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Abstract
In this paper we investigate the dynamic features of house prices in London. Using a
generalized smooth transition model (GSTAR) we show that dynamic symmetry in
price cycles in the London housing market is strongly rejected. We also show that the
GSTAR model is able to replicate the features of the observed cycle in the simulated
data. Further, our results show that the proposed model performs well when compared
to other linear and nonlinear specifications in a out-of-sample forecasting exercise.
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Introduction

During the last few decades economic systems have been characterized by a high
degree of globalization. The literature on urban studies supports the view that the
process of internationalization in financial and service sectors has created “global
cities” or world cities (see, for example, Sassen 1991; Dehesh and Pugh 2000). These
cities are “global hubs” which are instrumental in supporting the operation of the global
financial and trade systems.

The city of London has long been considered a global metropolis (see for example
Sassen 2003). London’s influence today draws on the city’s long-standing status as a
centre of international power, first as a trading centre then as an imperial capital. The
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globalization process was enhanced in the 1980s by the deregulation of the financial
market promoted by the Prime Minister Margaret Thatcher which re-consolidated
London as a world class financial centre. After the 1980s the supremacy of the city
as global financial centre has been unchallenged. In this respect, the city of London was
consistently ranked at the Global Financial Centres Index (GFCI) in the last ten years.1

Moreover, the city also constitutes an important innovation hub, it hosts high quality
educational institutions and features high degree cultural diversity. In this respect, the
city of London was ranked at the top of the Global Power City Index (GPCI) in 2019
and it was in the same position for the last few years in a row.2

The positive agglomeration effects in the productive sphere and the global city status
that London enjoys, have taken their toll in the cost of housing. In the literature,
dedicated empirical studies of the dynamics of housing markets in global cities are
still rare. However theoretical works support the view that housing market cycles in
large metropolitan areas feature asymmetric behaviour. Consensus literature shares in
common that in densely populated urban areas the rigidity of the supply side plays a
major role in housing market cycles. According to this line of research the high real cost
of construction and strict regulations on new developments introduce unpriced supply
restrictions. For instance, Capozza et al. (2004) show that stricter regulations on new
development such as minimum lot size, or regulatory-induced delays increase the cost
of new housing (both in absolute terms and in relation to existing housing) and reduce
the ability of builders to respond quickly to demand shocks. Similarly, Mayer and
Somerville (2000) show that construction is less responsive to price shocks in markets
with more local regulation. The fact that an inelastic housing supply in large metro-
politan areas induces high price volatility is broadly consistent with the literature on
housing market bubbles. According to this literature, bubbles are seen as a temporary
increase in optimism about future prices; hence, in metropolitan areas where the
housing supply is less elastic, demand shocks have more of an effect on price and less
of an effect on new construction. In an influential paper, Glaeser et al. (2008) present a
theoretical model of housing bubbles where it is postulated that housing markets with
an elastic supply have fewer and shorter bubbles and smaller price increases. It is
probably not a coincidence that London also scores highly in the UBS Global Real
Estate Bubble Index3 (see UBS Global Real Estate Bubble Index 2018), which
estimates the probability of a bubble bursting in a given metropolis at a given point
in time.

1 The GFCI is a ranking of the competitiveness of financial centres based on over 29,000 financial centre
assessments. The ranking is an aggregate of indices from five key areas: “Business environment”, “Financial
sector development”, “Infrastructure factors”, “Human capital”, “Reputation and general factors”.
2 The GPCI index ranks cities around the world according to a number of parameters targeted at measuring the
global influence of a given city. Metropolises ranked at the top of the index have in common the fact that: i)
they are headquarters of several multinational corporations, ii) they are major financial or manufacturing
centres, iii) they are important laboratories of new ideas and innovation hubs in business, economics, and
culture, iv) they host high quality educational institutions, including renowned universities with international
student attendance and world class research facilities, v) they feature high degree of diversity in term of
language, culture, religion, and ideologies.
3 The UBS Global Real Estate Index gauges the risk of a property bubble according to the pattern of indicators
that account for the decoupling of local prices from local incomes and rents, or indications of excessive
lending and construction activity.
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Against this background, the main purpose of this paper is to model the cyclical
behaviour of the housing market in London. We are particularly interested in investi-
gating if the process of financial globalisation has played a role in shaping the dynamics
of the real estate market. In an interesting work, Badarinza and Ramadorai (2018) find
that foreign demand is an important part of the explanation for house price dynamics in
London.4 Similarly, Favilukis et al. (2013) suggest that real estate in global cities
constitutes a class of asset substitutes for low-yielding government bonds and it is one
in which private-equity firms, investment trusts and individual investors tend to invest.
Accordingly, the question we address in this paper is: Do the real estate prices at the top
end of the housing market exhibit different dynamics from that of houses located in
other neighbourhoods of the city? In other words, does an explicit treatment of global
investment need to be accounted for when modelling the top end of London’s real
estate market? Similarly, Favilukis et al. (2013) suggest that real estate in global cities
constitutes a class of asset substitutes for low-yielding government bonds and it is one
in which private-equity firms, investment trusts and individual investors tend to invest.
Accordingly, the question we address in this paper is: Do the real estate prices at the top
end of the housing market exhibit different dynamics from that of houses located in
other neighbourhoods of the city? If it is actually the case that the top end market
constitutes a safe-haven investment linked with foreign political and economic crises,
we should see different dynamics for the houses in this segment of the market from
those in other neighbourhoods. In addition, a peculiarity of world cities such as London
is that house price dynamics are driven by both local and global investment demand.
Strong pressure on the demand side and an inelastic supply make these cities vulnerable
to housing market bubbles. Accordingly, the second issue that we address in this paper
is the following: How do we model the asymmetric cycles of real estate prices in global
cities such as London? In other words, what kind of econometric model would best be
able to capture asymmetric adjustments to house prices? Finally, the housing market
dynamics in global cities are partly related to structural factors. Rapidly increasing
property prices in global cities reflect the confluence of local factors (supply con-
straints, regulations and zoning) and global trends (the role of foreign investors; the
impact of highly- and low-skilled migration from other parts of the country and
abroad). The misalignment between strong demand and inelastic supply creates asym-
metric cycles. However, in locations where the housing supply is not constrained,
households can buy at construction costs so that, instead of growth in house prices,
these areas should exhibit growth in the housing supply. Therefore, the final issue
investigated in this paper is: To what extent do house price dynamics in London reflect
the developments in other large cities in the UK? Answering these questions is
important, since housing markets in most global cities share many of the same
characteristics due to their connectedness and shared experiences of globalization
(see for example Stevenson et al. 2014).

The present paper extends the existing literature in several ways. First, we contribute
to the literature on modelling housing market cycles in global cities. In this paper the

4 To illustrate the scale of the phenomenon Badarinza and Ramadorai (2018) use a property-level dataset for
London and document that at least 85% of residential real estate purchases by foreigners in London occur
through a corporation (a preferred vehicle over the period, for tax reasons) and are routed through off-shore
special purpose vehicles registered in regions such as Gibraltar, Cyprus and Panama, with the effect that the
ultimate source of the capital is essentially untraceable.
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generalised smooth transition model (GSTAR) suggested in Canepa and Zanetti Chini
(2016) (and see also Zanetti Chini 2018; Canepa et al. 2020) is used to estimate house
price dynamics for the sample under consideration. The authors propose a STAR-type
model where the logistic smooth transition function has two parameters governing the
two tails of the sigmoid function in the nonlinear component of the model. The
advantage of the proposed parameterisation with respect to the ordinary smooth
transition models (STAR) is that the resulting specification can model the tails of the
logistic function independently and the rate of change in the left tail of the transition
function can be different from the counterpart in the right tail. Using Monte Carlo
simulations we show that when properly specified the GSTAR model is able to
reproduce the actual characteristics of the real data such us the duration and amplitude
of the cycle. Comparing the GSTAR model with other linear and nonlinear specifica-
tions, it is also found that models which allow for asymmetric adjustments according to
whether prices have been rapidly rising or falling deliver better forecasts than standard
linear models.

Second, we find that within the capital city, real estate located in neighbourhoods at
the top-end of the market has more pronounced asymmetrical cyclical features with
shorter expansion and contraction phases and deeper downturns. These findings sup-
port the view that global factors play a role in shaping housing market dynamics.
Economists have long debated the role of international capital flows and financial
market liberalization in explaining cycles in house prices and more generally in asset
market volatility. However, the results in the literature are still controversial. Some
authors support the view that international developments have placed the property
sector in a wider context where major property cycles are influenced by various
conditions in the international economy (see for example Srivatsa and Lee 2012;
Dehesh and Pugh 2000). Other empirical studies, however, find no evidence of two-
way interdependence between the property sector and the process of deregulation and
the integration of diverse economies (see for example McAllister 2001).

Finally, our results show that house price series in other large cities in the UK have
different characteristic features with respect to the capital city. These findings are useful
since while house price dynamics at national and regional levels have been widely
investigated, research at a more disaggregated level is rare. Most available empirical
works investigate house price nonlinear and cyclical behaviour using data aggregated at
national and regional levels. However, the housing market dynamics in world cities
such as London are affected by local economic fundamentals and global factors. Strong
demand pressure on the housing market (often due to large migration influx) combined
with inelastic housing supply in densely built-up areas magnify exogenous shocks and
make these cities prone to housing market baubles (see Hsieh and Moretti 2019).
Therefore, simply assuming that the time series properties of house prices at national or
regional level would also describe the features of the real estate markets in world cities
is counterfactual.

The remainder of this paper is organized as follows. In Section 2 some theoretical
background in relation to modelling housing market cycles is introduced. In Section 3
the modelling procedure is discussed. In Section 4 the data are described and the
empirical results are presented. In Section 5 the performance of the GSTAR model is
investigated along with a number of other linear and nonlinear models. In Section 6 the
properties of the house price series for London are compared with those of other large
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cities in the UK. Section 7 presents some policy implications and, finally, Section 8
contains some concluding remarks.

Modelling Asymmetric Cycles in Housing Markets

Detecting and modelling asymmetry constitutes an important issue in the study of
housing market fluctuations. As Sichel (1993) points out, a cycle is asymmetric if it has
a phase different from the mirror image of the opposite phase. A first type of
asymmetry occurs when the average duration and dynamics of the expansion and
contraction phases differ. For example, the expansion period may last longer than the
contraction phase, which may be steeper. A second type of asymmetry refers to
deepness; it occurs when the troughs in the cycle are deeper than the peaks. Dynamic
asymmetry occurs when these two examples of asymmetry are combined.

Modelling asymmetry requires nonlinear time series models because econometric
models that work under the assumption of symmetry and linearity, would clearly be
misspecified in the presence of asymmetry and might lead to spurious inference (see for
example Blatt 1980). In the literature various nonlinear models have been used to
capture the characteristics of house price series (see, among others, Kim and
Bhattacharya 2009; Crawford and Fratantoni 2003; Balcilar et al. 2015). Most empir-
ical works accommodate the departure from linearity of house price series by using a
transition or switching model that captures the fact that the housing market behaves
differently according to the state of the economic system. The state of the system is
defined in terms of a function of a transition variable, which may be observable or
unobserved. Along with the latter, the way that the system moves from one state to
another (that is, the transition mechanism) needs to be specified. The choices of the
transition variable and the transition mechanism have given rise to different approaches
to modelling the feature under consideration (Proietti 1999). In the house price
literature various nonlinear models have been used to capture the characteristics of
the real estate cycle. For example, Kim and Bhattacharya (2009) use an exponential
smooth transition autoregressive model (ESTAR) to model nonlinearity in the regional
hosing market in the United States. Nonlinear models are also used in Crawford and
Fratantoni (2003) to forecast house price changes.

Regime-switching models such as the STAR allow the dynamics of house price
growth rates to evolve according to a smooth transition between regimes that depends
on the signs and magnitude of past realisation of house price growth rates (see Chan
and Tong 1986). The low speed of transitions between different regimes in house price
growth found in empirical studies validates the choice of smooth transition models. A
possible shortcoming of these types of nonlinear model describing the features of
housing markets is that in the model specification a symmetric transition function is
used to capture oscillations from the conditional mean of the changes in house price
series. Although STAR-type models efficiently describe nonlinearity in house price
growth rates, the commonly used transition functions may not be suitable for capturing
dynamic asymmetries in real estate cycles. In a recent work Canepa et al. (2020) argue
that the type of logistic transition function adopted in STARmodels may not be the best
specification to capture asymmetric oscillations from the conditional mean of house
price in global cities. Modelling house price series for a number of global cities, the
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authors show that using a class of models indexed by two shape parameters that
influence the symmetry and heaviness of the tails of the fitted transition equation is
more suitable to fit the non-central regions of the probability function and therefore
better capture the asymmetries found in the housing market cycles. The model
proposed by Canepa et al. (2020) is potentially promising since the type of
parametrisation of the logistic transition function allows for the expansion and
contraction phases to be modelled independently. Moreover, from the methodological
point of view, the simple parametrization of the logistic function used in the paper
ensures the smoothness of the transition function by construction without demanding
additional effort to determining what concerns identification and estimation, and it
allows thus to model the two modes in the process density function. A possible
shortcoming of the empirical work in Canepa et al. (2020) is that the goodness of fit
of the proposed GSTAR model is not evaluated against competing model specifica-
tions. In this respect, more work should be done to investigate whether the model is
able to reproduce the characteristic features of the cycle.

The Econometric Model

This section describes the econometric model that is considered in our analysis. We
refer readers to the work of Canepa and Zanetti Chini (2016) for details on the dynamic
asymmetric specification, see also Teräsvirta et al. (2010) for details on smooth
transition models.

Let Δyt be a realization of a the house price changes (i.e.Δyt = yt − yt − 1) observed at

t = 1 − (p − 1),…, − 1, 0, 1, T − 1, T. Then, the univariate process ytf gTt can be specified
using the following model

Δyt ¼ ϕ
0
zt þ θ

0
ztG γ; h ch; stð Þð Þ þ ϵt; ϵt∼I :I :D: 0;σ2

� � ð1Þ

G γ; h ch; stð Þð Þ ¼ 1þ exp − ∏
K

k¼1
h ch; stð Þ

� �� �−1

ð2Þ

In Eqs. (1)–(2) the vectors zt = (1, Δyt,…, Δyt − p)′, ϕ = (ϕ0, ϕ1,…, ϕp)′, θ = (θ0, θ1,

…, θp)′ are parameter vectors. The process ϵtf gTt in Eq. (1) is assumed to be a
martingale difference sequence with respect to the history of the time series up to time
t − 1, denoted as Ωt − 1 = [Δy1 − (p − a),Δyt − p] with Ε(ϵt |Ωt − 1) = 0 and
Ε ϵ2t jΩt−1
� � ¼ σ2. The expression G eγ; h ckðð ; stÞÞ defines the transition function,

which is assumed to be continuously differentiable with respect to the scale parameterseγ ¼ γ1ð ; γ2Þ and bounded between 0 and 1. Also, G eγ; h ckðð ; stÞÞ is continuous in the
function h(ch, st) and h(ch, st)is strictly increasing in the transition variable st. The
transition variable st is assumed to be a lagged endogenous variable, that is, st = yt − d
for a certain integer d > 0. The parameters ck ∈ {1; 2} are the location parameters.
Defining ηt = (st − c) in Eq. (2) we have
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h ηtð Þ ¼
γ−11 exp γ1 ηtj j−1ð Þ if γ1 > 0

0 if γ1 ¼ 0
γ−11 log 1−γ1 ηtj jð Þ if γ1 < 0

8<:
9=;; ð3Þ

for ηt ≥ 0(η > 1/2) and

h ηtð Þ ¼
γ−12 exp γ2 ηtj j−1ð Þ if γ2 > 0

0 if γ2 ¼ 0
γ−12 log 1−γ2 ηtj jð Þ if γ2 < 0

8<:
9=;; ð4Þ

for ηt < 0(η > 1/2).
Asymmetric behaviour in house price dynamics is introduced in the model by Eqs.

(3)–(4). In particular, Eq. (3) models the higher tail of the probability function, whereas
Eq. (4) models the lower tail of the probability function. The speed of the transition
between the expansion and contraction regimes in the housing markets is controlled by
the slope parameters eγ . If the vector eγ > 0, the function h(ηk, t) is an exponential
rescaling which increases more quickly than a standard logistic function. On the other
hand, if eγ < 0, the function h(ηk, t) is a logarithmic rescaling which increases more
slowly than a standard logistic function.

Different choices of the transition function G eγ; h ckðð ; stÞÞ give rise to different
types of regime-switching behaviour. In this paper we assume k = 1 in Eq. (2), that is
we assume that the transition function is a generalized logistic, being the literature on
the topic homogeneously supportive of a logistic transition (see for example Balcilar
et al. 2015). In this peculiar case, the parameters parameters on the right hand side of
Eq. (1) change monotonically as a function of st from ϕ to ϕ + θ and the corresponding
transition function is given by

G eγ; h η1;t
� �� 	

¼ 1þ exp
h η1;t
� �

I γ1 ≤ 0;γ2 ≤ 0ð Þ þ h η1;t
� �

I γ1 ≤ 0;γ2>0ð Þ
þh η1;t
� �

I γ1>0;γ2 ≤ 0ð Þ þ h η1;t
� �

I γ1>0;γ2>0ð Þ

( ) !−1

; ð5Þ

with h(η1, t)) given in Eqs. (3)–(4) and I(·) is an indicator function. This parametrization
can be interpreted as an endogenous shock on the vector of lagged observables that
produces a change in the velocity in which the house prices passes from a lower
extreme to a higher extreme. Alternative parametrizations assumes k = 2 like the
Generalized Second Order Logistic (where c1> c2) or the Generalized Exponential
(for the case that c1 = c2); see the ondine Appendix in Zanetti Chini (2018) for a
graphical intuition of these functions. The application of these alternative transition
functions on real estate data is an interesting issue that subject to future research.

The GSTAR nests several well known linear and non-linear models. For example,
the model in Eq. (1) with γ1 = γ2 = γ in the transition function in Eqs. (3)–(4) implies
that the GSTAR model reduces to a one-parameter symmetric logistic STAR model
(LSTAR) (see Teräsvirta et al. 2005, and Teräsvirta 1994):

Δyt ¼ ϕ0zt þ θ0ztG γ; c; stð Þ
	
þ ϵt; ϵt∼I :I :D: 0;σ2ð Þ ð6Þ
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where the parameters ϕ and θ are previously defined and the transition variable st given
by

G γ; c; stð Þ ¼ 1þ exp γ− st−cð Þf g½ �−1;

Also, the GSTAR reduces to the model in Tong (1983) when eγ→þ ∞ and it becomes
a straight line around 1/2 for each st when eγ→−∞. Finally, if eγ is a null vector the
GSTAR model reduces to

yt ¼ ϕ0 þ ∑p
i¼1ϕizt−1 þ ϵt ð7Þ

Estimating the GSTAR model involves the use of conditional least squares (COLS),
that is concentrating the sum of square residuals function with respect to the vectors θ
and ϕ, that is minimizing:

SSR ¼ ∑
T

t¼1
Δyt−bψ0

x0t
� 	

;

where

bψ ¼ bϕ;bθh i
¼ ∑

T

t¼1
x0t eγ; c� 	

xt eγ; c� 	� �−1

∑
T

t¼1
x0t eγ; c� 	

Δxt

� �
;

and

xt bγ;bc� 	
¼ ztzt 0G bγ; h bc; st� 	� 	h i

:

Note that under the assumption that the vectors eγ and c are known and fixed, the
GSTAR model is linear in the vectors θ and ϕ (see Leybourne et al. (1998). Therefore,
the nonlinear least square minimization problem reduces to a minimization on three (or
four) parameters and can be solved via a grid search over γ1, γ2 and c. In our
application, both γ1 and γ2 are chosen between a minimum value of −10 and a
maximum of 10 with an increase rate of 0.5; whereas the grid for the parameter c is
the set the values computed for the range of the 10th and 90th percentile of st with the
increase rate computed as the difference of the two percentiles at the boundary divided
by an arbitrarily high integer. The results of our empirical excercise, as well our
previous experience in this maximization problems, suggest that the COLS
implemented in this way works reasonably well and is at least as precise as similar
conditional maximization problems for different kinds of models. See also Chan and
McAleer (2002) for a discussion on the maximum likelihood methods for STAR family
of models.

Before the estimated GSTAR model can be accepted as adequate, it should be
subjected to misspecification tests. Some important hypotheses which should be tested
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are the hypothesis that there is no residual correlation, no remaining nonlinearity and
parameter constancy (see Canepa and Zanetti Chini 2016 for more details).

Data and Estimation Results

The data under consideration are related to monthly nominal residential property prices
over the period 1996:1 to 2019:9 in London. Specifically, the property price indexes
published by Bloomberg are employed.

In order to investigate whether the real estate market in central London has different
characteristic features from those of other neighbourhoods, we consider the property
market in the central and peripheral areas separately. The London region is composed
of the Greater London Authority, which includes Inner London and Outer London.
Inner London is related to the Boroughs which form the interior part of Greater
London, where average property prices are historically the highest in the capital,
whereas Outer London relates to the group of Boroughs that form a ring around Inner
London. According to the London Government Act in 1963, Outer London contains
twenty Boroughs.

To investigate the housing market dynamics in different parts of the capital city we
rank the twelve Boroughs of Inner London in three groups according to their average
prices in the period under consideration (see Appendix Table 6 for the group classifi-
cation). Following the classification of most valuation surveyors and estate agents we
label these groups “super prime market”, “prime market tier one” and “prime market
tier two”, i.e. the ranking from areas with the most valuable properties to those that are
less expensive. The outer London property market is more heterogeneous than Inner
London’s, since it includes a minority of Boroughs with average prices close to the
super prime market group, but most Boroughs feature lower average prices with respect
to Inner London over the period under consideration.

Figure 1a–f plot the Kernel density function of the log house price series by urban
area against a normal distribution. Looking at Fig. 1, clearly, the unconditional
distributions of house price series are not normal. Overall, the estimated densities look
rather a convex combination of Normal distributions with a shape that suggests two
separate modes: the upper part of the distribution embodying most of the observations,
and another lower part covering the lowest values of the series. Such an observation
indicates that a nonlinear specification may be useful for modelling these series.
However, the distributions of the Inner and Outer London prices series are quite
different. This is particularly the case for the housing market in the “super prime”
and “prime tier one” urban areas where negative skewness suggests deep cycles with
the amplitude of the troughs exceeding that of the picks. Deepness of contractions also
seems to be a characteristic feature of the housing market cycles in Outer London.
However, the steepness of the cycles for real estate located in these Boroughs also
appears to be an important feature since the series appear more right-skewed with
respect to the Inner London neighbourhoods. This preliminary investigation, then,
seems to suggest that expansions last longer than the contraction phases in Outer
London. It is interesting to note that the housing market cycles in the “prime tier
two” urban areas look more similar to those in Outer London than the cycles of the
former urban areas located at the top end of the market.
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Estimation Results

The modelling procedure described in Section 3 involves determining the dynamic
structure of the series of house price growth in the first place. In our case, for each
house price series the maximal lag order of the AR(p) model has been chosen by using
the Bayesian information criterion and the Portmanteau test for serial correlation.

In Table 1 the estimated parameters and the relative standard errors are reported. In
particular, the second column reports the estimated parameters for the series of the
aggregated house price index in London, columns three to five report the estimated
parameters for the “prime markets” and column six and seven report the estimated
parameters for the Boroughs in Inner and Outer London .

From Table 1 it appears that house price changes are persistent since most of the
estimated autoregressive coefficients, ϕi and θi (for i = 1, …, 4), are significantly
different from zero. This result is consistent with the findings in Capozza et al.
(2004) and Dusansky and Koç (2007) where evidence of backward-looking expecta-
tions in the housing market is found.

The estimated parameters γ1 and γ2 give an indication of the speed of the transition
between expansion and contraction regimes, as well as the size of the cyclical peaks
and troughs in the house price series for the period under consideration. Note that, these
estimated coefficients are also significantly different from zero for all urban areas. With
regard to the signs of these coefficients it is observed that the parameter γ1 are all
negative, whereas γ2 are all positive. This indicates that the speed of the transition from

Fig. 1 a–f plot the density functions of the different series against a Normal distribution. Note that s denotes
the standard deviation of the Normal
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one regime to the other regime increases in periods of house price contraction at a rate
greater than one which would be consistent with a standard logistic curve, but increases
in the periods of house price expansion at a rate which is slower than one which would
be consistent with a standard logistic function. With respect to the magnitude of the

Table 1 Estimation results for house price series in London

London Super prime Tier 1 Tier 2 Inner London Outer London

Estimated parameters

ϕ0 0:666*

0:062ð Þ
1:091*

0:073ð Þ
0:235*

0:021ð Þ
0:467*

0:080ð Þ
0:435*

0:025ð Þ
0:106*

0:012ð Þ
ϕ1 1:799*

0:047ð Þ
1:320*

0:028ð Þ
1:383*

0:013ð Þ
−1:053*

0:040ð Þ
1:574*

0:023ð Þ
1:766*

0:022ð Þ
ϕ2 −0:856*

0:079ð Þ
0:171*

0:039ð Þ
−0:031

0:021ð Þ
2:585*

0:096ð Þ
−0:330*

0:039ð Þ
−0:500*

0:044ð Þ
ϕ3 0:242*

0:063ð Þ
−0:785*

0:039ð Þ
−0:548*

0:021ð Þ
−2:510*

0:094ð Þ
−0:223*

0:041ð Þ
−0:448*

0:046ð Þ
ϕ4 −0:192*

0:038ð Þ
0:357*

0:026ð Þ
0:168*

0:013ð Þ
1:088*

0:041ð Þ
−0:154*

0:025ð Þ
0:150*

0:023ð Þ
θ0 −0:434*

0:130ð Þ
−1:459*

0:128ð Þ
−0:085*

0:035ð Þ
0:467*

0:111ð Þ
−0:353*

0:161ð Þ
0:215*

0:066ð Þ
θ1 −1:146*

0:090ð Þ
−0:350*

0:076ð Þ
0:026

0:065ð Þ
−1:053*

0:035ð Þ
−0:400*

0:107ð Þ
−0:034*

0:035ð Þ
θ2 1:746*

0:134ð Þ
−0:216*

0:040ð Þ
0:485*

0:037ð Þ
2:585*

0:101ð Þ
−0:862*

0:093ð Þ
0:229*

0:075ð Þ
θ3 −0:585*

0:091ð Þ
0:428*

0:051ð Þ
−0:862*

0:065ð Þ
−2:510*

0:099ð Þ
−0:923*

0:314ð Þ
−0:454*

0:088ð Þ
θ4 −0:058

0:057ð Þ
−0:019

0:048ð Þ
0:349*

0:026ð Þ
1:018*

0:045ð Þ
0:473*

0:051ð Þ
0:266*

0:047ð Þ
γ1 −2:950*

0:191ð Þ
−7:400*

0:276ð Þ
−5:400*

0:499ð Þ
−0:950*

0:166ð Þ
−6:900*

0:258ð Þ
−1:650*

0:257ð Þ
γ2 1:204*

0:109ð Þ
1:543*

0:291ð Þ
1:012*

0:545ð Þ
0:300*

0:139ð Þ
2:451*

0:265ð Þ
0:592*

0:099ð Þ
c 2:156*

0:094ð Þ
4:422*

0:178ð Þ
1:018*

0:545ð Þ
0:307*

0:025ð Þ
5:582*

0:110ð Þ
5:376*

0:026ð Þ
Diagnostic tests (p values)

Test for
Corr.

0.255 0.278 0.479 0.670 0.198 0.120

Test for no
Rem.
Asy.

0.556 0.358 0.706 0.903 0.862 0.775

Test for
Par.
Const.

0.346 0.382 0.414 0.385 0.373 0.350

The top part of the table reports the estimated parameters for the GSTAR model and p-values for the
misspecification tests are given in the bottom panel. The diagnostic statistics are: i) the LM tests for the
hypothesis that there is no serial correlation against the q-order autoregression, ii) the LM test for the
hypothesis that there is no remaining asymmetry, iii) the LM test for parameter constancy. Note: * and **
indicate significance level at 5% and 10%, respectively
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estimated γ1 and γ2 it appears that the estimated parameters for γ1 are greater than γ2 in
modulus for all the series under consideration. This implies that, whatever the urban
area, house prices in London feature a strong deep and mildly steep cycle: the house
price stochastic processes undergo contraction at an accelerating pace until a given
minimum, after which they start to recover with quickly decreasing acceleration until
they smoothly returns to the peak, corresponding to negative skewness in the levels of
the house price series.

It is interesting to note that the magnitude of the estimated parameters γ1 and γ2 are
different in modulus for different urban areas within Inner London. In particular, the
magnitude of the estimated parameters decreases as we move from the top-end market
of the Super Prime to the Tier Two urban areas. This implies that the speed of transition
between expansion and contraction phases is much faster for real estate located in the
up-market Boroughs. At the same time, cycles are deeper in the Super Prime
neighbourhoods than in Tier Two, with Tier One in between. Looking at the estimated
parameters for Inner and Outer London, it appears that cycles in Inner London are,
overall, deeper but shorter than in Outer London. In particular, in both urban areas
house prices in expansion periods deviate from their mean at a logarithmic rate,
whereas in contraction phases they return to the equilibrium level at a exponential
rate. However, the magnitude of the estimated parameters also in this case indicates that
the speed of transition between the expansion and contraction phases is much greater
for real estate located in Inner London than Outer London. These results are certainly in
line with the theoretical model in Glaeser et al. (2008) (see also Saiz 2010), where a
positive correlation is postulated between population density and supply elasticity so
that in high density urban areas a positive demand shock would push prices up, but
would have a relatively small effect on the housing supply. However, the magnitude of
the estimated parameters may also support the results described in Badarinza and
Ramadorai (2018): that the top end of the London housing market is affected by
international investment flows that leave the market more prone to global shocks.

Note that the relatively small estimates of γ1 and γ2 indicate that other types of
nonlinear models in the class of regime switching, such as the Markov switching or the
TAR models, are not suitable for capturing the housing market dynamics since these
models assume that γ1 = γ2→∞, thus implying a sudden transition between one regime
and the next, by assumption. Coming now to the parameter c, this indicates the halfway
point between the expansion and contraction phases of the housing markets. In Table 1
the estimated parameter c is statistically significant at the 5% level.

Once the model has been estimated, we evaluate the goodness of fit of the model
using the misspecification tests suggested in Canepa and Zanetti Chini (2016). In
particular, the diagnostic statistics considered are: i) the LM test for the hypothesis that
there is no serial correlation against the fourth order autoregression (for q = 4), ii) the
LM test for the hypothesis that there is no remaining asymmetry, iii) the LM test for
parameter constancy. The p values of the tests are reported in the bottom panel of
Table 1. Looking at the results of the misspecification tests it emerges that the test
statistic does not reject the null hypothesis of no autocorrelation against q-order
autoregression for all estimated models. There is also no evidence of remaining
asymmetry since the LM test does not reject the null hypothesis for all the estimated
models. Similarly, the LM test for parameter constancy does not reject the null
hypothesis at the 5% significant level for all the estimated models. Overall, the results
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in Table 1 suggest that the estimated models do not suffer from misspecification
problems.

Dissecting London’s Housing Market Cycle

In the previous section we presented the estimation results of the GSTAR model. In this
section we evaluate the properties of the model by investigating: i) whether the GSTAR
model is able to replicate important features of the housing market cycle, and ii) the
forecasting properties of the model.

In order to evaluate the model a useful exercise is to see what are the cycle properties
the model is able to replicate when compared to the real data. This involves in the first
place investigating the features of the cycle using real data to simulate the fitted model,
and then comparing the outcomes to what was found when the same exercise was
carried out with the actual data. Moreover, it may be of interest to compare the GSTAR
to other models. We are particularly interested in investigating whether linear models
can replicate the features of the housing market cycles. The investigation may be useful
for highlighting the strengths and weaknesses of alternative modelling procedures.5

Identifying House Price Cycles

In order to identify house price cycles we borrow from the business cycle literature and
use the Pagan and Sossounov (2003) algorithm to detect the turning points in the
housing market cycle. With respect to other well-known procedures used in the
literature to identify the cycle turning points (see for example Bry and Boschan
1971), the main advantage of the Pagan and Sossounov (2003) algorithm is that the
data do not need to be smoothed before detecting the turning points and thus the
outliers in the series do not need to be removed. This feature of the algorithm is
particularly important for the data in question.

The procedure consists in finding a series of local maxima and minima that allow the
series to be segmented into periods of house price expansion or contraction. The
algorithm is basically a pattern-recognition program that involves finding points which
are higher or lower than the window of surrounding points. Then the duration between
these points is measured and a set of censoring rules is adopted which restricts the
minimal lengths of any phase, as well as those of complete cycles. In particular, using a
window of j months, a local maximum yt is defined as an observation of the series such
that time t is a local peak if

P ¼ yt−yt−8 > 0;…; yt−yt−1 > 0; yt−ytþ1 > 0;…; yt−ytþ8 > 0
� �

;

with the inequality reversed for troughs.

5 Note that below we report only the results relating to the aggregated data of the house price series in London.
The analysis for the Boroughs reveals similar results. For this reason, the output is not reported, but available
from the authors on request.
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The probability of event P depends upon the joint distribution of Δln ytþk


 �8
k¼−8,

therefore in order to calculate the probability of P the specification of the data
generating process (DGP) for Δ ln yt is required. The algorithm ensures that peaks
and troughs alternate, so that a peak is immediately followed by a trough, and vice
versa. In addition, a set of censoring rules is adopted to restrict the minimal length of
any phase as well as those of complete cycles. In this paper we follow the business
cycle literature (see for example Harding and Pagan 2002) and impose a censoring rule
in the algorithm so that the house price cycles in each phase must last at least 6 months
and complete cycles must last at least 15 months.

Once the turning points have been identified, the features of the housing market
cycles can be investigated. We are particularly interested in the duration and amplitude
of the cycles. In general, amplitude measures the cumulative increase (decrease) of
house prices in an upturn (downturn). Duration gives an indication of the persistence of
house prices; this is defined as the distance in months between a trough and a peak for
expansion, whereas in case of downturns it is measured as the distance in months
between a peak and a trough. The amplitude is a measure of the magnitude of the
shock; it is computed as the size of the change in house prices switching from peak to
trough for contraction phases and from trough to peak for expansion phases.

For ease of interpretation, following Harding and Pagan (2002), we can approximate
each house price phase as a triangle where the height is the magnitude of expansion
(contraction), the base is the persistence (duration) and the hypotenuse gives the path of
the series for the hypothetical case of linear transition between two successive turning
points. Other features of the phase can be measured by departure from the area being a
triangle. In this respect, we refer to measures of the impact of a phase on the housing
market as “cumulation” and “excess” measures. More precisely, cumulation is approx-
imated by the total accumulated loss in terms of price growth as the cycle moves from
peak to trough for contraction phases and vice versa for expansions. Excess, for its part
is a measure which captures the deviations of house price in an expansion (contraction)
phase from a triangle approximation.

Table 2 reports the average amplitude, duration, cumulation and excess for the data
under consideration. The stylized facts of cycle behaviour can be summarized as
follows. First, expansion phases tend to be significantly longer than contraction phases.
Conversely, the amplitudes of contraction phases tend to be greater than those of
expansion phases. Cumulated movements and excess cumulated movements are indic-
ative of the shape of the cycle. The results in Table 2 imply that cumulated price
increases in expansion phases are greater than those in contraction phases, probably
because expansion phases on average last longer than contraction phases. Similarly, the
value of the excess measures seems to point to the fact that the deviation of the
contractions from a triangle approximation is greater than the deviation of the
expansions.

Monte Carlo Simulation Experiment

Having established the characteristic features of the house price cycle, we now evaluate
the GSTAR and other linear and nonlinear models along two different dimensions,
focusing first on whether they are able to reproduce the characteristic features of the
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cycle described in Table 2, and then we compare these models on their ability of
forecasting house prices.

The simplest data generating process (DGP) that we consider is a martingale process
(RW) with mean and variance taken from house price growth. Note that a pure
martingale process would produce a symmetric cycle, with contractions and expansions
not significantly different in either phases of the cycle. Therefore, a martingale process
would fit the hypothesis that housing markets are efficient. In the literature this
hypothesis is controversial, as important theoretical works suggest that real estates
are not efficient markets. This literature argues that the presence of high information
costs, infrequent transactions, and the fact that houses are heterogenous products
contribute to the inefficiency of housing markets (see for example Case and Shiller
1989). However, another strand of the literature contends that housing markets in large
cities that feature a high volume of transactions have lower information costs per unit
area than properties located in lower density urban areas have. For example, Gupta and
Miller (2009) show that home prices are predictable for large metropolitan areas. Due
to the relatively high transaction volume we may expect that global cities have lower
information costs and a more efficient market with respect to other metropolises that do
not enjoy the same status. It is therefore of interest to see to what extend a DGP drown
from a martingale process is able to replicate the features of the house price series for
the data at hand.

House price series are well known to have serial correlation (see Abraham and
Hendershott 1993; Capozza and Seguin 1996; Malpezzi 1999; Meen 2002). In the
literature the persistence in the housing market is usually referred to as the “momentum
effect”. Case and Shiller (1989) were the first to document momentum and
predictability in housing returns. In a related study Abraham and Hendershott (1993)
illustrate that persistence explain the returns in housing markets in volatile coastal cities
in the United States relative to the inland cities. As Capozza et al. (2004) point out in
densely populated areas high construction costs and tight regulations increase the cost
of new housing and reduce the ability of builders to respond quickly to demand shocks,
causing persistence in the housing market. Accordingly, the next model we consider is
the AR(p) model in Eq. (7) which is nested in the GSTAR.

Momentum in housing market is positively correlated to volatility (see for example
Hung and Glascock 2010). To introduce heteroskedasticity in the DGP one could adopt
a generating process that produces realizations of Δyt from a non-normal density. In
this respect, one possibility is to change the density for εt in Eq. (7) to some other
density with fatter tails. However, it is more interesting to generate the excess kurtosis

Table 2 Dating of peaks (troughs) in house price cycles

Expansion Contraction

Duration 15.85 5.07

Amplitude 0.10 −0.20
Cumulation 1.86 −0.29
Excess 0.03 −0.09

The table reports the average duration in months; the average amplitude in %; the excess from a triangle
approximation
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endogenously by using a GARCH-type model. In our case, a few trials in the
estimation procedure revealed that the most suitable model for the data in hand was
an AR-GARCH (1,1). Accordingly, the AR-GARCH(1,1) model was considered. In
Crawford and Fratantoni (2003) a similar model was found to fit large cities well.
Finally, Alqaralleh and Canepa et al. (2020) found that the model in Eq. (6) well
captured asymmetries in the housing market cycle (see also Kim and Bhattacharya
2009). Accordingly, the LSTAR model was also considered.

To compare different results we carried out a Monte Carlo experiment simulating the
growth series from each of the estimated models in order to obtain the empirical density
functions for each of the eight characteristics of the cycle. Details of the DGPs are
given in the Appendix. We then compared these densities with the relevant character-
istics in the original data and calculated the upper 5% and the lower 95% tails of the
simulated density. Then, if the calculated p value of the simulated density was greater
than 10%, we concluded that the parametric model under consideration was unlikely to
produce data with the cycle features observed in the real data.

The simulation results are reported in Table 3. For ease of interpretation the results
relating to the cycle characteristic reported in Table 2 are replicated in the first row of
Table 3. An asterisk next to the cycle measure indicates that the observed characteristic
is outside the 90% simulated band.

Looking at the results from Table 3 it appears that the random walk model cannot
reproduce cycles with peak-to-trough amplitude and cumulation similar to the actual
data. Introducing the correlation in the AR(p) DGP certainly improved the fit. On the
other side, modelling the conditional volatility using the AR-GARCH(1,1) seemed to
go too far, producing cycles that were too extreme, particularly in relation to the
duration and amplitude of the cycle, and did little to shape the other measures
accurately. Given that these models were preferred to the random walk models, such
an outcome was a little unexpected, but it does serve to show that adding nonlinear
structure to the conditional moments has a powerful though sometimes undesirable
effect upon cycle characteristics. Looking now at the data simulated from the LSTAR
data generating process, it appears that the model captures duration well, but is not

Table 3 Characteristics of expansion and contraction phases for simulated data

Model Duration Amplitude Cumulation Excess

Contr. Expan. Contr. Expan. Contr. Expan. Contr. Expan.

Data 5.07 15.85 −0.20 0.10 −1.86 0.29 0.03 −0.09
RW 7.33 10.66 −0.07 0.04 −0.45 0.06 0.002 −0.004
AR(p) 5.57* 16.14* −0.13 0.09* −0.95 0.05 0.004 −0.001
AR-GARCH(1,1) 10.21 20.42 −0.22 0.31 −2.53* 0.97 0.006 −0.001
LSTAR 5.86* 16.42* −0.05 0.09* −10.8 0.20 0.003 −0.01
GSTAR 5.91* 15.20* −0.22* 0.08* −1.30 0.33* 0.02* −0.03

Note the table reports: average duration in months, amplitude in %, cumulation and excess from a triangle
approximation. The Table includes the 5% and 95% values of the simulated distributions of all four measures.
A *) indicates that the empirical value for the London house price series data is contained in the 90% simulated
confidence interval
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particularly good at replicating the other measures. These results are in line with the
argument in Zanetti Chini (2018): that the logistic STAR model may be able to
reproduce the steepness but not the deepness of the cycle, whereas the fact that the
GSTAR model has two parameters that govern the tails of the logistic sigmoid
distribution separately implies that the model outperforms its symmetric counterpart
when it comes to getting the shape of the cycle right. Overall, from Table 3 it is clear
that accounting for the nonlinearity observed in the data may create some extra
movement with respect to the AR(p) model which is useful for replicating certain
elements of the business cycle.

Forecasting House Prices

A rolling forecast experiment was implemented in order to compare the forecasting
ability of the GSTAR with the other models considered in the previous section. With
this target in mind the house price series was split onto two subsamples: a pre-forecast
period (for t = 1, …, Ts − 1) from which the model was estimated and a forecast period
t = Ts, …, T with Ts = t + h. Then h-step-ahead forecasts were computed and compared
with the pre-forecast period. The forecast period under consideration was h = {1, 3, 6,
12}.

Our analysis expands beyond the traditional point forecasts to include density
forecasts. Recent studies report that nonlinear models produce superior interval and
density forecasts with respect to linear models, although inferior point forecasts (see,
for example, Rapach and Wohar 2006). It is therefore of interest to see how the models
considered in this paper compare in their predictive accuracy. Note that the RW is not
considered below because the performance of the model was found in the previous
section to be quite poor and therefore it could not be expected to perform well in the
out-of-sample forecast exercise.

Point Forecasts Measures

We compare a linear AR(p), the LSTAR and the AR-GARCH (1,1) with the GSTAR
model in their out-of-sample point forecasts. The out-of-sample forecast comparisons
do not rely on a single criterion, for robustness we compare the results of four different
measures. Namely, the mean forecast error (MFE), the root mean square forecast error
(RMSFE), the symmetric mean absolute percentage error (sMAPE) and the median
relative absolute error (mRAE). The four performance measures are calculated as
follows:

MFEh ¼ 1

T−h−Ts þ 1
∑
T−h

t¼Ts
Δytþh−Δbytþhjt
� 	

;

sMAPEh ¼
100 Δytþh−Δbytþh

��� ���
0:5
�
Δytþh−Δby jtþhjt

;
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mRAEh ¼
Δytþh−Δbytþh

��� ���
Δytþh−Δby1tþh

���� ���� ; with 1ð Þ indexing the benchmark model;

RMSFEh ¼ 1

T−h−Ts þ 1
∑
T−h

t¼Ts
Δytþh−Δbytþhjt
� 	2

:

Density Forecast Measures

The literature on the aggregation of density forecasts focuses on the so-called scoring
rules (see, for example, Geweke and Amisano 2011). These are functions that enable
the forecaster to aggregate the set of conditional predictive densities. As regards point
forecasting, the out-of-sample forecast comparisons based on four different scoring
rules were used for aggregating the T − Ts − h + 1 predictive densities produced by the
same forecasting exercise:

The logarithmic score (LogS):

LogS j;h ¼
1

T−h−Ts þ 1
∑
T−h

t¼Ts
log f j

tþhjt; ð8Þ

which corresponds to a Kullback-Liebler distance from the true density; models with
higher LogS are preferred.

The quadratic score, somewhat the equivalent of the MSFE in point forecasting, is
defined as:

QRS j;h ¼
1

T−h−Ts þ 1
∑
T−h

t¼Ts
∑K

k¼1 f j
tþhjt−dkt

� 	2
;

where dk, t = 1 if k = t and 0 otherwise; models with lower QSR are preferred.
The (aggregate) continuous-ranked probability score (CRPS), equivalent to the

sMAPE, is defined as:

CRPS j;h ¼ 1

T−h−Ts þ 1
� ∑

T−h

Ts
f t−h− f

j
tþhjt

��� ���−0:5 f t−h− f
0
tþhjt

��� ���� 	
;

where f and f′ are independent random draws from the predictive density and ft + h ∣ t is
the observed; models with lower CRPS are preferred.

Finally, the quantile score (qS), which can be obtained if f j
tþ jjt is replaced with a

predictive α-level quantile qαtþhjt in Eq. (8) (and the logarithmic function is removed);
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this score is used in risk analysis because it provides information about deviations from
the true tail of the distribution.

Table 4 reports the results of the h-step-ahead forecasts for the forecast period
h = {1, 3, 6, 12}. In Panel A the point forecast measures are reported, whereas the
density forecast performance measures are reported in Panel B. In columns 1 and 2

Table 4 Forecasting house prices: point and density predictive performances

Forecast horizon Forecast error measure AR(p) LSTAR GSTAR AR GARCH(1,1)

PANEL A: Point forecasts

1 MFE 0.009 0.006 0.002 0.005

3 0.012 0.011 0.004 0.008

6 0.014 0.013 0.009 0.009

12 0.016 0.019 0.012 0.011

1 sMAE 0.008 0.009 0.004 0.005

3 0.012 0.010 0.006 0.006

6 0.011 0.011 0.009 0.008

12 0.015 0.012 0.0012 0.010

1 mRAE 1.000 1.008 0.995 0.994

3 1.000 1.012 1.003 1.004

6 1.000 1.013 1.005 1.005

12 1.000 1.023 1.007 1.007

1 RMSPE 0.004 0.003 0.003 0.003

3 0.005 0.004 0.004 0.005

6 0.008 0.005 0.005 0.006

12 0.009 0.007 0.006 0.007

PANEL B: Density forecast

1 LogS 0.000 0.001 0.001 0.000

3 0.001 0.001 0.001 0.001

6 0.001 0.001 0.002 0.001

12 0.002 0.002 0.002 0.002

1 QRS 0.003 0.002 0.002 0.003

3 0.003 0.003 0.003 0.004

6 0.004 0.003 0.003 0.004

12 0.004 0.004 0.004 0.005

1 CRPS 2.051 1.992 1.877 1.984

3 2.189 2.078 1.922 1.994

6 2.452 2.219 2.004 2.000

12 2.557 2.267 2.015 2.002

1 qS 0.021 0.022 0.021 0.022

3 0.025 0.026 0.025 0.024

6 0.037 0.029 0.034 0.029

12 0.039 0.037 0.034 0.034

The table compares RW, AR(p), LSTAR, AR-GARCH(1,1) models and the GSTAR model in their out-of-
sample forecasts. In Panel A the point forecast measures are i) the mean forecast error (MFE); ii) the root mean
square forecast error (RMSFE); iii) the symmetric mean absolute percentage error (sMAPE); and iv) the
median relative absolute error (mRAE). In Panel B the density forecast measures are: i) the logarithmic score
(LogS) SR); iii) the continuous-ranked probability score (CRPS); and iv) the quantile score (qS). The forecast
horizon is 1,3,6 and 12 quarters
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the forecasting horizon and the forecast error measures are respectively reported,
whereas in columns 3–6 the forecasting results for each model are reported. From
panel A of Table 4 it is clear that, according to the point performance measures, the
GSTAR model performs better than its linear and nonlinear counterparts, especially in
the medium-term and long-term horizons. However, the results for the logarithmic
score are mixed with the AR-GARCH(1,1) occasionally outperforming the GSTAR in
the long-term horizon.

Table 4 reports the results of the h-step-ahead forecasts for the forecast period h= {1, 3,
6, 12}. In Panel A the point forecast measures are reported, whereas the density forecast
performance measures are reported in Panel B. In columns 1 and 2 the forecasting horizon
and the forecast error measures are respectively reported, whereas in columns 3–6 the
forecasting results for each module are reported. From panel A of Table 4 it is clear that,
according to the point performance measures, the GSTAR model performs better than its
linear and nonlinear counterparts, especially in the medium-term and long-term horizons.
However, the results for the logarithmic score are mixed with the AR-GARCH(1,1)
occasionally outperforming the GSTAR in the long-term horizons.

Is London Different from Other Cities?

In Section 4, the GSTAR model detected widespread evidence of asymmetric adjust-
ment in London. Moreover, the GSTAR model revealed that, when compared to the
Boroughs located in Outer London, the urban areas in Inner London feature a stronger
asymmetrical cyclical component with higher upturns and deeper downturns. This
result is in agreement with economic theory, where it is suggested that in large
metropolitan areas the inertia of supply resulting from construction lags in combination
with backward-looking expectations generates more extreme asymmetric cycles (see
for example Capozza et al. 2004; Glaeser and Gyourko 2018; Case and Shiller 1989).
In an influential paper, Gyourko et al. (2013) provide evidence that house prices and
income growth are related. The authors give the name “superstar cities” to those
metropolitan areas where: i) demand exceeds supply and ii) supply growth is limited.
A crucial characteristic for a city to qualify as a superstar is that residents are willing to
pay a premium to live there and the proportion of high-income households is relatively
high. In places that are desirable, but have low construction rates, households with high
incomes or strong preferences for this location outbid lower income families for scarce
housing and drive up the price of the underlying land. By contrast, in locations where
the housing supply is not constrained, households can buy at construction costs so that
instead of growth in house prices, the areas exhibit growth in house supply. According
to the theoretical framework suggested by Gyourko et al. (2013), the clearing process
continues as long as the growth in the income-weighted demand for a location exceeds
the addition in supply, either in the original location or in a close substitute. In addition
to attracting highly skilled workers, global cities also attract inflows of foreign capital
due to the increasing financial market liberalisation that the world has witnessed in
recent years. According to Favilukis et al. (2013) (see also Badarinza and Ramadorai
2018) many countries that saw large housing booms and busts attracted foreign capital
and much of this capital was invested in the property market, thanks to mortgage credit
extension.
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Against this background, one question that naturally arises is: How far do the house
price dynamics in London reflect the developments of other large cities in the UK? In
other words, do housing markets in other large cities in the UK show similar asym-
metric cyclical features?

In order to answer these questions we consider a number of large cities in UK and
test whether the housing markets in these large metropolitan areas show characteristic
features similar to those observed in London. With this target in mind we consider
testing for nonlinearity and the dynamic asymmetry of the house price series in other
large cities in the UK. To test for nonlinearity the inference procedure similar to the one
suggested in Luukkonen et al. (1988) has been used. The test statistic has under the null
hypothesis H0: eγ ¼ 0 against H1 : eγ≠0 in Eq. (5). Therefore, if the null hypothesis is
not rejected the nonlinear function G(·) is zero in Eq. (5). Under the null the LM-type
test is asymptotically distributed as a χ2(3p) distribution. To assess whether the
GSTAR model is an admissible specification with respect to the housing market cycle
characteristics in these cities we also consider testing for dynamic symmetry. If the data
are compatible with the GSTAR model, we saw in the previous section that, according
to the results of the Monte Carlo experiment, the series generated by the model are able
to reflect the characteristics of the housing market cycle.

To test for dynamic symmetry we follow Canepa and Zanetti Chini (2016) and
specify the following auxiliary regression

ut ¼ bz01teβ þ ∑p
j¼1β2Δyt− jΔyt−d þ ∑

p

j¼1
β3 jΔyt− jΔy

2
t−d þ ∑

p

j¼1
β4 jΔyt− jΔy

3
t−d þ vt; ð9Þ

where vt ∼ I. I. D. (0, σ2), eβ1 ¼ β10;β
0
1

� 	
0
; β10 = ϕ0 − (c/4)θ0, β1 ¼ ϕ− c

4

� �
θþ 1

4

� �
θ0

ed; ed = (0, 0,…, 1, 0,…, 0)′ with the d-th element equal to unit and T3(G) = f1G + f3G3
is the third-order Taylor expansion of G(Ξ) at eγ ¼ 0, f1 = ∂G(Ξ)/∂Ξ|γ = 0 and
f3= (1/6)∂3G(Ξ)/∂Ξ|γ = 0 G(Ξ) is given in the Eq. (2). To test the null hypothesis

H0 : β2 j ¼ β3 j ¼ β4 j ¼ 0 j ¼ 1;…; pð Þ: ð10Þ

In Eq. (10) the following LM statistic can be used

LM ¼ SSR0−SSRð Þ=bσ2

v ; ð11Þ

where SSR0 and SSR denote the sum of the squared estimated residuals from the
estimated auxiliary regression Eq. (9) and under the null and the alternative, respec-

tively, and bσ2
v ¼ 1=Tð Þ SSR. Under the null hypothesis the LM test in Eq. (11) is

asymptotically distributed as a χ2
p distribution.

Table 5 reports the two test statistics for the ten largest cities in the UK, apart from
the capital. The cities are ordered according to their population with the largest cities at
the top. The top panel in Table 5 reports the p values for the calculated test of
nonlinearity and dynamic symmetry for London, whereas the p values for the other
cities are reported in the lower part of the table.
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Looking at the results in Table 5, it appears that the characteristic features of the
house price series for the largest metropolitan areas outside London are quite different
from the capital city. Looking at results the null hypothesis of linearity can be rejected
for the city of London, but also for many of the other large cities in the UK. On the
other hand, the null hypothesis of dynamic symmetry is rejected for London, but the
same is not true for all the other cities. This suggests that the characteristic of the
housing markets of these cities could not be captured using a highly nonlinear
specification such as the GSTAR model. Overall, the results in Table 5 suggest that
the largest metropolitan areas outside London have different house price dynamics
from those in the capital city.

Discussion and Policy Recommendations

The estimation results in this paper reveal several insights into the patterns of the
London housing market. In particular, it is found that the expansion phases last longer
than the contraction phases. This implies that house prices build up slowly in good
times, but markets bust quickly when the tide changes. We also find that troughs are
deeper than the peaks are tall, meaning that contractions in the housing market are more
pronounced than the expansions. Looking at the house price series for major cities in
the UK outside the London, it is also clear that house price movements in London are
more extreme than in the rest of the country.

Table 5 Linearity and dynamic symmetry tests for cities in the UK

City Nonlinearity test Dynamic symmetry

p-value p-value

London

London 0.035 0.012

Outer London 0.040 0.001

Inner London 0.041 0.050

Other major cities

Birmingham 0.064 0.280

Manchester 0.381 0.665

Glasgow 0.002 0.114

Newcastle 0.005 0.613

Liverpool 0.873 0.672

Leeds 0.043 0.643

Bristol 0.338 0.995

Belfast 0.077 0.835

Nottingham 0.068 0.373

Edinburgh 0.034 0.575

The linearity test has under the null hypothesis that the house price series are linear. For the dynamic symmetry
test the null hypothesis is dynamic symmetry and the alternative hypothesis is asymmetry. In column 1 the
cities, ranked by population, are reported, whereas the tests p-values are reported in columns 2–3
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The fact that house prices in cities such as London feature asymmetric cycles has
several policy implications. First, house price fluctuations in the capital region often
produce spill-over effects to neighbouring regions, causing price fluctuation not justi-
fied by the fundamentals of these regions. In this respect, there is an extensive literature
on the interaction of regional house prices through the “ripple effect” and how they
converge or diverge over time (see for example Holmes and Grimes 2008; Cook 2006).
The “ripple effect” or “price diffusion effect” is the phenomenon whereby a shock in a
given housing market spreads out over time to the rest of the territory. More precisely,
the ripple effect on house prices is shown as a co-movement (rise or fall) in real estate
prices which affect prices in other regions in the same direction. Spatial diffusion can
occur in contiguous geographical areas, but not necessarily; it may also affect discon-
tinuous spatial territory with similar socio-economic conditions. Among other empir-
ical works, evidence of the price diffusion effect is given in Tsay (2018) for the US,
Cook and Watson (2016) for the UK, and Taltavull et al. (2017) for Spain.

Second, the recent financial crisis has made it clear that housing markets can
undermine financial stability. Historical evidence shows that a significant number of
banking crises were preceded by the bursting of house price bubbles (Reinhart and
Rogoff 2009). Falling property prices tend to put pressure in the banking sector, not
only because of the increases in mortgage default but also because of a deterioration in
the balance sheets of corporate borrowers who rely on real estate as collateral. The
consensus in the literature supports the view that asymmetries in housing market cycles
are closely related to the credit cycle. According to this literature the over-expansion of
mortgage credit in the boom phases increases leverage, building up credit risk. When
the cycle turns, the impact on macroeconomic and financial stability is greatest when
falling house prices and high debt interact in a downward spiral (Borio and Lowe 2002;
Dell'Ariccia et al. 2012).

Table 6 Neighbourhood classification for house prices in Inner London

Inner London Boroughs

Super Prime Kensington and Chelsea

Westminster

Camden

City of London

Hammersmith and Fulham

Prime Tier 1 Islington

Wandsworth

Hackney

Lambeth

Prime Tier 1 Southwark

Tower Hamlets

Lewisham

Greenwich

The City of London - this is not a “Borough” as it is governed by the City of London Corporation, but is an
inner London council. Since it is scarcely populated it is inserted in the “Super Prime” neighbourhoods. Note
that the Boroughs are ranked by average house price with the most expansive Borough at the top
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Third, developments in financial markets can greatly amplify the effect of small
income shocks through the economy. This is especially relevant to capital cities that are
also global cities. In a seminal paper, Bernanke et al. (1996) refer to this amplification
mechanism as the “financial accelerator” or “credit multiplier”. The key idea behind the
financial accelerator is that, under the assumption of a fixed leverage ratio, positive or
negative shocks to income have a pro-cyclical effect on the borrowing capacity of
households and firms. In particular, when house prices fall households have a smaller
deposit (i.e. a lower loan to value ratio) available than they otherwise would for the
purchase of their next home. Therefore, homeowners are able to obtain less favourable
mortgage interest rates when renegotiating their mortgage and have less scope for
extracting additional equity to finance consumption. A number of studies provide
evidence that fluctuations in the real estate market significantly affect the value of
houses as collateral and therefore strongly influence borrowing conditions for
households. Claessens and Kose (2018) show that the impact of cycles on financial
stability are greater the greater the dynamic asymmetry: the greater the amplitude of the
fluctuations due to larger wealth effects and the longer their duration due to the fact that
consumption and lending respond more strongly to persistent changes in wealth. Using
a similar argument, Kiyotaki and Moore (1997) show that rising asset prices may ignite
a lending boom by increasing the collateral values. A reversal in fundamentals further
increases the loan default rate (see also Favilukis et al. 2017).

The behaviour of real estate markets and interaction with the financial sector and real
economy have sparked a significant amount of debate among policymakers and aca-
demics regarding the appropriate policy response. Traditional tools to dampen cycles are
central bank monetary policy measures targeted at managing the interest rate. It is well
known that housing markets respond well to monetary policy actions, since changes to the
cost of the user’s capital affect the demand for residential investment (see Bernanke et al.
1996; Erceg and Levin 2006). However, monetary policy is not specifically targeted at the
housing market. On the contrary, it is a general tool that affects all types of lending. Some
authors have argued that the surge in interest rate required to restrain house price growth
may adversely affect other sectors of the economy and increase the likelihood of a
recession (see Ume 2018). In this respect, macroprudential policy targeted at limiting
the uncontrolled growth of housing market credit may be more effective in damping
housing market cycles. The structural macroprudential measures that could be implement-
ed to moderate house price cycles are either borrower-based (DTI/loan-to-income/debt-
service-to-income ratios, amortisation) or collateral-based (LTV) instruments. These tools
have proved successful in curbing excessive house-price rises in global cities such as
Hong Kong (see Gerlach and Peng 2005 among others).

Evidence of more extreme cyclical patterns in the city of London than in other
regions in the UK suggests that in global cities regional tools could be used to dampen
overly cyclical variation in house prices. In this respect, Cerutti et al. (2017) suggest
calculating indicators that can be used by policymakers to gauge the level of overvalu-
ation of residential housing separately for large metropolitan areas such as capital cities
and for the rest of the country. This would make it possible to monitor promptly any
significant developments in the property market and prevent the overheating of the
market in expansion phases. In global cities the lower affordability of real estate
coupled with the slower growth of household disposable income is an additional source
of stronger cyclical patterns in property prices. Greater financial vulnerability could
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lead households in these cities to be more vulnerable to economic shocks, with
implications for the financial stability if those households cannot repay their mortgages.
In this respect regional-level tools such as local tax could be used to dampen the
stronger cyclical pattern in these metropolises. Similarly, macroprudential policy mea-
sures could be regionally targeted.

Finally, it is clear that stronger cyclical patterns in large cities are partly related to
structural factors. A great many studies suggest that in large metropolitan areas high
real construction costs introduce unpriced supply restrictions (see for example Glaeser
and Gyourko 2018; Capozza et al. 2004). In this respect, other policy measures useful
for dampening the asymmetries in housing market cycles may be chosen to increase the
responsiveness of the housing supply to demand shocks. Clearly, increases in the price
would not occur if the housing supply was perfectly elastic. Severe supply constraints
in large cities stem from a range of sources such as the availability of land and
construction costs. Other important potential factors are regulatory constraints. A large
volume of studies documents the likelihood that the construction costs imposed by
regulation will be substantial (see, for example, Quigley and Rosenthal 2005; Zabel and
Dalton 2011; Jackson 2018). In general, regulations assume different forms such as
zoning, minimum lot sizes, height restrictions, open space requirements and growth
controls. Other regulations, such as building codes and impact fees, can also affect the
elasticity of housing supply by raising the construction costs. Measures targeted at
relaxing supply restrictions may therefore help to dampen real estate cycles.

Conclusion

In this paper the generalized smooth transition model proposed in Canepa and Zanetti
Chini (2016) is applied to house price series to investigate the asymmetrical behaviour
of house price cycles in London. To investigate whether the GSTAR model is an
admissible specification with respect to house price cycle characteristics we use Monte
Carlo simulation. In particular, we use the estimated parameters to simulate the data
from a GSTAR data generating process and we then use the dating approach suggested
in Pagan and Sossounov (2003) to identify housing market phases and test if the
GSTAR model generates time series that are able to reflect the characteristics of real
estate cycles such as average durations and amplitudes of contractions and expansions,
as well as other measures of the cycle shape. In this paper we also consider how the
GSTAR compares with alternative models. It is found that the GSTAR model is better
able to capture features of the cycle like deepness with respect to other competitive
models. Finally, using different measures of point and density forecast accuracy to
evaluate the performance of alternative specifications, we find that the GSTAR in most
cases generates improvements in forecast performance, thus outperforming other linear
and nonlinear model specifications, especially in short-term horizons.

From the methodological point of view the estimation results of the GSTAR model
allow us to support most of the findings in the previous literature about the nonlinear
behaviour of the housing markets in large metropolitan areas (see for example
Alqaralleh and Canepa 2020; Miles 2008; Cabrera et al. 2011). However, looking at
the results of the Pagan and Sossounov (2003) algorithm it is clear that the type of
transition function commonly adopted in threshold models such as STAR-type models

Global Cities and Local Challenges: Booms and Busts in the London...



may be suitable for estimating house price dynamics at a higher level of aggregation
(e.g. at country or regional level), but may not be the best specification to capture the
asymmetric oscillations from the conditional mean of house prices for the housing
market in global cities such as London. This is because house prices in these
metropolises are subject to strong exogenous shocks that make the stochastic processes
highly nonlinear. We find that the econometric models such as LSTAR may be able to
reproduce the steepness of the cycle, but not the depth, which we found to be an
important feature of the data in hand. This result may stem from the fact that STAR-
type models have a transition equation that is symmetric by construction. In this
respect, using a class of model indexed by two shape parameters that influence the
symmetry and heaviness of the tails of the fitted transition equation improves the fit of
the non-central regions of the probability function and therefore the resulting model
may be better able to capture the asymmetries found in the house price series.

In this paper we find that cycles in the capital feature different characteristics with
respect to other large cities in the UK. This result highlights the fact that different types
of econometric specification have to be used for global cities simply to reflect their
different economic and social structure. Looking forward, a multivariate modification
of the GSTAR that allows us to investigate spatial spillover effects would be an
interesting development. Econometric models designed to calibrate the spill-over
effects of regional cycles are more difficult to build than those designed for national
measures, because they require additional dimensions (capturing heterogeneity between
regions) and additional nonlinearities. A suitable avenue in future research would
perhaps be a modelling specification for analysing house price cycles that allowed
different frameworks for a capital city and for the rest of a given country.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE
Agreement.

Appendix

Data generating processes used in the Monte Carlo experiment

AR(3) Model:

yt ¼ 0:0019þ 0:212yy−1 þ 0:263yt−2 þ 0:254yt−3 þ 0:124yt−4 þ 0:010ϵt
0:0007ð Þ 0:063ð Þ 0:062ð Þ 0:063ð Þ 0:031ð Þ

LSTRAR Models:

yt ¼ −0:588þ 0:493yt−1−0:086yt−2−0:298yt−3−0:370yt−4þ
0:070ð Þ 0:046ð Þ 0:086ð Þ 0:053ð Þ 0:010ð Þ

−0:669yt−1−0:486yt−2 þ 0:790yt−3−0:750yt−4 � 1−exp −5:374 yt−3−0:015ð Þð Þ½ �−1
0:055ð Þ 0:230ð Þ 0:363ð Þ 0:231ð Þ 0:007ð Þ
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GARCH(1,1) Model:

yt ¼ 0:004þ 0:478yt−1 þ 0:010ϵt; with ϵt∼N 0; 1ð Þ
0:0008ð Þ 0:061ð Þ

σ2
t ¼ 0:002þ 0:093u2t−1 þ 0:874σ2

t−1: with ut ¼ σtϵt
0:0006ð Þ 0:036ð Þ 0:046ð Þ

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the
article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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