notation is given in the text. 

 



Figure 8 

The two different concentration 
time histories considered. 
In the bottom diagram, 
γ is the value of t1 / t2.  
that is varied to obtain the 
curves there).
 
Constant Concentration 
for time T 

% mortality 
rate 

Definition of intemittency
γ is given above and in 
the text. 

From: Griffiths, R.F. and Harper, A.S. 1985 A speculation on the 
importance of concentration fluctuations in the estimation of toxic 
response to irritant gases. J. Haz. Mak. 11, 369-372. 



 
 
 

From Bilger, R.W., Antorna, R.A. and Sreenivasan, K.R. 1976
Ditemintion of intermittency from the probability density
function of a passive scalar. 

Figure 9. 

Phys

 

 

. Flinds 19, 1471-1474.

Axisymmetric 
Heated Jet. 

From: Bilger,  Antonia & Sreenivasan 1976 

Heated cylinder 
wake Data of 
Larue & Libby 1974 

From Bilger, Antonia & Sreenivasan 1976. 



 

 

 

Figure 10. 

0-5 min 0-10 min 

0-15 min 0-20 min 

 

Analaysis by N.T. Hajian (Brunel Univ.) of 
data taken in the field at RAF 
cartington by R.F. Griffiths (UMIST) 
and CD Jones (CDE porton). 
 
In figures 9 and 10,  
where θ  is defined in the text and 

 is a constant. 

,θθ is θ 0+′

0θ



 
  

Figure 11 
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