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Abstract—Recent convolutional neural network (CNN) has
been proved to be applied to automatic modulation recognition
(AMR) with high classification accuracy. However, in the case
of few samples, due to the lack of characteristic information of
modulation signals, CNN does not achieve the desired accuracy
requirements. In this paper, inspired by the capsule network
(CapsNet), we propose a new network structure named AMR-
CapsNet to achieve higher classification accuracy of modulation
signals with few samples, and analyze the influence of digital
capsule (DigitCaps) dimension on classification accuracy. The
simulation results demonstrate that when 3% of the samples
are used to train and the signal-to-noise ratio (SNR) is greater
than 2dB, the overall classification accuracy of the AMR-CapsNet
is greater than 80%. Compared with CNN, the classification
accuracy is improved by 20%.

Index Terms—Convolutional neural network (CNN), Auto-
matic modulation recognition (AMR), Capsule network (Cap-
sNet), Few-Shot learning, Deep learning.

I. INTRODUCTION

Automatic modulation recognition (AMR) can accurately
determine the modulation type of signals when the modulation
information is unknown [1]. Classicial AMR methods are
mostly based on likelihood [2] or feature based methods [3]-
[5]. Likelihood based methods mostly calculate the optimal
solution of the likelihood ratio or average likelihood ratio.
Amuru et al. estimated the complex channel state and different
noise distribution by the Gibbs algorithm, and then selected the
appropriate classification algorithm to distinguish the signals
[2]. However, the computational complexity of the likelihood
based methods is high, and simplified calculation often leads
to the lack of classification information, which causes the
degradation of classification performance.

In order to overcome the shortcomings of the likelihood
based methods, the feature-based methods are mostly com-
bined with machine learning (ML) algorithms to achieve
higher classification accuracy. Under multiple input and mul-
tiple output (MIMO) channels, Kharbech et al. compared the
computational complexity and accuracy of artificial neural
network (ANN), support vector machine (SVM), and k-nearest
neighbours in blind signal classification [3].

Recently, deep learning (DL) has been applied to AMR
[4], [5], which reduces human participation in the process

L. Li, J. Huang, Q. Cheng are with the School of Electronics and Information, North-
western Polytechnical University, Xi’an, 710129, China (e-mails: lilixin@nwpu.edu.cn,
{1047863620, chenggiangian } @mail.nwpu.edu.cn.

H. Meng is with Department of Electronic and Computer Engineering, Brunel
University London, Uxbridge, U.K..

Z. Han is with the Electrical and Computer Engineering Department, University of
Houston, Houston, TX 77005 USA (e-mails: zhan2@uh.edu).

and reduce the complexity of operations. As an important for-
ward neural network in DL, the convolutional neural network
(CNN) reduces the complexity of the model through weight
sharing and sparse connection, and automatically extracts
feature information from the input signal, which achieves the
classification of modulation signals. O’Shea et al. proposed the
use of CNN to distinguish among different modulation signals
[4].

However, in order to obtain high classification accuracy,
DL requires a large number of training samples. In most
cases, we are unable to obtain a sufficient number of samples,
resulting in poor classification performance of DL neural
networks in the case of few samples. Therefore, the concept of
few-shot learning is proposed [6]. A new network structure-
capsule network (CapsNet) is proposed to distinguish different
handwritten digits, and obtained better results than CNN on
the MNIST dataset [7].

In this letter, inspired by the CapsNet, we design the
CapsNet-based network structure to study the influence on the
classification accuracy of modulation signals. Specifically, the
characteristic information of the signals are extracted through
the CapsNet, and classified different modulation signals under
a fewer samples. The contributions of the letter are summa-
rized as follows:

e The new network structure named AMR-CapsNet is
proposed to improve the classification accuracy of the
modulation signals with few samples.

« In order to reduce the training parameters of the proposed
network, we explore the influence of the dimension
of the capsules in digital capsule (DigitCaps) on the
classification accuracy.

o Simulation results show that compared with other net-
work structures, when the training samples account for
3% of the total samples and the SNR is greater than
2dB, the overall classification accuracy of AMR-CapsNet
is higher than 80%.

The rest of the letter is organized as follows. Section II
introduces the CapsNet-based network structure applied to
AMR. The simulation results are discussed in Section III.
Finally, the conclusion is drawn in Section IV.

II. AMR-CAPSNET:THE CAPSNET-BASED NETWORK
STRUCTURE OF AMR

In this section, inspired by the CapsNet, we propose a
CapsNet-based network structure AMR-CapsNet to improve
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Fig. 2. The flow chart of a single convolutional layer.

the classification accuracy of modulation signals in the case
of few samples.

As shown in Fig. 1, the overall structure of AMR-CapsNet
consists of four parts, including the input layer, convolutional
layer, capsule layer, and output layer. The corresponding
dimensions of each layer are shown in Table I. Each part is
described in detail below.

1) Input layer: The modulation signals are used as the input
of the AMR-CapsNet for training the network model. The
input layer simply passes the input to the convolution layer,
which is a one-way transmission.

2) Convolutional layer: As shown in Fig. 2, the convolu-
tional layer consists of two parts, one is convolution operation
(Conv), and the input of each neuron is connected to the
local receiving domain of the previous layer to extract the
local feature information. Xy, X2 and x,, are the input of the
convolutional layer, and w;, wo and w,, represent the corre-
sponding weight. n; represents the output of the corresponding
convolution operation. The other part is non-linear mapping.
An non-linear mapping from low-level features to high-level
features is achieved by selecting a suitable activation function.
In order to effectively avoid gradient explosion and gradient
disappearance, rectified linear unit (Relu) is used as the
activation function. y; represents the output of the nonlinear

mapping. .
ni:ZXj'wj7 (l)
j=1

Capsule layer Output layer

Fig. 1. The structure of AMR-CapsNet.

TABLE 1
THE CORRESPONDING DIMENSION OF EACH LAYER IN THE
AMR-CAPSNET

layer Output dimension
Input 1x2x128
Conv(filers 64,size(2,9))+Relu 64 x 1 x 60
Conv(filers 64,size(1,5))+Relu 64 x 1 x 28
PrimaryCaps 16 x4 x 1 x 28
DigitCaps 16 x 11
Classification 11

Y. = Relu(ni). (2)

In computer vision applications, 3x3 or 5x5 convolution
kernels are mostly used to extract feature information. In this
paper, however, Due to the limited size of input signals, 64
convolution kernels of size 2x9 and 64 convolution kernels
of size 1x5 are respectively used to extract the feature
information. In the convolution operation, the padding is set
to ”valid” and the strides is set to 2. Finally, the output tensor
is 64x1x28.

3) Capsule layer: The capsule layer consists of two parts,
one is primary capsule (PrimaryCaps), and the other is Digit-
caps. The two parts are described in detail below.

a) PrimaryCaps: Next, 64 convolution kernels of size
1x6 are used to convolve the input vector. In the convolution
operation, the padding is set to "same” and the step size is set
to 1. The dimension of the final output vector is 64 x1x28.
The concept of vector is introduced here, i.e. 4 scalars of 1x1
form 1 vector of 1x4. Operate the output results: divide 4
channels into 1 group and divide into 16 groups. The final
output can be regarded as 16 groups, each group has 1x28
vectors.

b) DigitCaps: In the CapsNet, output a; of the ith
capsule in the PrimaryCaps and input s; of the jth capsule
in DigitCaps are vectors. The DigitCaps contains 11 capsules,
in which each capsule is represented by a 1x16 vector.
Each capsule corresponds to a modulation type. Inside the
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capsule, each input vector maps a 4-dimensional input space
to a 16-dimensional output space through the weight matrix
Z of 4x16, and transform a; into prediction vector b; by
transformation matrix. Different from the fully connected
neural network, the CapsNet adds coupling coefficient C in
the process of linear summation. According to the coupling
coefficient, input s; is obtained. Finally, the squashing activa-
tion function is used to get output v;, i.e.,

bi=7a, 3)
sj=Y_C-b;, &)
=1
|2 .
yo— s 55 )

T Ll llssl

where v; is the output vector of capsule the jth in the Dig-
itCaps. This activation function both preserves the direction
of the input vector and compresses the modulus of the input
vector between 0 and 1.

4) Output layer: According to the output v; of the Digit-
Caps, the modulation type of modulation signals is classified.

III. SIMULATIONS AND DISCUSSIONS

In this section, the experimental simulation is divided
into three parts. Firstly, the feasibility and effectiveness of
the AMR-CapsNet is discussed. Secondly, the influence of
dimension of DigitCaps on modulation signals classification
is discussed. Finally, the classification performance of the
different network structures with few samples is analyzed.

The RML2016.04C is used as the dataset in our experi-
ments to train and evaluate the proposed network structure
[7]. There are 162,060 samples in the dataset, including 11
type of modulated signals. Among them, 8 kinds of diaital
signals are composed of BPSK, QPSK, 8 phase shift key-
ing (8PSK), QAM16, QAM64, gauss frequency shift keying
(GFSK), continuous phase frequency shift keying (CPFSK),
pulse amplitude modulation 4 (PAM4), and 3 kinds of analog
signals are composed of wide band frequency modulation
(WBFM), amplitude modulation-single side band (AM-SSB),
amplitude modulation-double side band (AM-DSB). The SNR
ranges ranges from -6dB to 12dB with an interval of 2dB.

A. The classification accuracy of AMR-CapsNet

In this subsection, 5% dataset is used to train the AMR-
CapsNet, and the remaining dataset is used to verify the
feasibility of the model. The confusion matrix is used to
analyze the classification results of modulation signals under
different SNRs. As can be seen from Fig. 3, when the SNR
is at the low degree, such as -4 dB, due to the influence
of noise, AMR-CapsNet cannot accurately distinguish the
effective characteristics of the modulated signals, so there is a
deviation in determining the modulation type of signal. With
the increase of SNR, although the classification accuracy is
improved, it cannot distinguish PSK accurately. PSK carrier
phase modulation by the digital signals obtained. In QPSK, the
carrier phase is used to represent the four different input digital
signals, respectively, carrier phase 45°, 135°, 225°, 315°.

IEEE Wireless Communications Letters

AMDsB { 001 021 00 001 00 004 00 00 00 00 | 04

amsse { 004 00 NNN084 o002 o002 002 00 001 002 002 00

prsk{ 015 00 003 o1l 065 01 001 003 00 019 003

Grsk | 016 002 005 006 0170 87| o001 00 00 013 03

True label

pama { 001 00 00 002 o001 0008l 012 005 001 00

amis{ 00 00 00 00 00 00 006l 064 024 00 00

gk | 024 00 001 008 o004 o001 00 003 00 026 00

werm | 001 077 00 001 002 009 o001 00 00 001 05

ek /| 031 00 00 00 00 00 00 00 00 0135 00

AMDss { 00| 091 00 00 00 00 00 00 00 00 003

amsss{ 000 00 BB o0 00 00 o001 001 002 001 00

gpsk | 004 o0 00 1088 00 00 00 o001 00 013 00

True label

pama{ 00 00 00 o0 0o oo/ 088 oos o003 00 00

oavig { 00 00 00 00 00 00 ool 08 o028 00 00

Qames | 00 00 00 00 00 00 00 007 086 00 00

gpsk | 059 00 00 00 00 00 00 001 00 089 00

werm | ©00 009 00 00 00 003 00 o0 00 00| 086

&

+ > o » - &
R T
& & & §F & & ¢

(b) SNR = 12 dB
Fig. 3. When 5% of the dataset is used for training, the classification accuracy

of 11 modulation signals by AMR-CapsNet.

TABLE II
TRAINING PARAMETERS CORRESPONDING TO DIFFERENT DIMENSION OF
CAPSULES IN THE DIGITCAPS

Dimensional change Parameters
4 212,800

8 393,024

16 753,472
32 1,474,368

8PSK has 8 different phase differences: 0°, 45°, 90°, 135°,
180°, 225°, 270° , 315°. 8PSK and QPSK phase difference
overlap, resulting in AMR-CapsNet not accurately distinguish
PSK.

B. Impact of capsule dimension on classifaication accuracy
in DigitCaps

In this subsection, the capsule dimension in the DigitCaps is
set to 4, 8, 16, and 32 for experiments. As shown in Table II,
when the dimension of DigitCaps is set to 4, the network train-
ing parameter is 212,800. As the capsule dimension increases,
the network training parameters also gradually increase. When
the dimension of DigitCaps is set to 32, the network training
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Fig. 4. The influence of DigitCaps dimension on classification accuracy.
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Fig. 5. Influence of the number of training samples on classification accuracy
under different network structures.

parameter increases from 212,800 to 1,474,368, almost seven
times, which leads to the increase of network training time.
As shown in Fig. 4, when the SNR is between -2dB and
8dB, as the dimension increases from 4 to 16, the network
training parameters increase, and the classification accuracy
increases gradually. When the dimension is set to 32, the
classification accuracy does not improve. On the whole, the

change of the dimension of the DigitCaps has no significant
effect on the signal classification performance.

C. Classification accuracy of different network structures with
few samples

In this subsection, in addition to AMR-CapsNet, we further
explore the classification accuracy of other networks, namely
CNN, long short-term memory (LSTM), CNN-LSTM, gated
recurrent unit (GRU), residual network (ResNet) and Inception
network in different number of training samples.

As shown in Fig. 5, On the whole, when 5% of the samples
are used for training, for the modulation signals, using AMR-
CapsNet and CNN can achieve high classification accuracy.
When the SNR is greater than 0dB, the classification accu-
racy of CNN fluctuates around 80%, while the classification
accuracy of AMR-CapsNet continues to increase as the SNR
increases. When 3% of the samples are used for training,
as the SNR increases, the classification accuracy of most
network structures for modulated signals fluctuates between
60% and 70%. In contrast , the classification accuracy of
AMR-CapsNet fluctuates around 80%. When the SNR is
12dB, the classification accuracy is close to 85%.

IV. CONCLUSION

In this letter, inspired by the CapsNet, we design the
CapsNet-based architecture for AMR and verify it through the
dataset RML2016.04C. Then, the effect of capsule dimension
in DigitCaps on classification accuracy is discussed. Simula-
tion results show that when the training samples account for
5% of the total samples and the SNR is greater than 0dB, the
overall classification accuracy of the AMR-CapsNet is higher
than 80%. When 3% of the samples are used for training, and
SNR is 12dB, the classification accuracy is close to 85%, and
the accuracy is improved by 20% compared with CNN, which
verifies the effectiveness of the AMR-CapsNet in AMR.
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