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Introduction

The purpose of this paper Is to derive error bounds for

the finite element analysis of elliptic boundary value problems.

As shown in Section 2, the interpolation remainder is an upper
bound on the finite element remainder in the appropriate norm.

Error bounds are derived for the interpolation remainder by

means of extensions of the Sard kernel theorems. The Sard kernel
theorems provide a representation of admissible linear functionals
on spaces of functions with a prescribed smoothness. If appropriate
derivatives of the solution u of the boundary value problem can
be found, then these theorems yield computable error bounds.
These theorems have been applied to cubatures by Stroud [10] and
by Barnhill and Pilcher [1].

The solutions of elliptic boundary value problems are usually
assumed to be in a Sobolev space. The Sobolev and Sard spaces
are not the same. If (a,b) is the point about which Taylor
expansions are taken in the Sard space, then the Sobolev spaces
are contained in the Sard spaces of the same order for almost
all a and for almost all b. In Section 3, we show that the
derivatives occurring in the Sard spaces can be generalized
derivatives, so that the derivatives in the two types of spaces
are of the same kind.

Some of the functionals of finite element interest are not,
in general, admissible for Sard spaces. A precise statement of
this is given in Section 2. This problem was avoided by Birkhoff,
Schultz and Varga [4] ina way that is appropriate for rectangles,
but is inappropriate for triangles because it implies the use of

derivatives outside the original region of interest. In Section 4,



we extend the kernel theorems and show how to choose the
point (a,b) so that the finite element functionals can be applied
in an arbitrary triangle. The method can also be used for more
general regions.

The finite element functionals do not involve all possible
derivatives of a certain order. In Section5, we prove a Zero

Kernel Theorem that states sufficient conditions for certain of

the Sard kernels to be identically zero. The Zero Kernel Theorem
has wvarious applications, one being that certain mesh restrictions
in Birkhoff, Schultz and Varga can be avoided.

We conclude in Section 6 with computed examples of the
constants in the error bound for piecewise linear and piecewise

quadratic interpolation.

The Galerkin Method and Its Relationship to Interpolation.

Finite element analysis means piecewise approximation over a
set of geometric "elements". This rather general definition
suffices e.g., for computer-aided geometric design, but for
elliptic boundary value problems finite element analysis usually
means the Galerkin method. If the partial differential equation
is the Euler equation for a variational problem, then the
Rayleigh-Ritz method is applicable and is the same as the
Galerkin method. Thus the Galerkin method is the more general
since it does not depend upon the existence of some underlying
variational problem. Therefore, we discuss only the Galerkin

method in this paper.
Let QQ be a simply connected bounded region that satisfies

a restricted cone condition in the xy- plane. For p > 1 and ¢

a non-negative integer, Wcl) (Q)is the Sobolev space of functions



with all €™ order generalized derivatives existing and in

L, (). Usually p=2. We recall that for Q as in Figure 1,
ou

o =u 49 is the (1,0) generalized derivative of u means that
u;o is in L;(QQ) and

x=x,(y)

d
g%vdxdy= E[{u(x, y) v (%) X:Xl(y)}dy—gu?xdxdy

1
for all test functions v in "2 (®)

»
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norm for wg(Q) is the following :

1
v Iw2(@) = {5 (D% || L)

la |< 0 (2:3)
Py
where o= (a;,0,),D% = —
1 2 aXal ay(lz

and the summation in (2.3) is over all a such that

|| =oa; + ap <€. The definition of generalized derivative

2.1)



implies that the partials in D% can be taken in any order.

The function space Wg(g) is the completion in the norm (2.3)

of C"(Q), m = 0,1, ... or equivalently of C*(Q).
Following Varga [11], we consider linear elliptic operators

in divergence form:

Lux,y)= ¥ (D% D¥Py(x, y)D* u(x, y)]
joj< ¢
where the p, are in Lo, (QQ). The nonhomogeneous boundary value

problem corresponding to L is to find u e Wg (Q) such that :

Lu(x,y) =g(xy) , (X,y)e Q

D% (x,y) = fa(x.y), (x,y) € 0Q for 0 < |B|<C -1 .

The homogeneous problem is that all the fz are identically zero,

l
the relevant Sobolev space then being called %V2(Q)

14 4 1
A norm in (\)V2(Q) is | |v] |8v2(Q) = 2

o

> [Ip®yl]?2
y Ly(@)

Theorem 1 in Section 3 on equivalent norms implies that this is

0!
a norm on W2(Q)

Let a(u,v)= Y |[[ Py, yD au(x, y)D aV(X, y) dx, Dy
al=¢ Q

Then the weak problem, corresponding to (2.5) and (2.6) is to

find u satisfying (2.6) and such that
a(u.v) = (gVv)

for all v in (\)Vi(g)
The definition of the weak problem can be motivated by the

integration of (2.5) by parts with a test function v in

0 (@)

(2.4)

2.5)

(2.6)

2.7)

(2.8)



We consider interpolants U to u, where the interpolation

conditions are the following:

L. (@ = L W, i = 1, .., m,

M (W) = M; @ . i = 1, ., 1,

and the L; and M. are interpolation functionals such that
the Li(u) are unknown and the M;.(u) are known a priori.

Hereafter we assume that the M;(u) are known from the
boundary data (2.6).

5_2 is usually discretized and the linear funotionals L; and
M; based on the discretization, an example being the
evaluation of u and its derivatives at certain mesh points.

Let v" be an (m + n)-dimensional subspace ofw{; (Q) such

that the L.; and M; are linearly independent over v" Then V" has a

basis of functions {Bi(x, y) }iril and {cj(x, y) } ?:1 that

are biorthonormal with respect to the L; and M; [5]. Let

S" be the subset of wg(Q ) which consists of functions v of

the form

m n
v(X,y) = igl a, Bi (x,y) + ng Mi (w) Cj (x,y)

h

where the a; are constants. Let 50 be the m-dimensional

subspace generated by the B;. The Galerkin method is to

h
0

find Uin S" such that a(U,v) = (g,v) for all v ins

h

The"conforming condition" is that s= < wg(Q ) ,which is

required for the Galerkin method. We also require
l

g
Lemma.l (Strang [9]). The Galerkin approximation U is the best

approximation from S"to uin the energy norm induced by

0
c w2(Q ), which usually follows from the conforming condition.

(2-9)

(2.10)



the inner product a(u,v). Thatis,

a(u-U, u -U) < a(u - G, u-U for all U in S"

In fact,

a(u— U,u-U) + a( - U, 0-U) = a(u-0, u-10).
From the definitions of weak problem (2.3) and

a(u- U,v) = 0 for all v inslol

Proof:
Galerkin method, (2.10),

Therefore, a(u-U, u-U) =

au — u, (u - U) , from which (2.12) follows. Q.E.D.

The normal equations for this beat approximation can be

derived as follows:

If U interpolates to u with respect to the functionals

L; and M; then

~ m n
u (X5Y)= Z L(U)B (X, Y) + Z M(u) c. (X’Y)
i=1 1 1 j=1 J J
n
Hence U(x, y) = 3 A;B; (x, y) X MW e (ny)
and a(U,Bx )= (g,Bx) k=1, ..., m.
Thus
m n
i§1 Ai a(Bi ’Bk) = (gaBk) - ng MJ(U—) a(Cj,Bk) )
k =1,..m

Equations (2.14) yield a method of calculation of the A;.

Since the Bx are in w2(Q ), the actual normal equations are

a(u—-U,u-u), and a(u-U, —-U)=

(2.11)

(2.12)

(2. 13)

(2.14)



the following :

ZAa(B Bk) = a(u - ZM (u)C Bk) k = 1,...., m. (2.15)
j=1

The norm induced by a(u,v) is equivalent to the

wg(Q) norm if ais bounded and wg(Q) - elliptic, i.e.

2 1
Elliptic : pll v HWf(Q < a(v, v) for all ve W 5 Q) (2.16)
2 and some constant p > 0
1
Bounded :| a(v,w) < a || || v HWEH w HWE for all v, w ¢ WZ(Q) (2.17)
2 2
From (2.4), || a || < |7 fE}H Pa || Lo(Q) (2.17)
Lemma 2. Assumptions (2.16),(2.17) imply that
12
lu-U| W, s{” ”} min | u - Wy (2.18)
p

Proof : The best approximation property a (u-U,u-U) < a (u — U, u — u),
ellipticity ,and boundedness imply the conclusion . Q.E.D.

Example. For Poisson's equation, £ =1, ||a] |[=1 and p

can be taken as one.

Interpolation remainder theory is applicable to the Galerkin
method from the best approximation property (2.11) or
equivalently, from (2.18), the interpolant being taken as u

. The Sobolev Imbedding Theorems.

The following theorem on equivalent norma [7] was used in

Section 2:

Theorem 1. If Fy,.. .Fy are bounded linear functionals on

wh(Q)

that are linearly independent over Py_; , the space of

polynomials of degree <€ -1, and N = £(£+1)/2, then the usual



wg(Q) norm (2.3) can be replaced by the norm

N 2
V]| ={kz F W%+ ¥ [ID%v [|L] <sz)}

=1 lof =7

3.1
The norm on (\)Vi(g) is obtained with the Fyx being
of the form DBuds,‘B‘</—1
0Q -
The Fx are bounded because lower order derivatives can be
bounded in terms of higher order derivatives as follows:
Theorem 2. Let € be the union of finitely many star-like
regions. If £€=1, then v in wlz(Q) implies that
Iv iy @)l @ - Lyle)iviy, @ (3.2)
2 2
where 2; is a one-dimensional subset of Q.
If ¢ > 1, then v in wg (Q ) implies that
(-2 l l
Iv i e2@) < llglwh@) - Lyle,)I v I wh@) (3.3)

Where ||£|| xy means the norm of the operator imbedding
X into Y.

We note from Theorem 2 that point evaluation funotionals are

bounded on W% (). However, these functionals are unbounded

on W,12 Q).

A specific example of Theorem 2 is the following:

Lemma 3. Let Q be abounded convex region with B equal to
the maximum of By and B, , where By is the diameter of Q along
parallels to the x-axis and By is dual.

If u =0 on 0Q, then

1
Iull Ly@) <3 u |y, @) (3.4)



Proof: Let 0Q be parametrized by the pair of functions

yI(X)=y2(X), asx<borby xi;(y) < x2(y), c<y=d

(see Figure 1). Then

y

U(X, Y) - ll(X, y1(X)) = I anl(Xe ;’)d’-}‘; (35)

yk(X)
ux ) - ux ) y) = | up o & 9. (3.6)

) 7

5 Y, (%) 5
From (3.5), ju(x, |2 (v = ©) | [ug y(x DI,
y )

so that
byz(x) ) B2 byz(x) )
[Tk y) T dy b 1T ugy (917 dY dx
4y, ™ ay, ’ (3.7)

A dual result comes from (3.6) and the conclusion follows. Q.E.D.

4. Interpolation Remainder Theory

We review and then extend the Sard kernel theorems in order to

obtain interpolation error bounds, including the corresponding constants.
Letp and q be positive integers with n = p+q. Sard [6] has

defined several types of spaces of functions with a prescribed smoothness.
The two types of interest for remainder theory are the triangular

SpacesB p.q and the rectangular spaces For B 1 remainders of

B
polynomial precision in two variables, = P4 is the more useful unless
the remainder corresponds to a tensor product rule, in which case

B ] is used. The latter case has been considered much more,
=lp,q

building as it does on one-dimensional rules, and many particular

results are summarised in Stancu[8]. This paper will be concerned



10.
with interpolation over triangulated polygons Q ,
so that 5 P9 s the appropriate Sard space.
5 P9 s the space of bivariate functions with Taylor
expansions containing derivatives in a certain triangular form.
The Taylor expansions are at the point (x,y) about the point (a,b).
The notation B pa means that the derivatives occurring in the
Taylor expansions are integrable. In fact, we shall usually
consider subspaces of B pa in which the derivatives are in L, .
for some p' > 1-
The space 5 P4 depends on the region Q in which the Taylor
expansions take place. Sard let Q be a rectangle, but this is
insufficient for our later purpose of interpolation to
functions defined on triangles. However, the boundary value

problem assumption that Q2 be a bounded region satisfying a

restricted cone condition is too general.

Definition 1. Let  be a bounded region with the following
property: After a rotation (if necessary), there is a point

(a,b) in © such that for all (x,y) in © the rectangle with

opposite corners at (a,b) and at (x,y) is contained In€2
Examples. If Q is a rectangle, then (a,b) can be an arbitrary
point in the rectangle. If Q is a triangle, then (a,b) can be
taken as the point on the longest side of the triangle that is

at the foot of the perpendicular to this side from eth opposite vertex.

(‘sb)

Fig. 2.



11.

We assume hereafter that the region Q of definition of the
boundary value problem (2.8) is the union of finitely many regions
Q satisfying the above definition. When Q is a rectangle, the

next theorem is due to Sard.

Theorem 3. Taylor Expansion. Let Q satisfy Definition 1. Then

ue Bp q(Q) implies that u has the following Taylor expansion at

(x,y) about (a,b):

oy = ooy -n U e

i+j<n

P sy - @] [(x - 0Dy &b 6
i<a ’

T O R

< _i(aa y) d—i
j<q

1L,n

¥ l{(y - y)(q‘l)z(x -oPD (&P &R @ @4.1)

where (x - a)¥ = (x-a) I / i! etc.

Remarks on the proof:

Theorem 3 is proved by several integrations by parts.

UK, ¥) = (6 b) + ug (% DY - b) I(y =99 g6 D) @ (42)

U g6 ) = ug @ P + (6L Pix - a) bt j(x - x) P=ly &9 & .



This completes the expansion along Sard's "main route" in the
Sard index triangle of partial derivatives from (0,0) to (p.,q),

Figure 3.

(o,n)1

Next, univariate expansions

are made along the arrows, i

: (a,q) {psa)
exactly one expansion for
each term of (4.2) after \
—>— \
4.3) h i -
(4.3) has been substituted ©.9) o)
into (4.2).
Pigure 3.

We have assumed the existence of the generalized derivatives

in Table 1. These derivatives need exist only almost

~

and 'y *because these variables

everywhere in the variables*
are '"covered" by integrals in the Taylor expansions. In particular,

Upq(X, ¥) exists a,e. X and a.e.y Our later use of (4.1) only

requires that u(x,y) exist a.e. (x,y) and that the derivatives involving x

in the first two columns in Table 1 exist a.e. X.

12.1



12.2
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An importance of these derivatives being generalised rather

than ordinary is to make the Sard and Sabolev spaces more compatible.

(Sard's statement of this theorem presumes that the derivatives

are ordinary.)

The Sard kernel theorems are for admissible functionals defined

on functions which have a rectangle as their domain of definition.

We extend the definition of admissible functional to regions

satisfying Definition 1.

Definition 2. The admissible functionals onB

of the following form:

Fu = X J.QI uij (X.,y)
i<p ’
1<q

+ >

hou &) A ®
i+j<n ’

1>p

+ > @)

i+j<n
izq

where the ui’j are of bounded variation with respect

arguments. The line segments

are assumed to be in Q or, equivalently, the support of the

ij

u is contained in 2.

q (Q)are

2

to their

y=b,a<Xx<a and x=a,f<

(4.4)

~

y< B

univariate

13.



14.

Theorem 4. Kernel Theorem, Let Q satisfy Definition 1 and F be an

admissible functional on ]§ (Q ). Ifue ]g.p q(Q ), then

Fuk,y) = ¥ cu, @b+ 3 ju aeij®B) K (R)dx

i+j<n  bJ j<qo J>
i o
b3 fuin - i@ PKETIEAT + [ [up, g & K TIE, ) 0y (4.5)
i<D B Q
Where ¢ = Foe y)[(x 2Dy - )U)} i+j<n 4.6)
K" JJ(“) = F(x, Y)[ ~)(n - (p(a X, X)(y — b)(J)} ,1 < ¢, X g Ix 4.7)
R N I L L U A RIS S 49)

kP9 y) = By ol - 0P Dy &0 - 9Ove R e jx e 54?9)

The notation F(x,y) means that F is applied to functions in the
variables (x,y). The function ¥ is
l1if a <X <x

v (a,X,x) =9 -1 if x <X<a

0 otherwise

Jx is the "jump set" consisting of the points of discontinuity of

the total variation functions [u"'?# | (x) for j < q.Jy is the

dual jump set, If P~ 1. I X s the jump set consisting of points of

discontinuity of | up_l, il (x,B) for j'<q, where

e P @B = e PLjl xuy) evaluated at y = B. If P =1,



then jx is empty. Jy Is dual

Remarks on the proof:

The purpose of the functiony (a, X, x )is to change indefinite

Integrals of the formj;( f(X) dX to definite integrals of the

Form jg v (a, X, x ) f(X)dX., The functions p'? are defined in

order that Fubini's Theorem can be applied. The jump sets arise

n-1
because, for example 0 — [(x — i)(n_l) v(a, X, x)] is integrated
ox
. n—-1,0 . . ~ B
againstp (X), , which is undefined at X =x unless n= 1.

An advantage of the Sard kernel theorem is that in (4.5)

the variables (X,y) occurring as arguments of the derivatives are

"covered", i.e., they are the wvariables of integration.

In finite element analysis, the functionals of interest involve
derivatives. Since the variables that occur as arguments of

the derivatives in the Sard kernel theorem are covered, the order
of these derivatives is not increased by applying derivative

functionals to them.

The following illustrates what can happen with uncovered
variables:

Example of a Tavlor expansion with uncovered wvariables.

The Sard space. B 10 consists of functions with Taylor expansions

of the form

ux,y)=u@,b)+fu &, y)&K+Fu, @ ,7) &
The variable y is uncovered in the first integral. If the
derivative operator % is applied to (4.10), then the formal

result is

ugpy) = u LIGY) &+ ugy(@y)

15.

(4.10)

4.11)



However, (4.11) assumes the existence of u;; , which is

not ensured by the function u being inl}1 0

Finite El K nder B onal

Ifu is an interpolant to u, then the remainder is

U(X,Y) - ﬁ (X ’ y)

Ru(x,y)

The finite element remainder functionals of interest for a

2¢™ order elliptic boundary value problem are the following:

ol o

Ri.u(x,y)s.—.Ru(x,y)f0r0£i+j££

) ayJ ox!
In order to use the Sard kernel theorems, the space Zpa
must be chosen. The interpolant p(x,y) usually has some
polynomial precision and the constant n is chosen so that this
polynomial precision is at least n- 1. This choice implies
that ¢/ =0, O0<I+j<n. p and q are arbitrary positive
integers such that p + q =n. However, if n iseven, then
pP=q9q= n/2 is apractical choice if QQ and R are symmetric
about y = x, because the number of kernels to be calculated is

reduced. In general, weletp+q.>¢€+ 1 andif p+tq= €+ 1,

thenp = [f * 1} the greatest integer in (£ + 1)/2, and
2
q = ¢+ 1 - [/f + 1] In the sequel we consider the result
2

of applying the R.;; to the Taylor expansion (4.1).

Inadmissible Functionalss an example.

For the Sard spaceB . the term in 9 (; ¥ ) Ry,ou (X,y)
) X

is not admissible unless x = a. Dually, Ry, is not

admissible on B |  unless y = b. Birkhoff, Schultz and Varga [ 4]

=1,1

16.

(4.12)



considered piecewise Hermite interpolation over a region
divided into sub rectangles. They let the point of
interpolation (x,y) = (a,b), the point of Taylor expansion.
This has the effect of involving derivative values in
rectangles containing the region of interest, as we now
illustrate. Let T be the right triangle with vertices at (0,0)

(1,0), and (0,1). Then inI_31 1(T) implies that

1
R) , u(a b) = (j) K20 (a, b; Ru, (X b) dX

1 .2 5
K@ b g @ 9

+,y@%¢zm%ﬁ@&®

Hence | |[R;ou(a,b)| |[L> (1)(a,b) involves values of u,o and

Uo 2. outside T and, in fact, in the whole unit square.

To avoid this difficulty, we apply R, and Ry to the
Taylor expansion (4.1) directly. This avoids difficulties of

the type jg Gix v which instead becomes 8% jgf , for

&2y that make R
example . It is integrals of the form Ig ox V- that make £ o

inadmissab le on Bl |

Zero Kernels.

It was noted [2] by direct calculation that, for linear

interpolation on the triangle T, the kernel K °? corresponding
to R; is identically zero. The first clue that such a
result held was that in Birkhoff, Schultz and Varga, [p.242]

the Kernel "ko, (t')" corresponding to R; o for bilinear

(4.14)

17.



Hermite interpolation is identically zero instead of what
is claimed in that paper.

In general, we let P denote an interpolation functional
with remainder R = I-P. We consider the Sard kernels

corresponding to the remainder functional D™ R.

Theorem, If f(x,y) ¢ qu is of the form f(x,y) = pi(x) h(y),

5

where P(¥) is a polynomial in x ofdegree i < h, and if P has

the property that

P[pi(x)h(y)] = q(x,y)

where q(x,y) considered as a function of x alone is a polynomial
of degree <h, then the Sard kernels for D®™® R have the
property that

kiL,P+g-ix, y;y9) =0, 0 <1i<h < p.
Dually, if f(x,y) = g(x) qj(y), where q;j(y) is a polynomial
iny of degree j <k and
Plgx) ] = sxy)

where s(x,y) considered as a function ofy alone is a polynomial

of degree < k, then the Sard kernels

" _.’. ~
Kp q JJ(Xoy;X) EO: 0§J<k§q

Proof of (5.2): We assume that 0 <h < p. The Sard
kernels for the functional D ™Y R are the (h,k) partial

derivatives of the corresponding kernels for R. Let i be an

integer such that 0 < i1 < h. Then the kernel ', ""! (X,y39)

corresponding to R is the following:

18.

(5.1)

(5.2)

(5.3)

(5.4)

19.



ki, +q—-1Xv;y) =R
R°P T4 (YS’) (X,y)

Therefore, the kernel correspondingto D®™YR is the following;

cipra—i oo On 06 S
(X9 YaY) _—h—kKRap+q_l(Xa Y»Y)
y ox 0oy
0 ch i ~ —i-1 -
- ol —) Wy - HPHI Dy, 7, y)
y X

Cplx - a® - PRIy, 5, y)ﬂ

k
= 6—k [0 - 0] = o, by assumption  (5.1). QE.D
dy

Schematic ally, the domain of influence in the ard index space

B of the functional D™ R is the shaded sub triangle shown in

5

Figure 4.

For given hand k, p

should be chosen so that

h<p and k<gq. ¢ 1)
P+q= k,

(b, k)

Figure k.

[(x g0 oy ra-i-D gy y)} Fely (55)



20.

Many interpolants satisfy hypotheses (5,1) and (5.3)

e.g., linear interpolation with 1 = j = 0. (4.13).

We next prove the corollary that (5.1) and (5.3) are always
satisfied by tensor product schemes with sufficient polynomial

precision. However, we then conclude this Section with an example

in which (5.2) does not hold.

Corollary. Tensor product interpolants of polynomial precision
at least h-1 in the variable x and at least k-1 in the variable

y satisfy (5.2) and (5.4).

proof: p a tensor product interpolant implies that P is of the form
P, P, = P, P, (5.6)

where pyis an interpolant in the variable x and p, is dual iny.

Therefore, if f(x,y) = pi(x)h(y) where Pi(x) is a polynomial in x
of degree i< h, then P[ri(x)h(y)] = Py px [p1(x)h(y) ] = Py[p1(x)h(y)]

=pi(x) Py[h(y)]= q q(x,y). q(x,y) satisfies (5.1) so that
(5.2) follows. The argument is dual for (5.4). Q.E.D.

Birkhoff, Schults and Varga considered tensor product piecewise
Hermite interpolation on rectangles and they assumed that their
meshes were 'regular" [4,p. 244]. Their reason for this assumption
was the possibility of negative exponents in equation (4.20) in [4].
However, the above Corollary implies that the kernels of the terms
corresponding to these negative exponents are identically zero and
so no such mesh restriction is needed.

We conclude this section with an example of an interpolant on a

triangle such that its K% kernel corresponding to Rj, is

not identically zero.
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Example Let P f(x, y) = f(0,0) (I — x) (1 — vy)

+ f(1,0) x (1 — y) + f(0,1)(1 — x)y.Then
Rio fxy) = 5 y) - 1 -y 00
02, -+ (1 =y f(10) - yf01) and
K27 &y y) = Ry g 9y = y) v by, vl

= - Y(l - ?) 14 (bs —5;91)] # 0
unless b=1

We note that

P[Lh(y)] = h(0)(l-y) + h(D){ -x)y, which is not a function

of y alone, so that (5.1) is not satisfied.

Error Bounds for Interpolation on a Triangle

In this section, we illustrate how to obtain error bounds for
linear and quadratic interpolation on the triangle T with vertices
(0,0), (h,0), and (o,h). The linear bivariate polynomial which
interpolates the function values of u(x,y) at the vertices of the

triangle T is

ﬁ(x,y)=u(0,0){l—

X+Yy

}+u(h,0)%+u(0,h)%. 6.1)

The quadratic bivariate polynomial which interpolates the function

values at the vertices and mid-points of the sides of the triangle T is

3 4 2
Ux,y) u(0,0) [1-=(x+y) +— xy + — (x2 +y2
(x,y) u(0,0) { LY e xy 4 y)}

2 2
LI S . H{O,hj 4y _Axy  4y*
2)|h h2 n2

-x  2x2 —y  2y2 h h)4xy
+u(h,0) |— +—%-|+ u(0,h — +— | tu —— |~ .
(0.0 [h h2} ( ){ h  h2 2,2) h2

(6.2)



The finite element error bounds of interest are those on the

L>(x,y) norm of the following error functions:

R U(X,Y) = U(X,Y) - ﬁ(XaY)a
R = 0 R

I,Ou(X>Y) - 8_X U(X,Y) )
R = 0 R

O,lu(XJY) - 5 U(X,Y) D

Lx(x,y) denotes the L, norm over the triangle T with respect to

(x,y). We also derive bounds on the general L, (X,y) norm at

R u(x,y) for the linear interpolant (6.1). The results obtained

are generalisations of those given in Barnhill and Whiteaan [2,3] ¢
The point (a,b) of the Taylor expansions is taken as (0,0)

which satisfies the requirement that for (x,y) [] T the rectangle

[0,x] x [0,y] is contained in T. This choice of (a,b) simplifies

the ¥ functions of section 4 to the functions of the form

0 otherwise

(x - ;()(i) _{(X - i)(i) Fot x > X
Vo=

L, Bounds on R for Linear Interpolation.

The error functional

22.

(6. 3)

(6.4)

(6.5)

(6.6)

Ru(x ,y) = ux , y) —{u(O L 0) [1—[’( ; yﬂﬂl (h , 0) %+ u(0, h) %} 6.7)

is zero for the functions 1, x and y. We thus consider the

Sard space Bl 1.(T) in which the Taylor expansion is

u(x,y)=u(0,0)+xu10(0,0)+yu01(0,0)+jg(x - i)u2 O(X,O)di

y o _ o
I u ENRG + § 6 -Duy 509 .

(6-8)



23
The Sard kernel theorem gives

h ~ -~
Ru(x,y) = fg up o &, 0 k>0 (x, v %) o
+ %Juu(‘i,%kl’%x,y;i,‘y)d’i dy

+ Ig Y02 (0, §)k0,2(X’ y; y)dy 6.9

where, from the symmetry of the kernels K *° and K%,

the kernel functions are

Kz’o(x,y;i)=k°’2(y,x;i)=R(x,y><x—i>+<x—i>+—§(h—i>, (6. 10)

KM (xLyiR9) =Ry 6 -0 - § = -%) Qo - 9 6.11)

and Ry denotes the functional R applied to the functions in
the variables x and y. From (6.9) using Holder's inequality and the

triangle 1inequality, we have the bound

IR u(x,y) |Lg (%) <
[Tuyg &0 Ly 1 KR YRIL L (1Y)
ooy B9 ey I KRG YERIILHED (1Lgk.y)
g, O Lye 1 K2R yIDIL@ [Lgky)

(6.12)



1

=1 and L+—=1.

)

P2

The norms involving

one variable are over [0,h] and those involving two variables

are over T, where, for simplicity, we assume the existence of

the double integral rather than the more general repeated integral

in (6.9).

1K y®D Iy €9 =

The LP

1

(Xay) 1/p2 H p2

K20y D) Iy ® =

and K°? (x,y:y) is dual.

arc

<

) p2
(h—x)x { h }
h Py +1 Py
(h—x)x
h b
The L

norms of the kernel functions are

nortas of (6.13) and (6.14)

11k ysX9) 1 Lp, &) | 1Lg (xy)

1 9
+ =
‘J {B[pzﬂ
, P2<oo, q= o,
, P2:oo, q <

2

q
Py

+2

1/q
1 p2 7q<w’

24.

(6.13)

(6.14)

(6.15)
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[ 20 (D (1L, ® |l Lg (x,y)

l/p1
pl L2 ! {pa+1.q+2)/4 | p <o, q<o
p;+4q p1+l
- 1
= 1/
hl+ P1 1 P1
- - , py S®©,q=», (6.16)
4 p1+1

and K°? (x.y;y) is dual, with the convention that

1/p
[ 1 ] I = 1, whenp,=o. B(m,n), m,n >0, is the Beta
p; 1

function so that if m and n are integers

B(m,n) = (m(r_nlj!nfri)_!l) . (6.17)

. (M=) (D) (=) ()
B(m+2—,n+— = w 2 2 2 2

5 2 (m+n)'

(6.18)

A sharper bound is obtained by taking the L4 (X,y) norm of the
right hand side of (6.9) directly. For example, with

q=p; = p'2 = 2, (6.12) gives the bound

. -~ h2
IR uGe Ly Goy) < fluy s (Y [T L, &9
{II X0 [[Ly ®)  + [lug, (0.3 [|L (N)} h?
+1/lu X, X + ||u , s
2,0 2 0,2 ¥ I W

(6.19)



whereas talcing the L,(x,y) norm directly gives
2 n
Ru(x, [ L (x, < vy (X, ~ —
I Ru Il L) Slu &9 T ) 75
-2 2 h>
Al w2 0 ®OIE g+ 129 I ) 75
~ hd
+ || UZ’O(X,O) | L2(§) | u0,2(0> y) |l L2®88

1
1972 r

+ 0,
| uo’z( g’)HLZ @} 64/3

The apparent discrepancy In the orders h is implict in the

difference between the univariate and bivariate norms.

L, Bounds on R; o and Ry for Linear Interpolation.

Rio and Ro; are symmetric functionals in B | ..(T).

The functional

u(0,0) — u (h, 0)
h

Riou(xy) = uo(xy)+
is zero for the functions 1 .,x, and y. The application of this

functional to the Taylor expansion (6.9) in the Sard space

B])l gives

X
RI,O ux,y) = RI,O (X, y) Lf) x — X uZ’O(')Z,O)(ﬁ}

v x
+ RI,O(X’ y) (j) (j)ul,l()z’ y) dx dﬂ

'y
+ RI,O(X’ y) ([)(y - S’-)uo’z(oa y) d§:| .

26.

(6.20)

(6.21)

(6.22)
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R;o is not an admissible functional for the Sard kernel

theorem in ]131 but the first and last terms in (6.22) can be

2

evaluated in Sard kernel form. Thus

X h
RI,O{ (j) (x = Duy (K0) dx} - (j) uzjo(x,O)Kz’O(x, y,; %) dx (6.23)
and
Riol I = Wug,0,y)dy| =[uy,(0, K> (x, y,; X) dy (6.24)
L0l 0,2 o 0.2
Where
KZ,O(X, y; X) = R g - )+ = (x — i)g _h ; X , X # X, (6.25)
and
0,2 LSy _
k (X7 Yy ‘}7) - RI,O(y - ‘}7)+ =0 (626)
For the first kernel X = x is a jump set. The second kernel is an

example of the Zero Kernel Theorem. The L, norm of the kernel

function (6.25) is

(—1 )l/p xPH h(pijpﬂ
1ky o Gy | Ly® = {lpri) | P h

1 if p = © (6.27)

1/p

, p<o

The middle term of (6.22) is evaluated by applying the functional
directly to it. Thus

R FT C*)crd"} O &) &
u, (X, y)ydx dy|=— u, (X, y) dy dX
10| 4 "L x 0 Ll
y _
=[u; (x Ndy , (6.28)
0 >
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where we have assumed the existence of the double integral so
that Fubini'a theorem applies. Substitution in (6.22) gives
the following!

[ Rl,ou(xa y) ||L2 (x,y) <

I uy g &0) | Lpi@ I 1K v %) || Lp,®) I, &)

y -
Sl Tuy DI ) , (6.29)
0o b 2
I I
Where — + — = 1 Now
Propy
hh_y y - ~2
[ 1 [Tuyy & 972 ax @
o 0 o b
<1}hfy 2/P2 {’}/|11( *)" }2/13 dx d
S y ul, (X, yp ~ X
0 0 0 2 dy 6. 30)
Wherei+L = 1 and
Py P
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2/P2
ul1(x, ?y)‘P d§} dx dy

_2 '
-2 , }2/132

P, |h-yy _ Iy
-y 24 Jh,&D2ddx
0 O ’

2
(6.31)

P
R R S B
’ p2

h-y (y
I{I
0 0

IN

Provided Pé > 2. We thus get

y
I o &9 DG | Ly y)

1
n22 25, . 2%, + 2 1 uLiee §) | Lo (9.2 5Py <
< 2
h2
S IR RO -32)
Where B3(m, n) is the Beta function Lastly
WAV
24/15 ’
20 h % (6.33)
K-V (x, y; X L X L, (x, = {—£%£ P = 2,
|l &, y; x) || pl()|| 5 (X y) 2hﬁ
_ P =
V2

The L, bound on Rp; u (x,y) is dual
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Application to Finite Element Error Bounds

We consider the space of piecewise linear interpolants over a

1
2

the Galerkin method described in section 2. For a particular

triangulated polygon Q. This is a suitable sub space v!' of w for

Triangle Te in €, a bound on || ux, y) — ux, vy || W%(Te) can
be obtained from (6.12) and (6.29) with a suitable change of

variable from T to T..AW 21 ( Q)  error bound is then given by

N —

~ ~ 2
| ux, y) = u(x, y)| Wé(Q) = {% | ux, y) = u(x, y)| W% (Te)} ) (6.34)

where Q = 3 T,.
¢

L, Bound on R for Quadratic Interpolation

The error functional R u(x,y) = u(x.,y) - u(x,y),
where u(x,y) is the quadratic interpolant (6.2), is zero for the

functions 1, x, vy, x? , Xy and y2 e We thus consider the Sard

gy

space B 2,1.( . The kernel theorem is

o 30

N -~ -
Rux, y) = fo uy o(x0OK™7(x, y; x) d x

2,1 - ~o
+% fuzl(x,}')k’(X,y;x,y)dxdy

k1,2

N - - -
+ o uy 50, YkT(x, y; y)d y

k0,3

h ~ ~ ~
+ .[O uO 3(0a Y) (X9 Y, Y)d y 5 (635)



(€2))

where the kernel functions are the following

300 v x) = k03v % ) — _ 0@
k (Xa y; X) - k (Y3 X, X) - R(X,Y)(X X)+
~ ~(2) 2 ~ 2
:(X—X)g)—(h—X) ﬁ_ﬁ_(h_x)(z)_ijzL, (6.36)
2 + | h h2 h h2
2,1 T - NG
Koy y) = R 6 = 0, = 99
o~ ~ h ~) (h \° 4xy
0
= (x — X - —|=—-x| |z - —, 6.37
( )+ — V)¢ (2 L(z ylr 2 (6.37)
L2 ooy = N = S _(h_7) %
k27 yiy) = Ry % = ¥)4 = X{(y = Y)4— (5 - yL f} (6.38)
The square of the L2 norms of the kernel functions are
H k3,0 !

~ 2
(x, y: X HLz (x)

= — |- — + — + — — X
30| p2 2 8 16
0 7 6
+(E—xj X Tx s S D e 2532 S 2 Lot
2 + 1542 2 h 6 32 3



2,1 ~ ~ ~ ~ 1 1
I K2 v % 9) ||i2 ®3) =5y v o xPy?

(h )O(h jo 4 X4y2 x3y2

+l==-x||==-y]| |= -2

2 +\2 +3 p2 h

DS

+ | = — X y — — —— = X7y
+3 h

0 0
O |
2)4\2 N 6

0 4
1,2 ~ 2 h 02y 2.3 1 9
K2 (x, y; S e = A R
I (YYHL2® ( yj { T3y Ty

0

h)” 21 3 1 2 1 2}

+ - | XT3 - —y°h+ —yh" |,
(y 2j+ [3y 37 127

and K% (x, 3 ¥) is the dual of K> (x, y; X).The L, (x,y) norms

arc

NJ179
I 1Ky D L@ | Lyky=—"g—h7.
53.2°43

2,1 ~ V761

I IKP v Z D I LE D 1 Ly = —p—2——h",
3-:2743.5.7.2

1,2 V119

I K&y DI L6 | Lyl Lyt y) = h 7.

322357

32

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)



We thus have the bound.

I Rt y) [ Ly y) = I ug g®0) 1| Ly@+ | ug30.9) | L6}

V761

3
h
4. /3572

Sl G L E D)

w09 1 L6 %h%

We summarise Some results for the quadratic interpolant

Functionals R;p and R :

The Functional R, ¢ for Quadratic Interpolation

The functional

3 4 4
LU 9 =003 w00 | s Gy ]
h 4 4 8 4
_ —0l= - = _ + u(o,
1 4 h h, 4
—uh0) |- — + — - u(— =
! ){ h h? X:| u(2, 2) h2y

is admissible for the Sard kernel theorem in ]2 21 The kernel

33

NI
53203

(6.45)

(6.46)
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theorem is

RLOuxyY) = [Muy, ®0) k0 y:®) &
~ e~ 1 2,1 — o e e
+ ,{ﬂ ] Yo (X, y) k77 (x,y;X,y) dX dy

h - 1.2 .
oo w00 kT (yy) &y

+ .[ u0’3 (0’?)K0,3 (x,y;y) dy (6.47)

where the kernel functions are the following:

2)

KNy % = x -0+ —@ - ’ij+ [i - S—X} ~(h - ;)(2)[_

h h2

0
- h - h - 4 -
K2k vi%9) = x - 9%y - pY - (5 - xj (5 - yj N2 x (649
_l_

K126y ) = (v - 9, - (g _ —yj 2y (6.50)

K0’3(x, y;y) = 0. (6.51)

The square of the L, norms of the kernel functions are

X0 17

30, o2 12 5. 57
Hk (XJY5X) HLZ(’)?)_ h_2+

LOX L 3 2% h 2 _2B h3
12 h 5 10 24

0 4 0
+ (E—xj B, RS (X—Ej 2232 o L3, (6.52)
2 ), h 2 ), 3 8 48



2,1 )
I K™ (¥ X, y) IIL2

- - 1
x,y) = Xy+§y

2

1,2 2 3,1 2,2 02yt
K" (x, y; = = + —y“h® + = — -
I ( Y?V)IILzO 3Vt (2 yj+3 — Y
0
h 1 » 1 2}
+ - = |-=y°h+—yh“|.
(y 2).,_[ 4 Y 12 Y
The Functional Ry ; . for Quadratic Interpolation
The functional
3 4 4
Ro’l u(x, y) = uO,l(X’ y) — u(0,0) |:_ E h_2 X 4 h_2 Yj|
+u(h ,Oj 42x—u(0,£j [i—% - 82 Y}
h 2) [ n h
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(6.53)

(6.54)

(6.55)



is not admissible for the Sard kernel theorem in B )1 The

application of this functional to the Taylor expansion in B 51

gives

_ X 2@ 2o d
RO’IU(X, y) = RI,O % y) (_[)(X - X) u3’0 (x,0) dx

O

y S
RI,O(X’ y) (J) (x - i-)uz’l(ia §)u2,l(i’ S’) dx dy

Yy
R1’0(Xa y) X([) Yy -y ul’z(oa y) dy }

g @) i
Rl,O(X’ y) (f)(y - ’}7) u0’3(0: ’}7) dy

The second term of (6.54) is evaluated by direct application

of the functional to it. Thus

Yy x
RO,l x, y) |:(J‘) (J; x - X) u2,1 (X, y) dX d§i|

o |YX - ~ o~ = = 4h2%h~ o e -
=% (j)(f)(x—x)uz,l(x,%dxdy —h—2X (j) (I)[E_Xjuz,l(x’y)d)(dy

%
— X

h2 (I)(I)

h = -~ ~ ~
(5 - x) u2,1(X’ y) dx dy.

O—

(x — i)uz,l(x, y) dx —

36

(6.56)

(6.57)



The remaining terms of (6.56) can be evaluated in Sard kernel

form. Thus

X
R (% ) Lj) (x — a(z)uw&,m &% } = [u3,&0) K3, yv: %) &,

o5

=

Yy
R ¥) {x(f) ¥ - 9 uy 0.9 &y } = Ju 09 K2 v ) @,

Ry (09|16 = 9P 0.9 6| = [ug ;0 9K, v: )y
0.1 >y Oy y 0,3 > y) dy _O 0,3 >y > ¥, y)dy

where the kernel functions are

oy _

S5

K2, y ) =>{<y—§)2 —(%—?L—} Y = Y,

and K °? (x,y;¥) is the dual ofthe Ry kernel K*° (x,y:y) ,

equation (6.48).
The square of the L, norm of (6.62)is

12 ~ 2 1 2
HK’(X,y;ylle(i) = x7y+ xh

37.

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)



A Ly (x,y) bound on R u(x,y) and Rp; u(x,y) can be

obtained as was done above for the functional R.
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