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Abstract

Predicting the electricity consumption of proposed new supermarkets is help-
ful to design and plan future energy management. Instead of creating com-
plex site-specific thermal engineering models, data-driven energy prediction
models can be useful to energy managers. We have designed and implemented
a data-driven method to predict the future ’electricity daily load profile’
(EDLP) of new supermarkets using historical EDLPs of existing supermar-
kets of the same type. The supermarket features used for the prediction are
10 types of floor areas divided by usage (m2) and its location. Four data-
driven regression models are used and compared to predict EDLPs: Artificial
Neural Networks, Support Vector Machines, k-Nearest Neighbours and OLS.
Prediction computational experiments were performed over 1-h electricity
readings of 213 UK supermarkets gathered during six years. Prediction error
mainly varies between 12 and 20% depending on method, year, supermarket
type, and division of the data (season or temperature intervals). EDLPs
computed over warm periods are better predicted than over cold periods and
supermarkets only with electricity are better predicted than supermarkets
with electricity and gas. The three features with more weight in the pre-
diction are Food, Chilled produce and Cafeteria areas. The limitations of
machine learning methods to solve this problem are discussed.
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energy analytics

Glossary

ANN Artificial neural networks

ED Euclidean distance

EDLP Electricity daily load profile

GHG Greenhouse gas

HVAC Heating, ventilation and air conditioning

kNNR k-nearest neighbours regression

ML Machine learning

MSE Mean squared error

NP Normalised percentage di↵erence with respect to the original EDLP

OLS Ordinary least of squares

SE Supermarkets using only electricity

SEG Supermarkets using electricity and gas

SVR Support vector regression

Symbols

ei electricity consumed (kWh) between the (i� 1)-th and i-th time interval

k number of EDLPs used for the prediction

p number of previous years used to predict the EDLP

y year used to compute the EDLP

D number of time intervals of the EDLP

F set of supermarket features used to predict the EDLP

Ls EDLP of the supermarket s

S, S 0 sets of new and existing supermarkets respectively
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1. Introduction

Many governments, including those of EU countries [1], have committed
to reducing greenhouse gas (GHG) emissions to net zero. The UK [2] aims
to achieve this by 2050 using a series of carbon budgets [3]. Energy use
in buildings accounts for more than 30% of global final energy demand [4]
36% of GHG emissions in EU countries [5], with the UK building stock ac-
counting for 88 MtCO2 in 2018 [3]. Therefore, reducing energy use by all
building types (residential, commercial, services and industrial) is one of the
targets [6], with demand pattern analysis [7] and the use of building codes [8]
helping create e�ciency measures to lower consumption [9]. Much attention
has been paid to the residential sector [10, 11, 12], whilst consumption in
commercial and industrial buildings has been under-investigated because of
its diversity, lack of publicly access data, and the nature of property own-
ership [7, 13]. Globally, the commercial and public sector consumed 8% of
the total energy in 2018 (industry: 38%, transport: 29%, residential: 21%
and others: 4%) [14]. However, czonsidering only electricity, commercial
sector accounts 21% of the total final consumption. Food retail stores (su-
permarkets) consume 3-4% of the electricity in industrialised economies [15].
Moreover, supermarkets are among the type of commercial buildings with the
highest consumption by floor area [16]. The main demands for energy are
refrigeration, heating, ventilation and air conditioning (HVAC), and light-
ing which make up the majority of the building’s floor area. Furthermore,
some supermarkets have facilities such as a bakery, hot food preparation, or
a cafeteria.

In managing a portfolio of stores (food or other retail) total energy de-
mand and the temporal profile are useful performance indicators, though
inevitably there will be di↵erences between stores. The di↵erences arise
due to building attributes, e.g. age, size, levels of insulation and construc-
tion type; in-store facilities and appliances, e.g. technologies used and their
age, and maintenance; as well as usage patterns and geographical location.
Knowing the expected demand of a supermarket informs energy management
decisions and establishes a baseline for measures to reduce the consumption,
e.g. supermarkets with the expected higher consumption can be the priority
to implement these measures. The interest in estimating electricity consump-
tion is threefold: 1) planning the annual electricity budget for the portfolio
of stores, 2) negotiating energy supply contracts, and 3) detecting supermar-
kets with unexpected discrepancy between the estimated and actual demand
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(given a robust prediction method).
But what constitutes normal use of a particular supermarket or reasonable

use for stores with similar characteristics? Furthermore, when a company
considers adding a supermarket to its portfolio, what will be a reasonable
amount of energy for it to use [17]? If a store is using more energy than
expected, investigations can be made with the potential of interventions to
mitigate the additional energy use. A large portfolio of sites may render
manual monitoring too expensive or di�cult, thus we examine ‘what is nor-
mal’ in an automated manner. We focus on predicting the typical electricity
daily load profile (EDLP) of a new supermarket. Altthough both gas and
electricity are used at present, there is a trend to replace gas with electrical
heating in the UK [6] to help reduce the CO2/kWh intensity.

We explore four machine learning (ML) methods to predict EDLPs of
supermarkets using hourly electricity data during a period of six years. The
data-set was obtained from a portfolio of a UK supermarket chain with 213
supermarkets. The main questions that we try to answer are:

• can the EDLP of new supermarkets be predicted accurately using the
proposed ML algorithms, and what are the most suitable metrics for
evaluating the quality of the predicted EDLP?

• how much data is enough, and which subset of readings are the most
useful — year, season or a temperature criterion?

• which supermarket or building features are more helpful? This can
guide decisions on which attributes should be monitored.

The paper has the following structure. We review the literature of pre-
vious studies in Section 2. The techniques used for predicting the EDLPs
of new supermarkets and the data-sets are described in Section 3.1. Results
and discussion are presented in Section 4. Finally, conclusions are drawn in
Section 5 where we suggest possible future lines of research.

2. Background

Independently of the type of building, the principle prediction methods
can be divided into two approaches, namely, model-driven and data-based.
The model-driven approach uses sophisticated high-resolution engineering
methods based on the thermal, energy and architectural features of the build-
ing to simulate its future energy behaviour. In data-driven approaches, the
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energy performance of the building is directly modelled with numerical and
statistical methods. As input to the prediction method for data-driven mod-
els, only some general features obtained from data-sets are used e.g. temper-
ature series, electricity readings. Model-driven approaches are usually more
accurate than data-driven approaches, however, they are more complicated
and computationally expensive. Thus model-driven studies compute their
results for specific buildings while data-driven models can be used large sets
of buildings. There are extensive reviews on methods to predict and bench-
mark energy use in buildings [18, 19, 20, 21], however, most of the reviewed
works predict electricity of dwellings or o�ces. Previous investigations have
not yielded robust methods for predicting energy of targeted types of non-
domestic buildings for retail use.

One of the pioneering data-driven supermarket studies [22] used a year of
15-min electricity readings of one grocery store in Texas to predict hourly and
daily consumption using a change-point algorithm. A more recent study [23]
predicted weekly (aggregated hourly readings) electricity and gas consump-
tion for one UK supermarket using temperature and humidity values, and
projected for the period 2030-2059 to consider climate change. A larger
data-set of 215 UK hypermarkets were used to estimate the total annual
electricity demand with linear regression models [24]. In [25], the annual
energy-use intensity is estimated for 30 supermarkets with a linear regres-
sion model having as input building features such as floor area and building
age and other features, e.g. number of customers. Electricity consumed by
the HVAC and refrigeration systems of one supermarket is predicted using
Artificial Neural Networks (ANN) by [26].

There are several reviews [27, 28] using ML techniques to predict elec-
tricity demand in all types of buildings, but we focus on the techniques we
exploit in this study. Artificial Neural Networks (ANN) have been used to
predict the annual and monthly heating demand of small Swedish domestic
buildings [29] and HVAC loads in a Spanish hotel [30]. Support Vector regres-
sion (SVR) models were used by [31] to predict monthly energy consumption
of four commercial building in Singapore. Models based on SVR have also
been used to predict the energy load (hours to days) of a French residential
building [32]. ANN and SVR were compared when predicting hourly cooling
load in an o�ce building in China [33] and hourly energy consumption of an
o�ce building in Shanghai [34]. The k-Nearest Neighbour (kNN) algorithm
was used to forecast the next day consumption of 6,000 domestic Irish build-
ings in [35], and for the hourly air conditioning load of an o�ce building in
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China [36].
We note several gaps in the literature, which we aim to address. First,

we will characterise the important similarities between multiple stores and
use historical data to predict consumption for an unknown (new) supermar-
ket. This is di↵erent from the two most typical approaches in the literature
where: 1) future consumption of the same supermarket is predicted using
its historical data e.g. [23] or 2) consumption of unknown supermarkets is
predicted using other supermaket consumption during the same time period
(not historical) e.g. [24]. Secondly, we will use daily profiles and account
for seasonal variations in consumption, instead of a unique aggregated daily,
weekly, monthly or annual value e.g. [23, 24, 25]. And thirdly, we compare
four di↵erent ML methods across a five-year span of data for 213 supermar-
kets, more than previous works that predict electricity use in supermarkets.
These represent novel contributions to the knoweledge-base of energy use in
supermarkets.

3. Methods

First we will state the problem in a formal manner, then describe the
data-set and its preparation, and finally introduce the ML techniques and
their implementation.

Formally, the problem is defined as predicting the daily profile Ls =
e1, . . . , eD of a new supermarket s 2 S for a year y based on historical pro-
files of existing supermarkets S 0 and the supermarket features F . Ls is the
EDLP of the new supermarket s, ei is the electricity consumed (kWh) be-
tween the (i � 1)-th and i-th time interval, D is the number of intervals, S
and S 0 are the set of new and existing historical supermarkets, respectively
(S \ S 0 = ;). The features F is the set of available information about the
supermarket building such as the floor area divided by usage and the su-
permarket geographical location. Independently of the particular prediction
method to use, the experimental framework is the following:

1. Select set of features (F ) and number of supermarkets used to predict
(k)

2. Predict the EDLP Ls using historical EDLPs of existing k similar su-
permarkets

3. Compute the error between the real and predicted EDLPs.

4. Repeat the steps 2 and 3 for each new supermarket s 2 S.
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5. Repeat the experiments (steps 1-4) for each combination of (k, F ) to
find the best combination (k̂, F̂ ).

Step one of the algorithm determines the selection of the features (F ) and
number of EDLPs (k) to be used for the prediction. They are the global
parameters of the model. The search of the best combination of (k, F ) (step
5) can formally expressed by Equation 1.

(k̂, F̂ ) = argmin
k,F

X

s2S

Ev(Ls, Ls(k, F ))) (1)

where S is the set of new supermarkets, Ls is the real EDLP of supermar-
ket s, Ls(k, F ) is the predicted energy profile when using parameters (k, F )
and Ev(Ls, L0

s(k, F )) is the evaluator that measures the error between the
predicted and real profile (step three of the algorithm).

Step two of the algorithm depends on the prediction method. Comparing
the results obtained by di↵erent algorithms will provide us a reference of the
di�culty of the stated problem.

3.1. The Data-set
The data-set comprises 1-h resolution electricity meter readings (kWh)

from 213 UK supermarkets of the same chain for the period 2012–17. The
meta-data features available of each supermarket are:

Floor area: subdivided into 8 use-categories (m2): General Merchandising
(GM), Food, Cafeteria, O�ce, Storage, Chilled, Frozen, and Produce.
The Total area is also given, and the Sales area is the sum of the GM,
Food and Cafeteria areas. Data on the Chilled, Frozen and Produce
areas was available for only five supermarkets. For the other super-
markets, these three categories were estimated with a linear regression
model, using the other areas as predictors. These 10 features F (Ta-
ble 1) are used as input to the prediction models.

Geographical location. longitude and latitude.

Temperature readings: daily average external temperature values (�C)
provided by the company are available for all days of 2015–17.

Fuels types: there are supermarkets that use electricity and gas (SEG) and
others use only electricity (SE). The computed profile only considers
those supplied by electricity alone but experiments are always per-
formed independently over the SEG and SE data-sets.
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Area Type Min (m2) Max (m2) Avg (m2) SD (m2)
Total 324.6 3279.3 1242.7 471.6
GM 1.4 572.8 47.9 78.5
Food 162.1 1590.3 700.8 248.2
Cafeteria 0.0 269.4 39.0 58.5
Sales 164.0 1925.7 787.6 312.9
O�ce 0.0 540.7 157.5 88.2
Storage 0.0 973.5 297.7 136.1
Chilled 22.2 38.9 28.5 2.9
Frozen 0.3 4.8 2.0 0.8
Produce 0.0 12.3 3.1 2.3

Table 1: Floor features and values for the supermarket set.

The electricity readings are divided temporally to compute the EDLPs
based on various criteria. First, they are divided by years as the goal is
to predict the consumption of new supermarkets for the coming year. As
readings are available from 2012-2017, daily profiles of new supermarkets of
each individual year from 2013 to 2017 are predicted using historical data.
Generically, if an EDLP of year y is predicted for one supermarket, profiles of
other supermarkets computed with readings from previous years: from years
y� p to y� 1, can be used. This window width p is also a parameter for the
experiments as we do not know how many years of historical data to use to
predict future profiles of new supermarkets more accurately. Secondly, only
the Monday to Saturday readings are selected, because Sunday opening and
closing times vary widely. In addition to these two temporal divisions, two
sets of experiments based on weather conditions are investigated:

Seasons UK meteorological conditions vary widely, a↵ecting energy con-
sumption likewise. Three seasonal EDLPs are independently com-
puted over all available readings of the selected year: Winter (De-
cember, January and February), Summer (June, July and August) and
Spring/Autumn (March, April, May, September, October, November).
Fig. 1 shows the profiles for the SE and SEG groups computed over the
Winter, Summer, Spring/Autumn 2017 readings. The seasonal di↵er-
ences are more important for SE group as electricity is used for heating.
Experiments predicting EDLPs computed over all the available years
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(y 2 [2013, 2017]) and possible values for parameter p (p = 1, . . . , 5
when y� p � 2012) are performed. An independent prediction experi-
ment is performed for each year y, window width p and season. Table 2
shows the number of supermarkets for testing (number of supermarkets
with readings in year y) and training (number of supermarkets with
enough readings in years y � p to y � 1) the ML algorithms.

Temperature The external temperature data allows us to split the days
during 2015-17 based on the average daily temperature. Days are di-
vided using temperature intervals of 1 �C, but larger intervals are al-
lowed in the extremes as there are insu�cient supermarkets with read-
ings during days with extreme temperatures. For each temperature
interval, the EDLP of each supermarket is computed using only the
days that have the temperature in the interval, i.e. it is treated as an
independent prediction problem. For these experiments, only the 2017
EDLPs are predicted using EDLPs computed with 2015-16 readings.
This is done because a su�cient number of days with readings for each
temperature interval exist, though not all supermarkets have days with
readings for all intervals (at the low/high extremes). For the coolest
and hottest temperatures, all days are grouped as  �3�C and > 23�C
intervals respectively. There is a total of 28 di↵erent temperature in-
tervals. For the 21 temperature intervals between ]�1, 0] to ]19, 20] �C
there are available data in more than 95% of the supermarkets for both
the SE and SEG groups (84 and 129, respectively). In the extreme
intervals, there are fewer supermarkets with available readings of days
with these temperatures. Intervals with days  �3�C and ] � 3, 2]�C
contain fewer than 30% of the total supermarkets.

3.2. Machine Learning Techniques and Computational Experiments

We exploit four di↵erent approaches based on established ML techniques,
each of di↵erent mathematical nature. All these techniques have been used
in isolation for predicting electricity consumption.

kNNR the k-Nearest Neighbours Regression Algorithm (kNNR) [37] is con-
sidered as a simple and fast ML algorithm that works e�ciently when
the predicted value can be locally approximated [38]. In our case, the
hypothesis is that similar supermarkets should show similar patterns of



Granell et al (2021). Predicting electricy. . . Energy and Buildings, accepted.

(a) Supermarkets with electricity only (b) Supermarkets with electricity and gas

Figure 1: Seasonal electricity profiles of all the supermarkets during 2017.

electricity consumption. The method predicts the complete load pro-
file, combining the k supermarkets that are most similar to the new
one based on a set of supermarket features F . To find the most similar
supermarkets we compute the distance of the new supermarket with
the complete set over features F . Due to the dual nature of the fea-
tures (location and floor area), they are individually computed using
Euclidean distance, normalised and finally averaged. Later, the k su-
permarkets with lowest distance are selected and their EDLPs averaged
to compute Ls(k, F )

e0i =

P
s2Sk

ei,s

k
, 1  i  D (2)

where e0i is the predicted electricity value at i-th time, ei,s is the real
historical electricity value at i-th time of the s supermarket and Sk is the
set with the k most similar supermarkets to the one to predict. We have
also implemented variations of Equation 2 in which a weighted averaged
is computed based on a kernel weighted function, e.g. Epanechnikov
Quadratic equation and Tri-cube function.

OLS the ordinary least of squares (OLS) [39] is a linear regression model
that estimates the unknown parameters minimising the sum of squares
of residuals. Under the assumptions that the model parameters must
be linear and that the residuals are normally distributed, the OLS pa-
rameters are estimated with the Maximum Likelihood approach. In
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Pred. year Previous years used to train (p)
Year (y) #Test One Two Three Four Five
2017 84 84 84 84 84 85
2016 84 83 83 83 84 -
2015 83 81 81 82 - -
2014 81 81 82 - - -

S
E

2013 81 81 - - - -
2017 129 129 129 129 129 129
2016 129 111 111 111 111 -
2015 111 98 98 98 - -
2014 98 87 87 - - -

S
E
G

2013 87 78 - - - -

Table 2: Number of supermarkets used for testing and training for the seasonal experiments

depending on the historical years used.

our case, each data-point of the EDLP (ei, 1  i  D) is individu-
ally computed following Equation 3 using the same parameters: the k
closest EDLPs and F as predictors for the regression.

e0i = �i,1f1 + �i,2f2 + . . .+ �i,|F |f|F | + ✏i (3)

where �i,j is the predicted coe�cients that multiplies the j-th feature
when estimating the i-th electricity reading and ✏i is the estimated
intercept.

ANN the artificial neural network regression model (ANN) [38] are para-
metric models based on the linear combination of a fixed number of
non-linear functions as Equation 4 indicates for one neuron.

g(b+
|F |X

i=1

fiwi) (4)

where wi is the weight for i-th feature fi, b is the bias and g() is
the non-linear function that can be a sigmoid function. We combine
neurons into layers and the morphology of the network (number of
layers and neurons per layer) is designed based on the number of input
features. Then the parameters of the network were computed using the
backpropagation algorithm.
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SVR a support vector machine regression model (SVR) [40] is a non-probabilistic
supervised algorithm. New point estimation depends on the evaluation
of kernel function trained with data points (support vectors) that di-
vides the domain space. The generic function to predict a new value is
in Equation 5.

g(X) =
NX

i=1

(↵i � ↵⇤
i )K(Xi, X) + b (5)

where X are the observations (features in our case), N is the number
of data points, ↵i, ↵i⇤ and b are estimated model parameters and K()
is the kernel function e.g. linear, polynomial, sigmoid, Radial Basis
functions (RBF).

For the OLS, ANN and SVR methods, each point of the EDLPs is indi-
vidually predicted (i.e. di↵erent model parameters need to be estimated for
each dimension), but the whole EDLP is directly estimated using the kNNR.

We use three evaluators to asses the error between the prediction obtained
with one of the previous methods and the real EDLP is computed in step
three of the algorithm:

Euclidean Distance (ED) in which discrepancies between the EDLPs ab-
solute values are accumulated (in kWh),

vuut
DX

i=1

(ei � e0i)
2 (6)

where ei and e0i are respectively the real and estimated consumption
value at time i.

Mean Squared Error (MSE) in which absolute values are computed and
normalised by the dimension (number of hours) and number of stores.

1

|S|
X

s2S

1

D

DX

i=1

(ei,s � e0i,s)
2 (7)

where ei,s and e0i,s are respectively the real and estimated consumption
value at time i for store s.
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Normalised Percentage (NP) di↵erence with respect to the original EDLP
(NP) computes the relative distance considering the proportion of the
error with respect to the total consumption of the original profile,

100 ⇤
PD

i=1 |ei � e0i|PD
i=1 ei

(8)

This evaluator has the advantage of capturing the relation of the error
considering the total energy consumer.

The ED and NP evaluators are extended to summarize the predicted error
over all the set of new supermarkets S. We compute the mean of the evaluator
over all the predicted EDLPs, for instance the averaged ED:

ED =

P
s2S EDs

|S| (9)

where EDs is the ED computed over the real and predicted EDLPs of the
supermarket s. The evaluator ED is also used in Equation 1 to search the
combination of k and F that minimizes the total prediction error over all the
new supermarkets S. The evaluator NP is computed in the same way.

For our case study, approximately 30 new supermarkets are opened each
year. To give robust and significant results, we assume that each supermar-
ket is considered a new one and the others |S| � 1 are used to predict the
EDLPs of the new one. This leaving-one-out technique is a common ML ex-
perimental set-up [38] for small data-sets in which all the data points except
the one being estimated are used as predictors. Then the same experiment
is repeated |S| times selecting each time a di↵erent point to predict. The
EDLPs computed over historical data (years y � p, . . . , y � 1) are used to
compute the EDLP of the new one for year y. More details about how to
compute the EDLPs are given in Section 3.1.

Error bars are computed to model the uncertainty of the prediction,
i.e. predicting an interval instead of a single line of the EDLP is helpful
to have a broader estimation of the possible EDLP. They are calculated
adding/subtracting twice the value of the standard error computed over the
k EDLPs to the predicted value.

For the seasonal and temperature data, each algorithm has parameters
and functions to configure. For the kNNR algorithm, in addition to the aver-
aged model (Equation 2), two more sophisticated kernel-weighted functions
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(Epanechnikov Quadratic and Tri-cube functions) were also implemented but
no improvement was found. For the ANN, we use a logistic function (g()
(Equation 4)) over a two internal layers net, i.e. the configuration of the
network is |F |-4-2-1, where |F | is the number of features. For the SVR, a
RBF kernel function (K() (Equation 5)) was used as it models non-linearly
the input data features to predict.

Independent of the prediction algorithm, we used the brute-force ap-
proach (Equation 1) searching all combinations of parameters (k̂, F̂ ). The
maximum number of combinations, for each one of the season- and temperature-
divided experiments, is (2|F |�1)⇤(|S|�1) = (2|11|�1)⇤(129�1) = 262, 016,
and multiplied by |S| for the leaving-one-out approach. Thus for the tempo-
rally more complex methods (ANN and SVR) we used stepwise regression [38]
with the whole feature set F (using all the supermarkets, k = |S|). This re-
duces the combinations to

P11
i=1 i = 66. For the OLS, we also used stepwise

regression but scanning over all the values of k:
P11

i=1 i ⇤ (129 � 1) = 8, 448
combinations. Due to the large volume of experiments, sophisticated param-
eter tuning for ANN and SVR is not feasible.

Most of the software was coded in C++. Two methods, ANN [41] and
SVR [42], were implemented in the R programming language but these
scripts were invoked from the generic C++ code. All the experiments were
performed using a Dell Precision Tower 5820 with an Intel Xeon processor
W-2145, 4.5GHz Turbo, 11 Mb cache and 16GB 2666MHz DDR4 memory.

4. Results and Discussion

We conducted a large number of computational experiments. For clarity,
we first present some over-arching results, then we discuss separately the
aggregated results for the performance of di↵erent algorithms, the e↵ect of
partitioning the temperature data by discrete intervals, the prediction scores
by season and temperature, di↵erent fuel use, the size of errors depending on
the operational status, commentary on the relative importance of individual
features, and finally our observations of the limitations of this approach.

4.1. Results Summary

Looking at a single supermarket using both gas and electricity (SEG), the
predicted and real 2017 Summer EDLPs (using 2016 data computed with the
kNNR algorithm) are shown in Fig. 2. For this season and year, the best
combination of features and number of supermarkets to predict the whole
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Figure 2: Examples of the EDLPs modelled using kNNR with k = 12. The EDLP with

the minimum error (the most likely prediction) is shown in red.

of the SEG group are F = {GM, Food, Cafeteria} and k = 12 respectively.
The blue curves in Fig. 2 are the EDLPs of the k most similar supermarkets
based on F , the black and the red curves are the real and predicted EDLP,
respectively. The errors for this prediction are ED=14.0 kWh and NP=3.6%.
This is the predicted EDLP with lowest ED for all the SEG supermarkets
when predicting 2017 Summer EDLPs with the kNNR. The ED (kWh) and
NP (%) for all of the SEG group and algorithm are shown in Fig. 3.

The variability between supermarkets is displayed in Fig. 3, with the
leftmost being the supermarket with the lowest ED. The median (the 50%
position) represents the typical prediction, that being supermarkets with a
ED of 33.5 kWh. Fig. 4 shows the real and predicted EDLPs for the best and
median-error prediction. In the case of the median-error prediction (Fig. 4b)
the predicted EDLPs is an underestimation of the real EDLP. There is only
a weak relationship between NP and ED as there are supermarkets sorted
by ED and not sorted by NP. The average ED and NP for all 126 SEG
supermarkets is ED=43.5 kWh and NP 13.0 %, summarizing the prediction
performance over the SEG group.
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Figure 3: The ED and NP when predicting all of the Summer 2017 EDLPs of the SEG

group using 2016 data with the kNNR algorithm. The supermarkets are sorted by ED.

(a) Supermarket with lowest ED (b) Supermarket with median ED

Figure 4: Prediction of the Summer 2017 EDLPs with lowest and the median ED when

predicting all of the SEG group using 2016 data with the kNNR algorithm.

4.2. Algorithm performance and the e↵ect of training data

Considering the range of prediction algorithms, di↵erences among the
evaluator scores are not significant for most experiments (Fig. 5, Table A1
and Table A2). For instance, comparing the prediction of Summer 2017 SEG
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profiles the ED score varies from 41.0 kWh obtained with OLS to 45.8 kWh
obtained with kNNR. The best results are not always obtained with the same
method, but OLS, kNNR and SVR usually obtain lowest errors. Usually, the
OLS algorithm obtains the best scores when predicting profiles separated
by season, whilst the kNNR method is the best predictor when computing
profiles separated by temperature.

The good performance of the kNNR algorithm compared with more com-
plex algorithms is notable which may be due to the modest size of the data-
set. This partially supports the basis of the kNNR i.e. similar supermarkets
consume energy in similar way. The more complex ML algorithms scale bet-
ter and may perform better with very large data-sets. On the other hand,
the kNNR method is fast and can be used to search larger parameter spaces
(k, F ).

Table 3 shows the results for SE and SEG using the kNNR algorithm for
predicting Summer EDLPs, ncluding the experiments computing the EDLPs
of the training set with di↵erent numbers of historical years (number of su-
permarkets are in Table 2). From Table 3, we can see that the best prediction
of each year (bold values) is usually obtained using just the previous year as
historical data. There are a few exceptions such as for the 2014 SEG group
which show that using 2012-2013 profiles for training results are slightly bet-
ter than using just 2013 data alone. All the supermarkets of Fig. 3 are used
to compute the evaluators of the cell located in the first row and column of
the SEG sub-table in Table 3.

For each method, season and predicted year, the best results obtained
with the best combination of historical years (p) are selected (3). The ED
for all the methods, seasons and years are shown in Fig. 5, where Fig. 5a
with Fig. 5b showing the scores for seasonal and temperature experiments,
respectively. Table A1 and Table A2 display the MSE for seasonal and tem-
perature experiments, respectively. In comparing the seasonal results for
di↵erent years, the error usually decreases when predicting EDLPs of more
recent years (Fig. 5a). The reason is that the error scales with consumption
that decreases with the time. The relative error NP also decreased. We sug-
gest that this indicates that the company has sought to harmonise installed
equipment in recent years.
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Previous years in Training set, (ED (kWh) and NP (%))
Alg Year One Two Three Four Five

2017 49.6/17.0 50.0/16.9 51.9/18.1 53.7/20.0 55.0/19.7
2016 55.1/18.0 57.8/19.6 59.8/20.3 60.7/21.1 -
2015 57.4/19.9 59.0/20.7 59.4/20.9 - -
2014 59.0/18.9 59.2/19.4 - - -

S
E

2013 61.6/19.2 - - - -
2017 43.5/13.0 44.0/13.0 44.9/13.4 46.3/13.7 46.9/13.9
2016 48.2/13.3 49.6/13.9 51.6/14.6 52.2/14.9 -
2015 47.6/14.6 49.7/15.4 49.8/15.6 - -
2014 53.3/15.3 51.6/14.8 - - -

S
E
G

2013 54.4/14.4 - - - -

Table 3: Prediction results for the SE and SEG groups using the kNNR algorithm and the

historical years used. The best results for each year are in bold.
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4.3. Using discrete temperature intervals

The temperature data needs to be discretised because of the need to
group days with similar temperature conditions (Section 3.1). The error
varies depending on the temperature interval in which the profile to predict
is computed (Fig. 5b). The error value for the intervals with average tem-
peratures lower than -1 �C and higher than 21 �C is due to the lower number
of supermarkets in these intervals. For the intervals from 0 �C to 20 �C, in
which the distribution of supermarkets is approximately even and accounts
for most supermarkets, the error for the SE and SEG groups show similar
behaviour. From left to right in Fig. 5b, we can see that the error starts high
for cold temperatures, reducing slowly until it reaches a minimum value for
the intervals at approximately 17 �C. After that it increases again showing
the influence of the HVAC system.

For very cold temperatures, heating systems are used intensively mak-
ing predictions more complicated as each supermarket has di↵erent thermal
conditions and perhaps heating system. For hot temperature intervals (more
than 19 �C), the cooling system and the refrigeration appliances can produce
the same e↵ect, increasing consumption and the error. Although not sur-
prising, the higher the consumption, the greater the number of appliances,
and the greater the variability, the more complicated it is to predict the
consumption.

4.4. Partitioning the data by temperature and season

Seasonal and temperature experiments show errors of the same order of
magnitude. For instance, the minimum error for the SE group by season
(Fig. 5a) is obtained when predicting the Summer 2017 profiles (ED = 48.7
kWh, using SVR). Meanwhile the minimum error for temperature separation
(Fig. 5b) is ED = 48.5 kWh (using kNNR). There is a similar behaviour of
the error for both approaches with respect to the temperature variation.
Profiles corresponding to the coldest periods (Winter and for intervals > 5
�C) are predicted less well than for warmest periods (Summer and for inter-
vals < 15 �C). However, the e↵ect of hot temperatures (intervals < 19 �C)
which give greater prediction errors, cannot be captured with the seasonal
approach. External temperature is a crucial factor in the way supermarkets
consume energy and we have already commented that the seasonal separation
is a proxy of the temperature separation. Therefore, despite of having some-
times a greater error with the temperature-intervals approach, predicting the
EDLPs for new supermarkets with this separation is more useful that using
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a seasonal profile. Using temperature intervals depends on the availability of
daily temperature data.

Comparing the scores that were obtained for each season, Summer profiles
were predicted best followed by Spring/Autumn and lastly Winter (Fig. 5a),
with this pattern constant for all years and independent of SE/SEG (Fig. 5a).
The reasons for this behaviour may be related to the electricity consumption
of the heating system as it is used less often in Summer. A fact that supports
this assumption is that, in these supermarkets where electrical heating is less
important (SEG), the di↵erence of the error between Winter profiles and the
other profiles are smaller as happens with the SE group. It also explains
the higher error when predicting the Spring/Autumn profiles compared with
Summer. Analysis of the temperature results supports this hypothesis.

4.5. Does it matter if a supermarket uses gas-fired heating?

Generally, for the same type of experiments, the errors for the SE group
are greater than for the SEG group (Fig. 5a and Fig. 5b). For seasonal
experiments and using a relative evaluator such as NP the prediction of
2017 Summer profiles using OLS are some of the most accurate predictions
with NP = 17.9% and NP = 11.9% for the SE and SEG groups respectively.
Likewise for the NP evaluator computed over temperature experiments. The
reason for this is that variations in heating demand are excluded in SEG
and only regulated electricity consumption is computed. Furthermore, the
SEG group is larger than the SE set (Table 2) which helps improve the ML
prediction. It is expected that most supermarkets will become SE because
of the drive for the decarbonisation of heating [6].

4.6. Comparing peak/o↵-peak periods

For peak/o↵-peak use we analyse the errors during operational times (5am
to 10pm) and non-operational times (11pm to 4am) by computing evaluators
separately over the two time intervals. For example, the errors to predict the
Summer 2017 EDLPs (electricity only) using SVR are ED=44.4 kWh and
NP=17.4% for the operational periods and ED=16.4 kWh and NP=19.7%
for the non-operational periods. Considering all the seasonal experiments
for all the methods, the average errors are ED=56.4 kWh and NP=17.1%
for the operational times and ED=20.2 kWh and NP=22.5% for the non-
operational times.

As the consumption during operational times is higher than for non-
operational times, noting the unequal number of hours in the intervals, the
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relative error, NP is a better indicator with which to compare errors than the
accumulative real error of ED. Table 4 shows NP the values for operational
and non-operational periods averaged over all methods and years. The errors
for the non-operational periods are always greater than for the operational
periods because the proposed parameter search (Equation 1) minimises the
ED between the real and predicted EDLP. Therefore, the method selects the
prediction with smaller relative errors in hours with greater consumption. As
during non-operational times the electricity consumption is lower than during
operational times, reduction of relative error of the latter is prioritised over
reduction of relative error of the former.

Trying to predict better the operational times is more di�cult, but more
useful. Energy use in the non-operational periods is easier to predict since
there are fewer human behavioural components contributing to the EDLP.
We minimise NP instead of ED (Equation 1) if the relative error is the
objective.

SE group SEG group
Operational Non-Operational Operational Non-Operational

Winter 21.9 (0.5) 30.9 (1.1) 16.6 (0.4) 20.2 (0.7)
Summer 18.1 (0.2) 23.4 (0.5) 13.1 (0.2) 17.4 (0.4)
Spring/Aut 18.9 (0.3) 25.3 (0.6) 13.8 (0.2) 17.3 (0.4)

Table 4: Values for NP (%) during operational and non-operational times averaged over

all the methods and years. Values in brackets are the standard error.

4.7. Are all features equally useful?

From all the possible features used as predictors (Section 3.1) some are se-
lected more often than others during the feature search process (Equation 1)
when considering the whole set of prediction experiments. This means that
some features are globally more relevant than others in the prediction. To
understand this feature-weighting we analyse only the experiments giving the
best results for each combination of algorithm, fuel and temperature/season
partition (344 di↵erent prediction experiments).

The three features most frequently appearing are Cafeteria area (55.5%
of the experiments), Food area (48.2%) and Chilled area (39.8%). Only 52%
of the supermarket set have a Cafeteria area, however it is the predictor most
frequently selected as the increase of consumption is significant. The Food
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Figure 6: Histogram with the relative frequency of features used to obtain best prediction

models for experiments for the SE and SEG groups.

and Chilled areas indicator the number of refrigeration appliances that are
responsible of an important part of the electricity consumption.

Interestingly, if we analyse separately the experiments for the SE and
SEG groups (177 experiments for each) the frequencies are di↵erent for some
features. Fig. 6 shows the relative frequency of features used to obtain the
best model for all the algorithms and years. The Cafeteria feature appears
in 80.2% of experiments for the SEG group, but just 30.8% for the SE group.
The Food and Sales area also appear more often in experiments for the
SEG group than for the SE group. The Location feature appears in 39.0%
of the experiments for the SE group, but in only 5.2% for the SEG group.
Most of the experiments to predict consumption for the SE group when daily
average temperature was lower than 13 �C has location in the best feature
combination. The average number of features used for prediction is 2.9 and
3.4 for SE and SEG, respectively. Seasonal and temperature experiments do
not have significant di↵erences in the features frequencies.

4.8. Limitations

Our study has limitations, some understood at the outset, others discov-
ered and quantified during the research. They relate to the use of confidence
intervals, and to the nature and availability of data.
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The use of confidence intervals helps to model the prediction uncertainty,
but there are two limitations in the current implementation. The first is in
using techniques that require a large set of training values k, namely OLS,
ANN and SVR, to obtain the best results. This yields a large standard
deviation. The second limitation is the use of symmetric upper and lower
intervals, when di↵erent values will be more informative.

The key limitation is the data requirement for ML methods. The errors
are not generally very low for all the prediction algorithms and experiments
(Fig. 5, Table A1 and Table A2), underlining that the complexity of the
problem is related to the data:

Supermarkets vary considerably in total energy consumption. Each
is an independent electricity consumer with its own peculiarities e.g. lo-
cation, building features, human factors, and weather conditions, that
cannot be completely captured in a model. Moreover, there were no
clear criteria to remove any outliers. For instance, the supermarket
with the greatest error shown in Fig. 3 (rightmost point) has an un-
usually large GM area (278 m2 compared with the average of 48 m2).

Energy consumption varies over time. Even recent historical data may
not be a good guide to future consumption, since changes may arise
year–to–year due to weather conditions or refurbishment for example.

The supermarket-set size. The performance of ML algorithms strongly
depends on the number of samples (individual supermarkets). The
accuracy of our predictions is related to the modest quantity of su-
permarkets (l< 130 in the separate SE and SEG groups), and not the
quantity of the time-series data.

The type of data available. We are limited to what data is available i.e. what
the supermarket owners are willing to collect or disclose. Accessing
more data is desirable e.g. the number of customers, technologies used
for HVAC and refrigeration, building age, construction type and ma-
terials, and insulation levels. However, data collection has a financial
cost which must always borne in mind.

Despite this, some individual supermarkets are estimated well. For ex-
ample, the evaluator scores (Fig. 3) shows there are some supermarkets with
low error, with one of the best predictions (Fig. 4a) being a ED of 14.5 kWh
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and NP of 3.6% (using kNNR). It is possible that the selected features pro-
vide good prediction for some supermarkets, but we focused on the feature
combination to reduce the average error. When using the OLS method the
predicted energy profile was modelled linearly, thus some supermarkets will
follow the linear model better than others. Likewise for the more complex
SVR and ANN models.

5. Conclusions and future work

We have presented a data-driven method using four ML algorithms to
predict the EDLPs of new supermarkets exploiting only historic electric-
ity readings and supermarket features. The data-set comprised six years of
hourly electricity readings from 213 UK supermarkets (of one chain), which
we partitioned by season and temperature.

The algorithms showed similar prediction scores, where the simplest meth-
ods (kNNR and OLS) sometimes out-perform ANN and SVR. In general, the
average errors ranged between 12–20% depending on the fuel consumed by
supermarkets and season/temperature partition of the readings. However,
some EDLPs were accurately predicted (approximately 3% error). We found
that warm periods usually were predicted better than cold periods, but the
prediction error also increased for very hot intervals (24-hour average <= 17
�C). Supermarkets using electricity and gas are better predicted than su-
permarkets solely using electricity. We suggest that this may be due to the
greater variation in the management of HVAC systems when used for heating,
compared with using gas.

The features with the strongest e↵ect on the accuracy of the EDLP pre-
dictions were the floor areas for Food, Chilled, and Cafeteria. For the SE
group the location was also important. As moving to electrical heating is
being targeted in the UK [6], the relevance of this feature will grow. This
can be extrapolated to predict EDLPs for supermarkets in countries with
hot climates where the cooling system has greater weight in the electricity
consumption than in the UK.

Our work suggests that accuracy increases with the store sample size;
ML methods ideally need more samples than the 213 supermarkets used in
this study. The main advantage of our ML approach is the simplicity of
using a small number of easily obtained parameters (features) to compute
useful information (energy use) for the whole portfolio of stores, not just
for an individual store. Additionally, as data-driven models the proposed
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methods can be extended to predict EDLPs of any type of store, not just
supermarkets, when data is available.

There are several research lines that follow from this work. Other ML
methods can be tested and the confidence intervals can be improved to better
model the uncertainty. Furthermore, di↵erent temperature intervals can be
investigated, e.g. 2 �C intervals or an interval width depending on the con-
sumption variation. Finally, there may be merit to developing independent
models for the operational and non-operational periods to account for the
di↵erent behaviour.
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Appendix A



Granell et al (2021). Predicting electricy. . . Energy and Buildings, accepted.

Stores with elec. only Stores with elec. and gas
Year Season KNN OLS SVR ANN KNN OLS SVR ANN

Wint 498.3 366.5 522.1 466.7 346.9 293.5 336.2 319.6
Sum 317.0 243.2 394.2 290.7 174.2 137.5 159.6 149.4

20
13

Spr/Aut 323.2 259.4 354.3 339.1 206.5 154.8 182.6 174.2
Wint 357.3 334.1 371.6 362.7 223.8 217.2 226.1 227.9
Sum 236.7 202.0 288.4 226.5 142.8 131.8 131.1 129.5

20
14

Spr/Aut 220.6 207.0 266.6 236.2 145.3 137.9 139.0 144.4
Wint 393.8 323.0 406.7 384.9 210.7 212.3 219.0 217.7
Sum 221.3 194.2 266.6 232.8 121.7 125.9 132.2 126.2

20
15

Spr/Aut 228.2 206.6 260.6 221.7 124.7 122.3 127.7 123.3
Wint 364.3 342.4 413.6 403.9 183.7 191.9 183.5 193.4
Sum 177.0 171.3 272.3 213.0 112.5 108.6 125.5 114.7

20
16

Spr/Aut 194.4 193.5 219.5 193.7 124.9 117.8 127.1 126.9
Wint 308.4 280.5 366.7 314.1 176.5 160.1 181.5 173.4
Sum 189.9 139.7 187.1 165.3 103.9 92.6 107.6 96.8

20
17

Spr/Aut 195.8 174.4 224.7 189.9 122.6 108.5 121.7 116.5

Table A1: Prediction results using the MSE (kWh) evaluator for the algorithms over

seasonal experiments for all years and store types.
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Stores with elec. only Stores with elec. and gas
Temp (�C) KNN OLS SVR ANN KNN OLS SVR ANN
 �3 251.9 367.5 255.2 321.1 300.5 376.8 529.9 575.0
]-3,-2] 392.2 430.0 424.1 472.6 388.6 447.0 344.1 401.7
]-2,-1] 324.2 490.0 329.4 354.9 326.5 368.7 339.7 330.1
]-1,0] 495.7 666.0 502.8 492.5 275.4 341.0 279.2 283.6
]0,1] 423.7 382.2 456.6 356.1 203.6 255.6 208.8 205.8
]1,2] 397.5 452.0 437.6 385.0 205.9 253.9 207.3 212.4
]2,3] 347.4 360.9 379.3 314.2 200.8 227.1 202.9 204.9
]3,4] 408.2 350.6 472.4 319.7 182.2 211.4 183.7 186.4
]4,5] 332.6 326.9 370.9 272.8 173.5 195.6 174.1 171.0
]5,6] 265.9 293.0 310.8 251.0 162.2 195.3 159.9 162.5
]6,7] 281.9 289.8 341.0 258.4 149.9 176.1 153.4 152.5
]7,8] 261.9 273.1 298.2 253.1 145.1 179.5 146.2 144.5
]8,9] 248.2 292.7 294.3 232.2 138.9 184.5 139.2 139.6
]9,10] 212.2 269.1 274.9 203.4 133.0 189.6 130.8 130.5
]10,11] 241.6 269.1 287.5 229.7 128.6 189.0 127.7 128.1
]11,12] 199.7 259.8 234.4 180.3 122.4 196.1 124.9 123.4
]12,13] 195.4 235.9 234.9 174.9 120.4 195.3 122.2 122.8
]13,14] 173.4 230.0 185.0 157.5 114.2 174.8 113.8 112.8
]14,15] 176.0 213.8 210.3 164.4 112.7 154.1 112.8 107.8
]15,16] 170.3 166.4 185.9 162.1 108.9 130.1 108.2 100.5
]16,17] 168.0 190.3 186.6 169.8 106.8 127.1 106.6 97.7
]17,18] 184.2 194.1 193.1 178.7 114.0 130.0 117.6 112.9
]18,19] 147.2 171.4 207.2 165.3 105.7 115.8 111.0 107.2
]19,20] 188.4 221.9 244.2 217.4 121.4 120.0 127.3 121.8
]20,21] 194.9 279.7 278.5 253.3 129.8 154.3 134.6 127.6
]21,22] 231.7 246.3 263.4 235.3 132.6 186.5 132.9 133.4
]22,23] 247.8 273.5 303.7 257.1 135.6 174.4 152.5 135.2
>23 327.7 246.6 408.9 324.3 141.9 163.4 146.5 152.3

Table A2: Prediction results using the MSE (kWh) evaluator for the algorithms over

temperature experiments.


