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Abstract

Based on the measured four-dimensional rate for D+
s → φe+νe decays, we have determined the

ratios of the three hadronic form factors,

rV = V (0)/A1(0) = 1.636 ± 0.067 ± 0.038 and r2 = A2(0)/A1(0) = 0.705 ± 0.056 ± 0.029,

using a simple pole ansatz for the q2 dependence, with fixed values of the pole masses for both the
vector and axial form factors. By a separate fit to the same data, we have also extracted the pole
mass for the axial form factors, mA:

rV = V (0)/A1(0) = 1.633 ± 0.081 ± 0.068, r2 = A2(0)/A1(0) = 0.711 ± 0.111 ± 0.096

and mA = (2.53+0.54
−0.35 ± 0.54)GeV/c2.
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Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, R. Kroeger, D. A. Sanders, D. J. Summers,
H. W. Zhao

University of Mississippi, University, Mississippi 38677, USA
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Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie
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Universität Rostock, D-18051 Rostock, Germany

T. Adye, N. De Groot, B. Franek, E. O. Olaiya, F. F. Wilson

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

R. Aleksan, S. Emery, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, M. Legendre,
G. Vasseur, Ch. Yèche, M. Zito
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1 INTRODUCTION

Detailed studies of the dynamics of semileptonic decays D → V e+νe, where V is a vector meson,
have been performed for non-strange D mesons. It is expected that the corresponding semileptonic
decay of the Ds meson, D+

s → φe+νe,
5 has similar properties. So far, measurements of this decay

have been limited by the size of the available data sample. In this paper, we present a study of the
hadronic form factors for the decay D+

s → φe+νe with φ → K+K−.
Neglecting the electron mass, the differential semileptonic decay rate of a scalar meson to a

vector meson, specifically, D+
s → φe+νe, depends on four variables [1] (see Figure 1),

• q2, the invariant mass squared of the e+ and νe ;

• θe, the angle between the direction of the e+ and the virtual W+, in the W+ rest frame;

• θV , the angle between the direction of the K− and the φ meson, in the φ rest frame;

• χ, the angle between the two decay planes of the W+ and of the φ, in the D+
s rest frame.

It corresponds to the angle between the directions of the e+ and of the K−, projected on a
plane normal to the axis defined by the W+/φ momentum in the D+

s rest frame. χ is defined
in the range from −π to +π.

It is assumed that φ decay to K+K− is well isolated from decays of other mesons to the same final
state, and that any dependence of the rate on the variation of the K+K− invariant mass can be
neglected.

Figure 1: Definition of the angles θe, θV , and χ.

The differential decay rate can be written in terms of these variables as follows:

d4Γ

dq2 d cos θV d cos θe dχ
∝ pφq

2



















(1 + cos θe)
2 sin2 θV |H+|

2

+(1− cos θe)
2 sin2 θV |H−|

2

+4 sin2 θe cos
2 θV |H0|

2

− 4 sin θe(1 + cos θe) sin θV cos θV cosχH+H0

+4 sin θe(1− cos θe) sin θV cos θV cosχH−H0

− 2 sin2 θe sin
2 θV cos 2χH+H−



















(1)

5Charge conjugate states are implied throughout this analysis.
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where pφ is the momentum of the φ meson in the rest frame of the D+
s . The helicity form factors

can be written in the form

H±(q
2) = (mD +mφ)A1(q

2)∓ 2
mD pφ

mD +mφ

V (q2)

H0(q
2) =

1

2mφ

√

q2

[

(m2
D −m2

φ − q2)(mD +mφ)A1(q
2)− 4

m2
D p2φ

mD +mφ

A2(q
2)

]

.

mD and mφ are the D+
s and φ masses, respectively. The vector and axial form factors are generally

parameterized using an expression based on pole dominance [2]:

Ai(q
2) =

Ai(0)

1− q2/m2
A

(i = 1, 2), V (q2) =
V (0)

1− q2/m2
V

(2)

with the pole masses mA = 2.5 GeV/c2 and mV = 2.1 GeV/c2. These values are naive expectations
assuming that the lower mass cs states with JP = 1+ and 1− dominate the q2 dependence of A1,2

and V 6. It is expected that the simple pole ansatz has to be modified to include contributions
from higher mass resonances in addition to the leading contribution. Measurements have usually
been expressed in terms of the ratios of the form factors at q2 = 0, namely:

rV = V (0)/A1(0) and r2 = A2(0)/A1(0). (3)

At present, there is no experimental determination of mA and mV .
It has been shown experimentally for the decay D0 → K−e+νe [3] that the pole ansatz (Equa-

tion 2) using the nominal values of the D∗
s mass (2.112 GeV/c2) does not provide a good description

of the q2 dependence of the decay rate. A fit to data based on this ansatz results in a lower pole
mass value, mV = 1.854 ± 0.016 ± 0.020 GeV/c2.

Becirevic and Kaidalov [4] proposed a modification of the simple pole ansatz for the single
form factor for semileptonic B and D mesons to pseudoscalar mesons. This proposed ansatz has
been generalized [5] to describe B and D semileptonic decays to vector mesons. Specifically, the
three form factors are parameterized as:

V (q2) =
c′H(1− a)

(

1− q2

m2
D∗

s

)(

1− a q2

m2
D∗

s

) , (4)

A1(q
2) = ξ

c′H(1− a)
(

1− b′ q2

m2
D∗

s

) , (5)

and

A2(q
2) =

c′′′H
(

1− b′ q2

m2
D∗

s

)(

1− b′′ q2

m2
D∗

s

) . (6)

Based on this parameterization, rV is a constant depending only on particle masses,

rV =
1

ξ
=

(mDs +mφ)
2

m2
Ds

+m2
φ

= 1.8. (7)

6The 1− state contributing to V is the D∗

s of mass 2.112 GeV/c2, whereas the 1+ states DsJ (2459) and Ds1(2536)
contribute to A1,2
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2 THE BABAR DETECTOR AND DATASET

The data used in this analysis were collected with the BABAR detector at the PEP-II storage rings
operating at a center-of-mass (c.m.) energy optimized for Υ (4S) production. The BABAR detector
is described in detail elsewhere [6].

This analysis is based on a fraction of the total available BABAR data sample, corresponding
to integrated luminosities of 78.5 fb−1 recorded on the Υ (4S) resonance. Samples of Monte Carlo
(MC) simulated Υ (4S) → BB decays, the production of charm- and light-quark pairs, equiva-
lent to 4.1, 1.4 and 1.1 times the data statistics have been used to evaluate the efficiencies and
background contributions. A dedicated sample of simulated signal events, with a uniform phase
space distribution and equivalent to seven times the data, has been used to extract the fitted signal
parameters.

3 ANALYSIS METHOD

This analysis focuses on semileptonic decays of D+
s mesons which are produced via e+e− → cc

annihilation. Ds mesons produced in BB events are not included and treated as background.

3.1 Candidate selection and background rejection

Fragmentation of the c and the c quarks leads to the formation of two jets, back-to-back in the
c.m. frame. In most cases, each jet contains one charm meson. The event thrust axis is determined
from all charged and neutral particles measured in the c.m. system. To minimize the loss of
particles close to the beam axis and to ensure a good reconstruction of the total energy and
momentum in the event, we select events for which the direction of the thrust axis is in the interval
| cos(θthrust)| < 0.75.

Three variables, R2 (the ratio of the second and zeroth order Fox-Wolfram moments [7]), the
total multiplicity of charged and neutral particles, and the momentum of the fastest track in the
event are used to reduce the contribution from BB events. These variables have been combined
linearly to form a Fisher discriminant, F . We choose a cut on F that retains 68% of signal events
and removes 70% of BB background.

A plane perpendicular to the thrust axis is used to define two hemispheres, equivalent to the
two jets produced by quark fragmentation. In each hemisphere, we search for decay products of the
D+

s , a charged lepton and two oppositely charged kaons. We use as charged leptons only positrons
(or electrons for the charge conjugate D−

s decays) with a c.m. momentum larger than 0.5 GeV/c.
Since the neutrino (νe) momentum is unmeasured, a kinematic fit is performed, constraining the

invariant mass of the candidate (e+K+K−νe) system to theD+
s mass. In this fit, theD+

s momentum
and the neutrino energy are estimated from the other particles measured in the event. The D+

s

direction is taken as the direction opposite to the sum of the momenta of all reconstructed particles
in the event, except for the two kaons and the positron associated with the signal candidate. The
neutrino energy is estimated as the difference between the total energy of the jet and sum of the
energies of all reconstructed particles in that hemisphere. The energy of the jet is determined from
its mass and momentum. The jet mass is constrained taking into account that each jet contains
at least one charm particle and thus its mass has to exceed the charm particle mass. The D+

s

candidates are retained if the χ2 probability of the kinematic fit exceeds 10−3.
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Tracks present in the signal hemisphere, which are not decay products of the D+
s candidate,

are referred to as “spectator” (spec) tracks. Since the charm hadrons in a c or c jet carry a large
fraction of the jet energy, their decay products have on average higher energies than spectator
particles. The following variables are used to define a second Fisher discriminant designed to select
the signal D+

s → φe+νe decays,

• the fitted D+
s momentum (PDs);

• the mass of the spectator system (mspec.);

• the direction of the spectator momentum relative to the thrust axis (cos (spec., thrust));

• the momentum of the leading spectator track (Pleading), i.e. the the spectator track having
the largest momentum;

• the total momentum of the spectator system (Pspec).

Figure 2 shows the K+K− invariant mass distribution for the selected decays compared to MC
simulation and the composition of the background. We define φ candidates as K+K− pairs with
an invariant mass in the interval from 1.01 and 1.03 GeV/c2. We use a cut on the second Fisher
discriminant that retains 64% of signal events and rejects 78% of combinatorial background. Of
the background contribution of 26% in the signal region, 14 % are from continuum qq events (with
q = u, d, s), 23.4 % are from B0B̄0 events, 21.6 % from B+B− events, and the remainder are cc
events. About 71% of the total background include a true φ decay combined with an electron from
another source, namely B meson decays (41%), charm particle decays (25%), photon conversions
or Dalitz decays (24%), and the rest are fake electrons. These φ mesons are expected to originate
from the primary vertex, or from a secondary charm decay vertex.

3.2 Measurement of decay distributions

Taking into account the results of the kinematic fit, the decay rates are studied as a function of
the following variables: q2 (q2r), cos(θe) (cos(θe)r), cos(θV ) (cos(θV )r) and χ (χr). Using simu-
lated events, the resolution for these reconstructed variables has been studied by comparing the
reconstructed (indicated by the index r) and true values.

The resolution functions have been fitted by the sum of two Gaussian distributions. The fitted
standard deviations are listed in Table 1. This information is presented here to illustrate the
performances of the reconstruction and the kinematic fit. The resolution parameters are not used
in the fit to the decay distributions. Instead, the MC simulation uses the identical reconstruction
of the four kinematic variables as used for the data, and thus the distributions of the simulated
decays are expected to reproduce the data.

We have chosen a narrow interval in the K+K− invariant mass to select φ meson candidates.
Any decay-rate variation as a function of the two-kaon mass is ignored.

3.3 Fitting procedure

We perform a maximum likelihood fit to the four-dimensional decay distribution in the variables
q2r , cos(θV )r, cos(θe)r and χr using the likelihood function

L = −
nbins
∑

i=1

lnP(ndata
i |nMC

i ). (8)
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Figure 2: K+K− invariant mass distribution from data and simulated events. MC events have been
normalized to the data luminosity according to the different cross sections. The excess of signal
events in the φ region can be attributed to a different production rate and decay branching fraction
of D+

s mesons in data and in simulated events. Dedicated studies have been done to evaluate the
amount of peaking background in real events.

Table 1: Resolution of the reconstructed four kinematic variables: Standard deviations of the two
Gaussian distributions, and their relative contribution.

variable σ1 σ2 fraction of the
narrower Gaussian

q2 0.0778 GeV2 0.249 GeV2 0.33
cos(θe) 0.046 0.228 0.47
cos(θV ) 0.099 0.387 0.43

χ 0.262 rad 1.39 rad 0.41
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In this expression, for each bin i, P(ndata
i |nMC

i ) is the Poisson probability to observe ndata
i events,

when nMC
i are expected. Considering the typical resolutions given in Table 1 and the available

statistics, we have chosen five bins for each of the four variables, corresponding a four-dimensional
array with a total of nbins = 625.
The expected number of events results from:

• combinatorial background in the φ signal interval;

• peaking background, i.e. real φ decays combined with a background electron;

• φe+νe signal events.

The number of expected signal events is obtained from MC simulation in the following way. A
dedicated sample of signal events is generated with a uniform decay phase space distribution, and
each event is weighted using the differential decay rate given in Equation 1, divided by pφ.

We take advantage of the fact that the estimated background rate is flat in two of the four
variables, cos(θV ) and χ (see Figure 3), by averaging over these distributions,

nbckg.
i
q2 ,icos(θe),icos(θV),iχ

=

∑nbincos(θV),nbinχ
j,k=1 nbckg.

i
q2 ,icos(θe),j,k

nbincos(θV)nbinχ
(9)

This expression applies to each component of background. The background components are nor-
malized to correspond to the expected rates for the integrated luminosity of the data sample.

The absolute normalization for signal events (NS) is left free to vary in the fit. In each bin (i),
the expected number of events is evaluated to be:

nMC
i = NS

∑n
signal
i

j=1 wj(λk)

Wtot(λk)
+ nbckg.

i . (10)

Here nsignal
i refers to the number of simulated signal events, with reconstructed values of the four

variables corresponding to bin i. The weight wj is evaluated for each event, using the generated

values of the kinematic variables, thus accounting for resolution effects. Wtot(λk) =
∑Nsignal

j=1 wj(λk)
is the sum of the weights for all simulated signal events which have been generated according to
a uniform phase space distribution. NS and λk are the parameters to be fitted. Specifically, the
free parameters λk are rV , r2, and parameters which define q2 dependence of the form factors. To
avoid having to introduce finite ranges for the fit to the pole masses, mi, we define mi = 1 + λ2

i .
This expression ensures that mi is always larger than q2max. ≃ 0.9 GeV2.

4 RESULTS OF THE FIT TO THE DECAY RATE

The fit to the four-dimensional data distribution is performed using simulated signal events gen-
erated according to a uniform phase space distribution. Signal MC events are weighted to correct
for differences in the quark fragmentation process between data and simulated events. Using fixed
values for the pole masses (mA = 2.5 GeV/c2 and mV = 2.1 GeV/c2) the following results are
obtained:

NS = 12886 ± 129, rV = 1.636 ± 0.067, r2 = 0.705 ± 0.056.
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Figure 3: Projected distributions of the reconstructed four kinematic variables which define the
decay rate for D+

s → φe+νe. The data (with statistical errors) are compared to histograms showing
size of the fitted signal and background contributions.
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The measured distributions, projected on the four variables, are compared with the results of the
fit in Figure 3. The fit procedure has been verified with fits to a large number of simulated toy
experiments with event samples of comparable size.

If we keep mV fixed, the pole mass for the vector form factor, for which there is no sensitivity,
and leave mA, the pole mass of the axial vector form factor, as a free parameter, we obtain

NS = 12887 ± 129, rV = 1.633 ± 0.081, r2 = 0.711 ± 0.111, mA = (2.53+0.54
−0.35) GeV/c2.

5 SYSTEMATIC STUDIES

The following sources of systematic uncertainties have been considered.

5.1 Generator tuning

The fraction of the beam energy carried by a D+
s meson is rather different in data and MC simula-

tion. This difference has been measured using D+
s → φπ+ decays. After applying this correction,

there remain small differences in the distributions of the variables entering the Fisher discriminant,
used to reduce the background level. These differences have been evaluated using also samples of
D+

s → φπ+ decays. The largest of the remaining differences results in the following changes of the
fitted parameters,

δ(NS) = +5, δ(rV ) = −0.005, δ(r2) = +0.008. (11)

For the second fit with variable pole mass, mA, these changes are:

δ(NS) = +3, δ(rV ) = +0.008, δ(r2) = −0.017, δ(mA) = −0.10 GeV/c2. (12)

5.2 Background control

Two contributions have to be considered:

5.2.1 Combinatorial background

The level of combinatorial background has been evaluated using the mass intervals 1.10 < mKK <
1.15 GeV/c2, where the contributions from true φ → K+K− decays are negligible. In this region
we found an excess of 7% in data over MC simulated events. We assign a 10% uncertainty to the
combinatorial background estimate. The corresponding systematic uncertainties on rV and r2 are:

δ(rV ) = ±0.008, δ(r2) = ±0.003.

For the second fit with variable pole mass, mA, these uncertainties are:

δ(rV ) = ±0.022, δ(r2) = ±0.032, δ(mA) = ±0.114 GeV/c2.
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5.2.2 Background from φ mesons produced in D or B decays

The rate of these background sources depends on branching fractions to φmesons. A study has been
performed to compare the φ meson production rate in data and simulated events using different
event samples which have been normalized to the same integrated luminosity. Events with a
candidate electron and a candidate φ are used since they correspond to a sample enriched in charm
decays. The production of a φ meson is studied, in the same hemisphere that contains the lepton,
and in the other.

The production of φ mesons in remaining BB background has been measured by subtracting
off-peak from on-peak events 7. From comparisons of data and MC simulated BB samples, we
conclude that the simulation provides a description of φ production, accompanying a lepton, with
an accuracy better than 10%.

The production of φ mesons accompanied by an electron has been also studied using off-peak
events. These events have contributions from c and u, d, s quark-pair production. Correction
factors, to be applied to the simulated φ rate, are determined such that the total expected φ
production and the fractions expected from c- and u, d, s events agree with data. The values are
given in Table 2. We assign a systematic uncertainty of ±10% to these corrections.

Table 2: Correction factors to be applied on the simulated φ production rate in e+e− → qq.
quark φ accompanying φ opposite

the lepton the lepton

c 0.85 0.80

uds 1.06 1.05

Background events from D+
s → φπ0e+νe decays can have decay characteristics that differ

slightly from the signal decays. The φ and the positron originate from the same D+
s hadron,

contrary to other peaking background sources. But the rate for this decay is suppressed by the
OZI rule, and the detection efficiency is expected to be lower than for the signal events. In the
following, its contribution is neglected.

Considering ±10% uncertainties on the B and D peaking background, the corresponding sys-
tematic uncertainties on rV and r2 are:

δ(rV ) = ±0.019, δ(r2) = ±0.009.

If, in addition, mA has been fitted, the uncertainties are:

δ(rV ) = ±0.052, δ(r2) = ±0.072, δ(mA) = ±0.48 GeV/c2.

5.3 Monte Carlo statistics

In the fitting procedure two sources of statistical fluctuations are not included. They originate
from the finite statistics of the weighting procedure applied to simulated signal events and from

7On-peak events are recorded at the Υ (4S) energy whereas off-peak events are recorded at an energy 40 MeV
below.
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uncertainties in the estimate of the average number of background events in each bin. As a re-
sult, statistical uncertainties obtained from the standard fits to data or simulated events may be
underestimated and the values of the fitted parameters may have biases.

The effect of these statistical errors on the fitted parameters rV and r2 have been evaluated using
1000 simulated toy fits. For each toy fit, not only the “fake experiment” is generated, but also the
sample of pure signal and the background distributions are created. In each of these experiments,
the same number of signal events (13 000) and the same ratio background over signal, B/S=0.31
as the data is used. The predicted distributions in the fit are generated uniformly over the decay
phase space, with samples of 110,000 events each, as in the real fit. The width of the normalized
pull distributions of the toy fits is 1.07 and the bias is 0.08. Uncertainties on these numbers are
±0.03. The systematic uncertainty attached to possible biases is assumed to be 0.1 × σfit, where
σfit is the statistical uncertainty of the fit. The uncertainty assigned to the size of the simulated
events sample and to the statistical uncertainties on the average number of background events in
each bin, is estimated from the increase of the width of the pull distribution relative to unity:

√

1.12 − 1× σfit ≃ 0.46 × σfit, (13)

where 0.1 is chosen as the upper limit for the observed deviations.

5.4 Remaining detector effects

Effects induced by momentum dependent differences on the electron and charged kaon reconstruc-
tion efficiency between data and simulated events have been evaluated. Standard correction factors
determined from selected control data samples, have been applied to correct for these differences
which are typically of a few percent. The impact of this correction on the fitted parameters are:

δ(rV ) = +0.018, δ(r2) = +0.012.

If, in addition, mA is fitted, the variations are:

δ(rV ) = +0.017, δ(r2) = +0.015, δ(mA) = +0.02 GeV/c2.

The systematic uncertainty of these corrections is estimated to be 30% and corresponding values
have been given in Tables 3 and 4 respectively.

5.5 Reconstruction accuracy on the kinematic variables

Using D∗+ → D0π+ and D0 → K−π+π0 events it has been verified that differences between data
and simulated events in the resolution of the variables q2 and cos(θe) are small compared with other
sources of systematic uncertainties. They have been neglected at present.

5.6 Summary of systematic uncertainties

A summary of the systematic uncertainties on the measurement of rV and r2 is given in Table 3
and in Table 4, for fits that include mA as a free parameter.
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Table 3: Systematic uncertainties on rV and r2.
Source error on rV error on r2

Generator tuning 0.005 0.008
Background control 0.021 0.009

Monte-Carlo statistics 0.031 0.026
Detector effects 0.006 0.004

Total 0.038 0.029

Table 4: Systematic uncertainties on rV , r2 and mA.
Source error on rV error on r2 error on mA

(GeV/c2)

Generator tuning 0.008 0.017 0.10
Background control 0.056 0.079 0.49

Monte-Carlo statistics 0.038 0.052 0.21
Detector effects 0.006 0.005 0.01

Total 0.068 0.096 0.54

6 RESULTS AND CONCLUSIONS

Assuming pole dominance for the different form factors and using the fixed pole mass values, the
contributions of the A2 and V hadronic form factors, relative to A1, have been measured in a
sample of 13,000 D+

s → φe+νe decays. In this measurement, pole mass expressions have been used
for the q2 dependence of the form factors and values for the pole masses, equal to those assumed
in previous experiments have been used. We have obtained:

rV = V (0)/A1(0) = 1.636 ± 0.067 ± 0.038 and r2 = A2(0)/A1(0) = 0.705 ± 0.056 ± 0.029

where the first uncertainty is statistical, and the second is systematic. These values are compatible
with and more accurate than previous determinations.

The present measurement has a limited sensitivity on mV and its value has been fixed at
2.1 GeV/c2. Allowing the pole mass of the axial form factors, mA, to vary as a free parameter in
the fit, we obtain

rV = V (0)/A1(0) = 1.633 ± 0.081 ± 0.068, r2 = A2(0)/A1(0) = 0.711 ± 0.111 ± 0.096

and mA = (2.53+0.54
−0.35 ± 0.54) GeV/c2.

The fitted value of mA agrees with the assumed default value.
In Table 5, the results of this analysis are compared with earlier measurements obtained in

photoproduction experiments at Fermilab [8, 9, 10, 11] and by the CLEOII experiment [12]. The
central values and corresponding total errors are also shown in Figure 4.

The measurements of the parameters rV and r2 for the semileptonic decay D+
s → φe+νe now

have an accuracy similar to the one obtained for D → K∗e+νe decays [13]. This allows meaningful
comparisons for the first time, see Table 6 and Figure 4. Measurements of rV for the two decays
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Table 5: Results from previous experiments and present measurements. They have been obtained
assuming a pole mass dependence for the hadronic form factors with fixed values of the pole masses:
mA = 2.5 GeV/c2 and mV = 2.1 GeV/c2.

Experiment Statistics (S/B) rV r2
E653 [8] 19/5 2.3+1.1

−0.9 ± 0.4 2.1+0.6
−0.5 ± 0.2

E687 [9] 90/33 1.8± 0.9 ± 0.2 1.1± 0.8 ± 0.1

CLEOII [12] 308/166 0.9± 0.6 ± 0.3 1.4± 0.5 ± 0.3

E791 [10] ∼300/60 2.27 ± 0.35 ± 0.22 1.57 ± 0.25± 0.19

FOCUS [11] ∼560/250 1.549 ± 0.250 ± 0.145 0.713 ± 0.202 ± 0.266

BABAR 12972/3931 1.636 ± 0.067 ± 0.038 0.705 ± 0.056 ± 0.029
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Figure 4: Results from previous experiments and present measurement of r2 and rV in D+
s → φe+νe

decays. The error bars represent the statistical and systematic uncertainties added in quadrature.
These measurements forDs → φe+νe decays are compared with the average of similar measurements
obtained for D → K∗e+νe decays. The ± one sigma range is indicated by the two parallel lines.
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are in full agreement within the experimental uncertainties. This was expected theoretically, given
the parameterization of Equation 7. However, the measured value is lower than the expectation of
1.8. Values for r2 differ by 1.5 σ between the two decay modes.

Table 6: Comparison between D/D+
s → V e+νe decays.

Parameter D+
s → φe+νe D → K∗e+νe

(this analysis) (average value at FPCP06)

rV 1.636 ± 0.067 ± 0.038 1.66± 0.06

r2 0.705 ± 0.056 ± 0.029 0.827 ± 0.055
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