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Event-Triggered Mean-Square Consensus Control
for Time-Varying Stochastic Multi-Agent System
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Abstract—In this paper, the consensus control problem is
investigated for a class of discrete time-varying stochastic multi-
agent system subject to sensor saturations. An event-based
mechanism is adopted where each agent updates the control
input signal only when the pre-specified triggering condition is
violated. To reflect the time-varying manner and characterize
the transient consensus behavior, a new index for mean-square
consensus is put forward to quantify the deviation level from
individual agent to the average value of all agents’ states. For
a fixed network topology, the aim of the proposed problem is
to design time-varying output-feedback controllers such that, at
each time step, the mean-square consensus index of the closed-
loop multi-agent system satisfies the pre-specified upper bound
constraints subject to certain triggering mechanism. Both the
existence conditions and the explicit expression of the desired
controllers are established by resorting to the solutions to a
set of recursive matrix inequalities. An illustrative simulation
example is utilized to demonstrate the usefulness of the proposed
algorithms.

Index Terms—Multi-agent systems; Time-varying systems;
Mean-square consensus; Event-triggered control; Sensor satu-
rations.

I. I NTRODUCTION

The past decade has witnessed an ever-growing interest in
the study of so-called multi-agent systems (MASs) that have
found extensive applications in various areas including un-
manned aerial vehicles (UAVs) [22], autonomous underwater
vehicles (AUVs) [21], automated highway systems (AHSs) [2]
and mobile robotics [23]. Among popular research issues re-
garding MASs, the so-called consensus problem is concerned
with the process where a batch of interacting agents governed
by certain interconnection topology achieve a collective goal
(e.g. the same trajectory). Owing to their clear engineering
insights, the consensus behaviors of MASs have attracted a
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surge of research attention leading to a rich body of literature,
see [4], [9], [10], [18], [19] and the references therein.

Up to now, most MASs discussed in the literature have been
assumed to betime-invariant. This assumption is, however,
very restrictive as almost all real-world engineering systems
have certain parameters/structures which are indeedtime-
varying [1]. For such time-varying systems, a finite-horizon
controller is usually desirable as it could provide better tran-
sient performance for the controlled system especially when
the noise inputs are non-stationary, see [6], [8] for some recent
results. However, when it comes to the consensus of multi-
agent systems, the corresponding results have been scattered
due mainly to the difficulty in quantifying the consensus over
a finite horizon. It is notable that the consensus problem for
MASs with time-varying parameters has received some initial
research attention (see e.g. [11], [14], [26]). Nevertheless,
the research on time-varying multi-agent systems is far from
adequate and there are still many open challenging problems
remaining for further investigation. On the other hand, the
sensor saturation is a frequently encountered phenomenon
resulting from physical limitations of system components as
well as the difficulties in ensuring high fidelity and timely
arrival of the control and sensing signals through a possibly
unreliable network of limited bandwidth. In other words,
the sensor outputs are often saturated because the physical
entities or processes cannot transmit energy and power with
unbounded magnitude or rate. As such, it makes practical
sense to take the sensor saturation into account when dealing
with the output-feedback control problems for time-varying
MASs, which remains as an ongoing research issue.

On another research frontier, the event-triggered con-
trol/filtering strategies have recently become an attractive area
of research because of their capabilities in improving the
resource utilization efficiency by reducing the unnecessary
executions as compared to the traditional time-triggered mech-
anism, see [5], [6], [9], [10], [13], [17] and the references
therein. In the context of MASs, so far, much work has been
done for event-triggered consensus control and most available
results have been restricted to linear time-invariant MASs
only, see [7], [20] for instances. When it comes to the time-
varying MASs, the corresponding event-triggered schemes
have received very little research effort due probably to the
technical difficulty in handling the time-varying coupling
between the triggering mechanism and interaction topology in
case of communications among the agents. To the best of our
knowledge, the mean-square consensus control problem for
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time-varyingMASs with event-triggered mechanism has not
been adequately investigated, not to mention the case where
the sensor saturations are also involved. Such a situation has
motivated the present investigation.

In this paper, we endeavor to design an event-triggered
output-feedback controller for a class of discrete time-varying
stochastic MAS to reach a new kind of mean-square consensus
with guaranteed upper bound on the consensus index subject
to sensor saturations. In doing so, three technical challenges
are identified as follows: 1) how to define the consensus of
MASs in a time-varying context; 2) how to develop appropriate
analysis and synthesis techniques associated with time-varying
MASs; and 3) how to establish a unified framework to handle
the cross coupling among topology, time-varying parameters,
event-triggered mechanism as well as the sensor saturations?
In fact, the main purpose of this paper is to provide satisfactory
answers to these questions by launching a major study.

The contributions of this paper are outlined as follows:
i) the system model is comprehensive that takes stochastic
noises, time-varying effect and several engineering-oriented
constraints into simultaneous consideration; ii) the newly
proposed mean-square consensus index provides an intuitive
insight into the characterization of the transient behavior in
the consensus process; and iii) the proposed algorithm allows
much flexibility in making the trade-off between certain es-
sential performances (i.e., consensus accuracy and triggering
frequency).

The rest of this paper is organized as follows. Section
II formulates the event-triggered output-feedback consensus
control problem for discrete time-varying stochastic MAS
subject to sensor saturations. The main results are presented
in Section III where sufficient conditions for the MAS to
reach the mean-square consensus with guaranteed performance
are given in terms of recursive matrix inequalities. Section
IV gives a numerical example and Section V draws our
conclusion.

Notation R
n denotes then-dimensional Euclidean space,1n

denotes ann-dimensional column vector with all ones, andIn
denotes the identity matrix ofn dimensions. The notationX ≥
Y (respectivelyX > Y ), whereX andY are symmetric ma-
trices, means thatX−Y is positive semi-definite (respectively
positive definite).E{x} stands for the expectation of stochastic
variablex andE{x|y} for the expectation ofx conditional on
y. For matricesA ∈ R

m×n andB ∈ R
p×q, their Kronecker

product is a matrix inRmp×nq denoted asA⊗B. tr[A] means
the trace of matrixA and diag{F1, F2, . . . , Fn} denotes a
block diagonal matrix whose diagonal blocks are given by
F1, F2, . . . , Fn. The notationcoln{xi} represents the column
vector

[
xT1 xT2 · · · xTn

]T
. diagn{A} and diagn{Ai}

denote the block diagonal matricesdiag{A,A, . . . , A} and
diag{A1, A2, . . . , An}, respectively.

II. PROBLEM FORMULATION

In this paper, the multi-agent system hasN agents which
communicate with each other according to a fixed network
topology represented by an undirected graphG = (V , E ,H )
of orderN with the set of agentsV = {1, 2, . . . , N}, the set

of edgesE ∈ V ×V , and the weighted adjacency matrixH =
[hij ] with nonnegative adjacency elementhij . If (i, j) ∈ E ,
thenhij > 0, elsehij = 0. An edge ofG is denoted by the
ordered pair(i, j). The adjacency elements associated with the
edges of the graph are positive, i.e.,hij > 0 ⇐⇒ (i, j) ∈ E ,
which means that agenti can obtain information from agentj.
Furthermore, self-edges(i, i) are not allowed, i.e.,(i, i) 6∈ E

for any i ∈ V . The neighborhood of agenti is denoted by
Ni = {j ∈ V : (j, i) ∈ E }. The in-degree of agenti is
defined asdegiin ,

∑

j∈Ni
hij .

Consider a discrete time-varying stochastic multi-agent sys-
tem described by the following state-space model:

xi,k+1 = Akxi,k +Bkui,k +Dkwi,k, (1)

yi,k = κ(Ckxi,k) + Ekvi,k, (2)

where xi,k ∈ R
n, yi,k ∈ R

q and ui,k ∈ R
p are, re-

spectively, the state vector, the measurement output and the
control input of agenti. Ak, Bk, Ck, Dk andEk are time-
varying matrices with compatible dimensions.wi,k ∈ R

ω

and vi,k ∈ R
ν (i = 1, 2, . . . , N) are mutually uncorrelated

zero-mean Gaussian white noise sequences. Denotew̃k ,

[wT
1,k · · ·w

T
N,k vT1,k · · · vTN,k]

T. The statistical properties of
wi,k andvi,k can be described as follows:

E
{
w̃k

}
= 0,

E
{
w̃kw̃

T
l

}
=

[
diagN{Wi,kδkl} 0

0 diagN{Vi,kδkl}

]

whereWi,k andVi,k (i = 1, 2, . . . , N) are all known positive
definite matrices, andδkl is defined by:

δkl =

{

I k = l

0 k 6= l

The saturation functionκ(·) in (2) is defined as

κ(r) , colq{κi(r
(i))} (3)

whereκi(r(i)) = sign(r(i))min{r
(i)
max, |r(i)|} with r(i) denot-

ing the ith entry of the vectorr.
Definition 1: Let U1 and U2 be real matrices withU ,

U2 − U1 > 0. A nonlinearityϕ(·) is said to satisfy the sector
condition with respect toU1 andU2 if

(
ϕ(y)− U1y

)T(
ϕ(y)− U2y

)
≤ 0. (4)

In this case, the sector-bounded nonlinearityϕ(·) is said to
belong to the sector[U1, U2].

Noting that if there exist diagonal matricesG1 andG2 such
that0 ≤ G1 < I ≤ G2, then the saturation functionκ(Ckxi,k)
in (2) can be written as follows:

κ(Ckxi,k) = G1Ckxi,k + ϕ(Ckxi,k) (5)

whereϕ(Ckxi,k) is a nonlinear vector-valued function satisfy-
ing the sector condition withU1 = 0 andU2 = G , G2−G1,
i.e., ϕ(Ckxi,k) satisfies the following inequality:

ϕT(Ckxi,k)
(
ϕ(Ckxi,k)−GCkxi,k

)
≤ 0. (6)
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In this paper, a control protocol of the following form is
adopted:

ui,k = Kkηi,k with ηi,k =
∑

j∈Ni

hij

(

yj,k − yi,k

)

(7)

where Kk is the feedback gain to be designed andηi,k
represents the updating signal feeding to the controller ofagent
i.

Let us now discuss the event-triggering mechanism to be
adopted. Suppose that the sequence of the triggering instants
is {kit} (t = 0, 1, 2, . . .) satisfying0 < ki0 < ki1 < ki2 < · · · <
kit < · · · , wherekit represents the time instantk when the
(t+ 1)-th trigger occurs for agenti. Then, fork > kit, define

ei,k , ηi,ki
t
− ηi,k (8)

with ηi,ki
t

representing the updating signal feeding to the
controller of agenti at the latest triggering timekit. Then, the
sequence of event-triggering instants is determined iteratively
by

kit+1 = inf{k ∈ Z
+|k > kit, eTi,kΩ

−1
i,k ei,k > 1} (9)

where Ωi,k > 0 is referred to as the triggering threshold
matrix.

Applying the event-triggering mechanism, we can rewrite
the updating signalηi,k defined in (7) as follows:

ηi,k =

{

0, k ∈ [0, ki0)

ηi,ki
t
, k ∈ [kit, k

i
t+1)

(10)

which implies that the controller input defined in (7) remains
a constant in the execution interval[kt, kt+1). Without loss of
generality, it is assumed thatηi,ki

t
= 0 whenk ∈ [0 ki0). The

control law can be now rewritten as

ui,k = Kk(ηi,k + ei,k), eTi,kΩ
−1
i,kei,k ≤ 1. (11)

Implementing control law (11) to MAS (1)–(2), we obtain
the following closed-loop system:

xk+1 =
(
IN ⊗Ak +Hk ⊗ (BkKkG1Ck)

)
xk

+ (IN ⊗Dk)wk +
(
Hk ⊗ (BkKkEk)

)
vk

+
(
Hk ⊗ (BkKk)

)
ϕk +

(
IN ⊗ (BkKk)

)
ek (12)

where

xk = colN{xi,k}, ek = colN{ei,k}, ϕk = colN{κ(Ckxi,k)},

wk = colN{wi,k}, vk = colN{vi,k},

Hk =








−deg1in h1,2 h1,3 · · · h1,N
h2,1 −deg2in h2,3 · · · h2,N

...
...

...
. . .

...
hN,1 hN,2 hN,3 · · · −degNin







.

In order to discuss the consensus performance of MAS (1)–
(2) in the mean square, we first denote the average state of all
agents by:

x̄k , E

{

1

N

N∑

i=1

xi,k

∣
∣
∣yk−1

}

=
1

N
E

{

(1TN ⊗ In)xk

∣
∣
∣yk−1

}

(13)

where yk−1 , colN{yi,k−1} represents the measurements
obtained at time instantk − 1. Then, at time instantk, given
the measurementsyk , colN{yi,k} (which means thatek is
also available according to (7)–(8)), we can calculatex̄k+1 by

x̄k+1 =
1

N
E

{

(1TN ⊗ In)xk+1

∣
∣
∣yk

}

= Akx̄k +
1

N

(
1TN ⊗ (BkKk)

)
ek. (14)

It should be pointed out that recursion (14) plays a pivotal role
in computing the expected average state at each time instant
and subsequently in obtaining the desired feedback gain. Such
a procedure will be discussed later in more detail.

Definition 2: The performance index of the mean-square
consensus for agenti (i = 1, 2, . . . , N) of the time-varying
stochastic multi-agent system (1)–(2) at time instantk is
defined by

Di,k , E

{(
xi,k − x̄k

)(
xi,k − x̄k

)T
}

. (15)

Remark 1:The performance indexDi,k of the mean-square
consensus characterizes the deviation level from the agenti
to the expected average of the statesx̄k at time instantk,
thereby reflecting the transient consensus accuracy duringthe
dynamical consensus process. Such an index, which can be
intuitively understood as the “distance” from agenti to the
expected center of the MAS (characterized byx̄k) at time step
k, is proposed in response to the consideration of the additive
noiseswi,k and vi,k, the event-triggered mechanism (9) as
well as the time-varying nature of MAS (1)–(2). In general, a
smallerDi,k (in the sense of matrix trace) is indicative of a
better consensus performance at time instantk.

Assumption 1:The initial values of each agent, namely,xi,0
(i = 1, 2, . . . , N) are known and satisfy

(xi,0 − x̄0)(xi,0 − x̄0)
T ≤ Γ0 (16)

whereΓ0 > 0 is a known positive definite matrix.
Definition 3: Let the undirected communication graphG ,

a sequence of triggering threshold matrices{Ωi,k}k≥0 and
a sequence of positive definite matrices{Γk}k≥0 be given.
The MAS (1)-(2) is said to reach mean-square consensus with
respect to the triple(G , {Ωi,k}, {Γk}) if

Di,k ≤ Γk, ∀i ∈ V , k ≥ 0. (17)

hold at each time instantk, whereDi,k is defined in (15).
Our objective of this paper is twofold. First, we aim

to design the sequence of output-feedback gains{Kk}k≥0

such that MAS (1)-(2) reaches mean-square consensus with
respect to(G , {Ωi,k}, {Γk}). Second, we aim to solve two
optimization problems which, respectively, minimizeΓk (in
the sense of matrix trace) to seek the locally best consensus
performance and maximizeΩi,k (in the sense of matrix trace)
to design the locally lowest triggering frequency at each time
instant.

III. M AIN RESULTS

Lemma 1:A symmetric matrix P ∈ R
ǫ×ǫ is positive

definite if and only if there existρl ∈ R
ǫ (l = 1, 2, . . . , ǫ)

such thatP =
∑ǫ

l=1 ρlρ
T
l and rank[ρ1 ρ2 · · · ρǫ] = ǫ.
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Lemma 2: (S-procedure [3]) Letψ0(·), ψ1(·), . . ., ψm(·) be
quadratic functions of the variableς ∈ R

n: ψj(ς) , ςTTjς
(j = 0, . . . ,m), where TT

j = Tj . If there exist τ1 ≥ 0,
. . ., τm ≥ 0 such thatςT(T0 −

∑m

j=1 τjTj)ς ≤ 0, then the
following is true:

ψ1(ς) ≤ 0, . . . , ψm(ς) ≤ 0 → ψ0(ς) ≤ 0. (18)

Lemma 3: (Schur Complement Equivalence) Given con-
stant matricesS1,S2,S3 whereS1 = ST

1 and0 < S2 = ST
2 ,

thenS1 + ST
3 S

−1
2 S3 < 0 if and only if

[
S1 ST

3

S3 −S2

]

< 0, or

[
−S2 S3

ST
3 S1

]

< 0. (19)

A. Consensus control subject to a fixed triple(G ,Ωi,k,Γk)

For simplicity of the following notation, we denote

Lσ,i ,
[
0 · · · 0
︸ ︷︷ ︸

i−1

Iσ 0 · · · 0
︸ ︷︷ ︸

N−i

]
,
(
σ = {n, q}

)

Nk , [aij ]N×N with aij ,

{

(1−N)/N, i = j

− 1/N, i 6= j

T1,k , diag{−1,LT
n,iLn,i, 0, 0}, Ek , Hk ⊗ (BkKkEk),

T2,k , diag
{

−1, 0,LT
q,iΩ

−1
i,kLq,i, 0

}

, Dk , IN ⊗Dk,

Wk , diagN{Wi}, Dk , DT
k L

T
n,iΓ

−1
k+1Ln,iDkWk,

Vk , diagN{Vi}, Ek , ET
k L

T
n,iΓ

−1
k+1Ln,iEkVk,

Π̄12 , IN ⊗ (AkFk) +Hk ⊗ (BkKkG1CkFk),

Π̄k ,
[
0 Π̄12 −Nk ⊗ (BkKk) Hk ⊗ (BkKk)

]
,

Ψ̄k ,
[
−
(
1N ⊗ (GCk)

)
x̄k −IN ⊗ (GCkFk) 0

]
,

Ψk ,
1

2

[
0 Ψ̄T

k

Ψ̄k 2InN

]

.

Moreover, by Lemma 1, the matricesWk and Vk can be
decomposed byWk =

∑ǫ

l=1 ϑl,kϑ
T
l,k andVk =

∑ε

l=1 πl,kπ
T
l,k

with ϑl,k ∈ R
ǫ andπl,k ∈ R

ε (ǫ = Nω, ε = Nν).
Theorem 1:Let the triple(G , {Ωi,k}, {Γk}) be given. MAS

(1)–(2) reaches mean-square consensus with respect to the
triple (G , {Ωi,k}, {Γk}) if there exist a sequence of real-valued
matrices{Kk}k≥0, sequences of positive scalars{γi,k}k≥0

and{λi,k}k≥0, sequences of non-negative scalars{τ
(1)
i,k }k≥0,

{τ
(2)
i,k }k≥0 and {τ

(3)
k }k≥0 (i = 1, 2, . . .N) such that the

following recursive linear matrix inequalities (RLMIs) are
true: [

−γi,k ϑ̄Tk
ϑ̄k −diagǫ{Γk+1}

]

≤ 0, (20)

[
−λi,k π̄T

k

π̄k −diagε{Γk+1}

]

≤ 0, (21)

[
−Θ̃k Π̄T

kL
T
n,i

Ln,iΠ̄k −Γk+1

]

≤ 0 (22)

where

ϑ̄k =
(
Iǫ ⊗ (Ln,iDk)

)
colǫ{ϑi,k},

π̄k =
(
Iε ⊗ (Ln,iEk)

)
colε{πi,k},

Θ̃1 = 1− (γi,k + λi,k)−
∑N

i=1

(

τ
(1)
i,k + τ

(2)
i,k

)

,

Θ̃2 =
∑N

i=1
τ
(1)
i,k L

T
n,iLn,i,

Θ̃3 =
∑N

i=1
τ
(2)
i,k L

T
q,iΩ

−1
i,kLq,i,

Θ̃k = τ
(3)
k Ψk + diag

{

Θ̃1, Θ̃2, Θ̃3, 0
}

(23)

with Fk ∈ R
n×n being a factorization ofΓk (i.e., Γk =

FkF
T
k ).
Proof: First of all, denotex̃i,k , xi,k − x̄k and x̃k ,

colN{x̃i,k}. By subtracting (14) from (1), we obtain

x̃i,k+1 =xi,k+1 − x̄k+1

=Akxi,k +Bk

(
Kk(ηi,k + ei,k)

)
+Dkwi,k

−
(

Akx̄k +
1

N

(
1TN ⊗ (BkKk)

)
ek

)

. (24)

Taking (12) into consideration, we can easily acquire

x̃k+1 =xk+1 − (1N ⊗ In)x̄k+1

=
(
IN ⊗Ak +Hk ⊗ (BkKkG1Ck)

)
xk

+
(
Hk ⊗ (BkKk)

)
ϕk + (IN ⊗Dk)wk

+
(
Hk ⊗ (BkKkEk)

)
vk +

(
IN ⊗ (BkKk)

)
ek

− (1N ⊗ In)Akx̄k −
1

N

(
(1N1TN )⊗ (BkKk)

)
ek

=
(
IN ⊗Ak +Hk ⊗ (BkKkG1Ck)

)
xk

+Dkwk + Ekvk +
(
Hk ⊗ (BkKk)

)
ϕk

− (1N ⊗Ak)x̄k −
(
Nk ⊗ (BkKk)

)
ek. (25)

The rest of the proof is performed by induction. It follows
directly from (16) that, whenk = 0, Di,0 ≤ Γ0 (∀i ∈ V ) is
satisfied. Supposing thatDi,k ≤ Γk holds at time instantk,
it remains to prove thatDi,k+1 ≤ Γk+1 also holds with the
condition given in the theorem. Next, it can be easily verified
that if

E{(xi,k − x̄k)(xi,k − x̄k)
T} ≤ Γk, (26)

then there existszi,k ∈ R
n with E{zi,kzTi,k} ≤ In such that

xi,k = x̄k + Fkzi,k (27)

whereFk ∈ R
n×n is a factorization ofΓk (i.e.,Γk = FkF

T
k ).

Hence, withzk , colN{zi,k}, it follows from (27) that

xk = (1N ⊗ In)x̄k + (IN ⊗ Fk)zk. (28)

With the help of (28), we obtain from (25) that

x̃k+1 =xk+1 − (1N ⊗ In)x̄k+1

=
(
IN ⊗Ak +Hk ⊗ (BkKkG1Ck)

)

×
(
(1N ⊗ In)x̄k + (IN ⊗ Fk)zk

)

+
(
Hk ⊗ (BkKk)

)
ϕk + (IN ⊗Dk)wk

+
(
Hk ⊗ (BkKkEk)

)
vk − (1N ⊗Ak)x̄k

−
(
Nk ⊗ (BkKk)

)
ek

=(1N ⊗Ak)x̄k +
(
IN ⊗ (AkFk)

)
zk

+
(
Hk ⊗ (BkKkG1CkFk)

)
zk + (IN ⊗Dk)wk

+
(
Hk ⊗ (BkKk)

)
ϕk +

(
Hk ⊗ (BkKkEk)

)
vk

− (1N ⊗Ak)x̄k −
(
Nk ⊗ (BkKk)

)
ek

=(IN ⊗Dk)wk +
(
Hk ⊗ (BkKkEk)

)
vk

+
(
IN ⊗ (AkFk) +Hk ⊗ (BkKkG1CkFk)

)
zk
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−
(
Nk ⊗ (BkKk)

)
ek +

(
Hk ⊗ (BkKk)

)
ϕk

=
(
IN ⊗ (AkFk) +Hk ⊗ (BkKkG1CkFk)

)
zk

−
(
Nk ⊗ (BkKk)

)
ek +

(
Hk ⊗ (BkKk)

)
ϕk

+Dkwk + Ekvk. (29)

Subsequently, by denoting

ξk ,
[
1 zTk eTk ϕT

k

]T
, (30)

Πk ,
[
Dkwk + Ekvk Π̄12

−Nk ⊗ (BkKk) Hk ⊗ (BkKk)
]
, (31)

we can further express̃xk+1 in (29) as follows:

x̃k+1 = xk+1 − (1N ⊗ In)x̄k+1 = Πkξk. (32)

Next, it follows from Lemma 3 that

E{zi,kz
T
i,k} ≤ In ⇒ E{zTi,kzi,k} ≤ 1

⇒ E{ξTk T1,kξk} ≤ 0 (33)

whereT1,k is defined previously.
By the same token, we can know from (11) that the vector

ei,k satisfies
eTi,kΩ

−1
i,kei,k ≤ 1, (34)

which can be described byξk as follows:

ξTk T2,kξk ≤ 0 (35)

whereT2,k is defined previously.
Similarly, inequality (6) which characterizes the constraints

resulting from the sensor saturations can be rewritten as
(
(IN ⊗ In)ϕk

)T
(

ϕk −
(
IN ⊗ (GCk)

)
xk

)

≤ 0. (36)

Substituting (27) into (36) leads to

ϕT
k (IN ⊗ In)

(

ϕk −
(
IN ⊗ (GCk)

)

×
(
(1N ⊗ In)x̄k + (IN ⊗ Fk)zk

))

≤ 0,

which can be equivalently expressed byξk as

ξTk Ψkξk ≤ 0 (37)

with Ψk being defined previously.
So far, in terms of the vectorξk, we have converted all

the constraints imposed on the time-varying MAS (1)–(2) into
certain inequalities (i.e. (33), (35) and (37)). It now remains
to show thatΓk+1 ≤ 1 holds if the condition of this theorem
is satisfied at time instantk. To this end, by means of Lemma
3, the set of RLMIs (22) is feasible if and only if

− Θ̃k + Π̄T
kL

T
n,iΓ

−1
k+1Ln,iΠ̄k ≤ 0. (38)

For brevity of later development, we denote

~Πk , Π̄T
kL

T
n,iΓ

−1
k+1Ln,iΠ̄k.

Substituting (23) into (38) yields

ξTk

(

~Πk − τ
(3)
k Ψk − diag

{

Θ̃1, Θ̃2, Θ̃3, 0
})

ξk ≤ 0.

After some tedious but straightforward manipulations, we
arrive at

ξTk

(

~Πk + Π̆k − τ
(3)
k Ψk −

N∑

i=1

(
τ
(1)
i,k T1,k + τ

(2)
i,k T2,k

))

ξk ≤ 0

(39)
whereΠ̆k , diag{γi,k + λi,k, 0, 0, 0} − diag{1, 0, 0, 0}.

By Lemma 2, it follows from (33), (35), (37) and (39) that

ξTk (
~Πk + Π̆k)ξk ≤ 0. (40)

According to Lemma 3, the set of RLMIs (20) holds if and
only if

−γi,k +
∑ǫ

l=1
ϑTl,kD

T
k L

T
n,iΓ

−1
k+1Ln,iDkϑl,k ≤ 0 (41)

which, by properties of matrix trace, are equivalent to

−γi,k +
∑ǫ

l=1
tr
[
DT

k L
T
n,iΓ

−1
k+1Ln,iDkϑl,kϑ

T
l,k

]
≤ 0. (42)

SinceWk =
∑ǫ

l=1 ϑl,kϑ
T
l,k, inequalities (42) imply

tr
[
Dk

]
= tr

[
DT

k L
T
n,iΓ

−1
k+1Ln,iDkWk

]
≤ γi,k. (43)

Along the similar line, it can be derived from RLMIs (21)
that

tr
[
Ek

]
= tr

[
ET
k L

T
n,iΓ

−1
k+1Ln,iEkVk

]
≤ λi,k. (44)

DenotingΠ̃k , [Dkwk+Ekvk 0 0 0] and taking into account
the statistical properties of random variableswk and vk, we
obtain

E{ξTk Π
T
kL

T
n,iΓ

−1
k+1Ln,iΠkξk}

=ξTk
~Πkξk + E{ξTk Π̃

T
kL

T
n,iΓ

−1
k+1Ln,iΠ̃kξk}

=ξTk
~Πkξk + ξTk diag{tr[Dk] + tr[Ek], 0, 0, 0}ξk. (45)

Therefore, it can be verified from inequalities (43), (44) and
(40) that the following is true:

E{ξTk Π
T
kL

T
n,iΓ

−1
k+1Ln,iΠkξk} − 1 ≤ 0. (46)

Applying now Lemma 3 to inequalities (46), we acquire

E{Ln,iΠkξkξ
T
k Π

T
kL

T
n,i} ≤ Γk+1 (47)

which implies thatDi,k+1 ≤ Γk+1 (i = 1, . . . , N) also hold
and the induction is now accomplished. Consequently, MAS
(1)–(2) reaches mean-square consensus and the proof is thus
complete.

It follows from Theorem 1 that the desired control protocols
could be a set if non-empty. An interesting issue would be
to look for certain optimal protocol among the feasible set
based on some criteria of engineering significance. In the
following, two optimization problems are discussed in order
to seek the locally best consensus performance and locally
lowest triggering frequency, respectively.
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B. Optimization Problems

Problem 1: Minimization of{Γk}k>0 (in the sense of matrix
trace) subject to fixed couple(G , {Ωi,k}) for locally best
consensus performance

Corollary 1: Let the pair(G , {Ωi,k}) be given. A sequence
of minimized {Γk}k≥0 (in the sense of matrix trace) can
be obtained if there exist real-valued matrices{Kk}k≥0,
positive scalars{γi,k}k≥0 and{λi,k}k≥0, non-negative scalars
{τ

(1)
i,k }k≥0, {τ (2)i,k }k≥0 and{τ (3)k }k≥0 (i = 1, 2, . . .N) solving

the following optimization problem:

min
Γk+1,Kk,γi,k,λi,k,τ

(1)
i,k

,τ
(2)
i,k

,τ
(3)
k

tr[Γk+1] (48)

s.t. (20)− (22).

Problem 2: Maximization of {Ωi,k}k≥0 (in the sense of
matrix trace) subject to fixed couple(G , {Γk}) for locally
lowest triggering frequency

Corollary 2: Let the pair(G ,Γk) be given. A sequence of
maximizedΩi,k (in the sense of matrix trace) is guaranteed
if there exist real-valued matrices{Kk}k≥0 and {Υi,k}k≥0,
positive scalars{γi,k}k≥0 and{λi,k}k≥0, non-negative scalars
{τ

(1)
i,k }k≥0, {τ (2)i,k }k≥0 and {τ

(3)
k }k≥0 (i = 1, 2, . . . , N) solv-

ing the following optimization problem:

min
Kk,Υi,k,γi,k,λi,k,τ

(1)
i,k

,τ
(2)
i,k

,τ
(3)
k

tr

[
N∑

i=1

αiΥi,k

]

(49)

s.t. (20)− (21) &

[

−Θ̂k ∗
Ln,iΠ̄k −Γk+1

]

≤ 0

where

Θ̂k =diag

{

Θ̃1, Θ̃2,
∑N

i=1
LT
q,iτ

(2)
i,k Υi,kLq,i, 0

}

+ τ
(3)
k Ψk

andαi > 0 are weighting scalars satisfying
∑N

i=1 αi = 1. The
triggering threshold matrixΩi,k can be computed byΩi,k =
Υ−1

i,k .
The proofs of Corollaries 1–2 are straightforward and thus

omitted.
Remark 2:Based on Theorem 1, Corollaries 1–2 convert

the original optimization problems to certain eigenvaluesprob-
lems (EVPs) for minimizing the sum of the eigenvalues (which
is equivalent to the matrix trace) of certain variables subject
to the RLMIs constraints. As discussed in [3], such EVPs
can be solved numerically using the interior-point method ef-
ficiently. Moreover, note that the control law is linear function
of the output deviations. Therefore, the suboptimal control
algorithms developed in Corollaries 1–2 can only be applied
to the linear output feedback control case. The corresponding
optimal consensus control problem via nonlinear feedback is
one of problems deserving our further investigation.

Remark 3:So far, we have shown that 1) the solvability of
the addressed mean-square consensus problem is cast into the
feasibility of a set of RLMIs; and 2) the proposed strategy is
capable of making trade-off between the consensus accuracy
(characterized byΓk) and the triggering frequency (illustrated
byΩi,k) by making full use of the design flexibility. Moreover,

our main results can also be extended to the filtering/control
problems for systems discussed in [16], [25]. In particular, it
is worth pointing out that another one of our possible research
topics in future is to investigate MASs with much more
complicated dynamics such as the heterogeneous structuresin
[12], the Markovian jump parameters in [15] and the random-
event triggering mechanism in [10] due to their engineering
significance.

Remark 4: It should be pointed out that, within the pro-
posed framework, the feedback gainKk needs to be calculated
first by using the global information on the topologyHk

before the implementation. Then, according to the obtained
control protocol, the agents will reach the desired consensus
by using the neighbors’ information only. In this consensus
process, the global information is no longer required and,
therefore, the multi-agent system works in a distributed way.
It is worth mentioning that there have been some research
papers coping with the MAS control problems by utilizing the
global information (e. g., the topology structure or the max-
imum/minimum eigenvalues of Laplacian matrices), see [24]
for example. [4] is another quintessential example where both
centralized and distributed approaches have been developed to
deal with the event-triggered control for multi-agent systems.
Nevertheless, it would be interesting to develop a framework
within which the control protocol can be designed only using
the neighbors’ information of the agents, and this will be one
of our future research topics.

IV. I LLUSTRATIVE EXAMPLE

Consider a multi-agent systems with following parameters:

Ak =

[
1 + 0.2 sin(0.3k) 0.02 + 0.02 sin(k)

0.02 1 + 0.2 sin(2k)

]

,

Bk =

[
0.3 + 0.15 cos(3k)
0.3 + 0.12e−k

]

, Dk =

[
0.3 + 0.06 cos(3k)

0.03

]

,

Ck =
[
0.2 + 0.03 sin(k) 0.25 + 0.01 cos(4k)

]
,

Ek =0.3 + 0.03 sin(k), Wi,k = Vi,k = 1, G1 = 0.9, G2 = 1.

Let there be 4 agents connected according to an undirected
graphG with the associated matrixH set by

H =







−4 1 2 1
1 −4 1 2
2 1 −4 1
1 2 1 −4







In this simulation, the saturation threshold valuermax =
5. The functionϕ(Ckxi,k) in (5) can then be described by
ϕ(Ckxi,k) = κ(Ckxi,k)− 0.9Ckxi,k.

Set the initial values of agents’ states and the initialΓ0 as
follows:

x1,0 =

[
20
5

]

, x2,0 =

[
25
15

]

, x3,0 =

[
10
20

]

,

x4,0 =

[
5
30

]

, Γ0 =

[
147 −75
−75 226

]

.

Then, it can be easily checked that the initial condition
(16) is satisfied. By implementing the schemes proposed in
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Corollaries 1-2, the simulation results are shown in Table I,
Table II and Figs. 1–6.

Table I presents some of the output feedback controller
gains by solving the RLMIs in Corollaries 1–2. It can be
seen from Figs. 1–4 that the trajectories of each agent in
Problem 1 are much closer to the average state than those
in Problem 2, which indicates that the algorithm proposed in
Corollary 1 leads to a better consensus performance. As far as
the triggering frequency is concerned, the total triggering times
are shown, with a comparison to the conventional time-based
strategy, in Table II for both optimization problems. It canbe
observed that i) the proposed event-triggering mechanism can
effectively reduce the triggering frequency; and ii) the total
triggering times inProblem 2are less than those inProblem
1 which implies, as we anticipate, that the triggering frequency
can be further reduced if we implement the strategy provided
in Corollary 2. Such a finding can be further verified via the
comparison between Fig. 5 and Fig. 6.

TABLE I
THE OUTPUT-FEEDBACK CONTROLLER GAINS AT EACH TIME STEP

Time k = 0 k = 1 k = 2 k = 3 k = 4 · · ·

Kk (OP1) 0.35 0.28 0.16 0.25 0.36 · · ·

Kk (OP2) 0.27 0.46 0.35 0.57 0.22 · · ·

TABLE II
COMPARISON OF TRIGGERING TIMES

Methodology Time-based method Problem 1 Problem 2
Triggering times 180 150 112
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Fig. 1. The trajectories ofx(1)
i,k

and the averagēx(1)
k

for Problem 1.

V. CONCLUSION

In this paper, the event-triggered mean-square consensus
control problem has been investigated for a class of discrete
time-varying stochastic multi-agent system subject to sensor
saturations. First, a new definition of mean-square consensus
has been presented for the addressed MAS to characterize the
transient consensus behavior. Then, by means of an RLMI
approach, sufficient conditions have been established for the
existence of the desired controller. Within the established
framework, two optimization problems have been discussed to

optimize the consensus performance and triggering frequency,
respectively. Finally, an illustrative example has been exploited
to show the effectiveness of the proposed control scheme.
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