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Abstract

Blood pressure carries crucial information about the re-
sponse of the arterial system to the beating heart. Extract-
ing useful information from the blood pressure plays a sig-
nificant role in the diagnosis and treatment of cardiovas-
cular disease such as hypertension.
There are many studies focusing on the existence of reflec-
tion waves in the ascending aorta and their influence on
the amplitude of pressure. However, there is an ongoing
debate about their origin, and the distance that a reflec-
tion wave can travel.
In this study, a one-dimensional (1D) model of a series of
bifurcations was used to analyse the effect of bifurcations
on the pressure amplitude. A comparison was made be-
tween the pressure in the inlet of the model and in the ter-
minal ends. Results showed an exponential decay with in-
creasing numbers of bifurcations with no reflections reach-
ing the inlet after the 7th generation of bifurcations. There-
fore, a single reflection originating at the periphery may
not be discernible at the aortic root.

1. Introduction

Blood pressure waves generated by heart contraction en-
counter many bifurcations in the arterial tree, generating
backward waves travelling towards the heart [1]. The exis-
tence of backwards waves, their magnitude, and their effect
on increasing the pressure measured in the aortic root is an
ongoing debate, particularly for the outstanding question
about the origin of the reflected wave present in the aortic
root, and how far the reflected waves may travel in the ar-
terial tree [2].
Haemodynamic simulations using computational models
can be used to assess different vessels in the systemic cir-
culation that might not be accessible in humans, or in cer-
tain conditions cannot be achieved in vivo. 1D modelling
has the ability to capture the global dynamics of the arte-
rial system, and it has been validated against in vitro [3]
and in vivo experiments [4, 5]. The aim of this study is

to investigate how bifurcations affect the magnitude of re-
flected waves, and how far reflected waves can travel to-
wards the heart with a discernible magnitude. We illus-
trate this by considering a series of bifurcations ended by
outflow boundary conditions that completely absorb any
incoming wave in order to extract the reflections originat-
ing from the bifurcations only.

2. Methods

The non-linear, 1D equations of blood flow in elastic
tubes have been used to simulate blood flow. The equations
consider blood as an incompressible and Newtonian fluid.
This model is used to trace the waves as they travel through
a branching system to mimic the arterial system. For each
segment in the arterial system, the physical principles of
conservation of mass and momentum is applied and they
can be written respectively as:
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where x is the axial coordinate along the segments, t is
time, U(x, t) is the mean blood axial velocity, A(x, t)
is the cross-sectional area of each segment, P (x, t) is
the internal pressure in each cross-section, and ρ =
1050Kgm−3) is the density of the blood. The friction
force per unit length is given by f = −2(γ + 2)µπU ,
where γ is determined by the prescribed shape of the ve-
locity profile. Based on findings of [6], γ = 9 is in a
good agreement with experimental data and considers the
velocity profile to be flat with no-slip condition. The vis-
cosity of blood, (µ), is 4 mPa s. Equations (1) and (2)
contain three unknown variables namely pressure, veloc-
ity, and area. Therefore, the following pressure-area rela-
tionship is coupled to the governing equations to close the
system of equations,
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Where β is

β =
4

3
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with A0(x) as the area in initial condition where (P,U) =
(P0, 0), h(x) as wall thickness, and E(x) as Young’s
modulus. This law assumes the arterial wall to be thin,
elastic, homogeneous, and incompressible. The resulting
pulse wave velocity, c(x), was calculated using the Moens-
Korteweg equation:
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1
4 . (5)

Injecting a perturbation into a vessel induces a wave that
propagates with speed ofU+c in the forward direction and
U − c in the backward direction. The resulting changes in
pressure and velocity in the arterial tree can be separated
into the forward-travelling and the backward-travelling
components, where the forward direction is away from
the heart to the periphery and the backward direction is
from the periphery towards the heart. The changes in to-
tal pressure and velocity are the sum of changes in their
forward and backward components, dP = dPf + dPb and
dU = dUf +dUb. By using these equations and the water-
hammer equation,

dPf = ρc dUf , dPb = −ρc dUb, (6)

the forward and backward components of pressure and ve-
locity are:
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1
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1
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Wave intensity analysis (WIA) studies the flux of energy
carried by the wave per cross-sectional area, dI . A positive
value for WIA (dI > 0) shows forward travelling waves,
and a negative value (dI < 0) shows their reflections. WIA
is the product of changes of pressure and velocity during a
small time interval. dI has SI units of W/m2 and provides
an insight if the direction and timing of the waves. Using
Equations (6) and (7), dI can be calculated by:

dIf ,b = dPf ,b dUf ,b =
±1
4ρc

(dP ± ρc dU)2. (8)

Since the length of the segments (l) is fixed and c can
be calculated with predefined material properties, the tran-
sient time is given by:

t =
l

c
. (9)

Many studies have shown evidence that arterial bifurca-
tions are well-matched for forward-travelling waves, and

poorly-matched for backward-travelling waves. Based on
the measurements of human bifurcations in different sites
of an arterial system, area ratio between the daughters and
the parent vessels of 1.18± 0.04 was obtained [7]. There-
fore, in this study the relation between the parent and the
daughter segments is α = 1.15, where

α =
(AD1 +AD2)

AM
. (10)

AM , AD1, and AD2 are the cross-sectional areas of the
mother tube, 1st daughter tube, and 2nd daughter tube re-
spectively. With α = 1.15, the forward wave is travelling
the bifurcation, with no reflection waves created from the
bifurcation. For a detailed explanation of the numerical
modelling we refer the reader to [8]. On the basis of using
the above-mentioned equations, two sets of 1D simulations
were carried out. The length of all the segments are 5 me-
tres in order to prevent the overlapping of wave reflections.

2.1. 5 consecutive bifurcations

In the first experiment, a Gaussian-shaped pulse was in-
serted from the inlet of the mother tube followed by 5 gen-
erations of bifurcations (Figure 2.1). With this model, the
changes in pressure in the inlet are monitored while there
is a total blockage in the 5th bifurcation. The boundary

Figure 1. Schematic representation of the 5 consecutive
bifurcation structure with the Gaussian-shaped pulse in-
serted in the inlet. Each segment is 5 metres long.

conditions for the other terminal branches are completely
absorbent.

2.2. 15 consecutive bifurcations

A structure of 15 consecutive bifurcations was simulated
using a distributed 1D model. The changes in pressure
in the inlet of the mother tube (M) were analysed in 15
different simulations (Figure 2.2). In each simulation, a
Gaussian-shaped pulse is inserted in the terminal point of
the daughter tubes one at a time. The pressure calculated
in the inlet of the mother tube was compared with the am-
plitude of input pressure from the peripheral points. The
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Figure 2. Schematic representation of the 15 consecutive
bifurcation structure.

boundary condition of the other terminals were kept ab-
sorbent, in order to investigate the magnitude of the arrival
waves from the specific terminal point to the mother tube.

3. Results

3.1. 5 consecutive bifurcations

Since the length and the pulse wave velocity of the seg-
ments are known, the transient time of the reflections can
be calculated theoretically using Equation (9). Pressure
and velocity variations in measurement point 1 is shown in
Figure 3. The reflection originating from the blocked ter-
minal end in the 5th bifurcation arrived at the inlet of the
mother tube at 7.98 seconds. At 7.98 seconds the existing
amplitude of pressure is negligible compared to the input
and overlapped with other artefacts whose source cannot
be identified.

Figure 3. Pressure and velocity variations in the mother
tube of the 5 bifurcations. Each label in the figure corre-
sponds to a wave. The left-hand figure is the input wave
and the right-hand side is a magnified view of the rest of
pressures and velocities.

WIA is used for the measurements in the inlet of the
structure and in the blocked segment (Figures 4 and 5).
There is no evidence of the reflection from the blocked end
in the mother tube.

Table 1. Arrival times and corresponding pressures in the
inlet of the mother tube, as shown in Figure 3.

Measurement Point 1
Wave Path Arrival Time (s)Pressure (Pa)

A Input 0.00 28.00
B 1,-1 1.67 2.76
C 1,2,-2,-1 3.02 3.74
D 1,2,3,-1,-2,-3 4.18 -1.54
E 1,2,3,4,5,-5,-4,-3,-2,-1 7.98 0.65

Figure 4. WIA in the first measurement point. The effect
of reflection from the first and second bifurcations can be
seen at 1.6s and 3s, respectively.

3.2. 15 consecutive bifurcations

In these sets of simulations we imposed an ’artificial
reflection’ large enough to be detected in the inlet of the
mother tube. The pressure measured in the mother tube,
P(M), was compared against the pressure that was imposed
in terminal points of each daughter tubes, P(D), and the
results are presented as a ratio (Rp) of the measured pres-
sures (Figure 3.2). The results show a significant decay
in the amplitude of reflection waves reaching the root of
the mother tube, which may indicate that more than half
of each wave’s amplitude was re-reflected and trapped be-
tween each bifurcation.

4. Discussion

Similar to many branches of applied mathematics, it
is necessary to analyse simple models before increasing
the complexity of the modifying feature present in real-
ity. Therefore, we started by considering a structure of
segments without peripheral reflections and 5-metre seg-
ments. Compared to the existing models of the arterial sys-
tem in the literature, the models studied here are relatively
simple. However, they reproduce the features of reflected
waves in a branching system similar to the arterial tree by
easy-to-grasp mechanisms. The absence of reflected waves
generated from other terminal points might be an oversim-
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Figure 5. WIA in the measurement point 2 in the blocked
segment.

Figure 6. Ratio of the measured pressure in the mother
tube, P(M), over the pressure measured in the daughter
tubes, P(D), in 15 generation of bifurcations.

plification, but it allowed the tracking of changes in pres-
sure waveform passing different bifurcations. In addition,
although not physiological, the length of 5 metres of each
segment was used in order to prevent the overlapping of
waves. In contrast to the arterial system, with multiple sites
of reflection from tapering and peripheral resistances, the
models in this study focus on the effect of the reflections
solely because of bifurcations.
Based on the results of the first experiment, reflected wave-
forms are discernible when originating from the two initial
bifurcations. As the wave travels throughout the model, the
magnitude of the reflection decreases and even the reflec-
tion from the blocked terminal point is too small to be dis-
cerned without magnification of the time period 10-15s. In
the second part of this study, the reflection waves from the
terminal points were considerable enough to be observed
in the inlet of the structure even after travelling through 15
reflection sites. The results of these simulations provided
an overview of the ratio of reflections originating from the
end point of different generation of bifurcations. This may
indicate that more than half of the waves are re-reflected in
the arterial tree.

5. Conclusion

A significant decrease in the amplitude of the reflected
wave reaching the inlet of the mother segment is evident
in both experiments. With the increase in number of bi-
furcations, as is the case in vivo, single reflections origi-
nating at the periphery may not be discernible at the aortic
root. Further work is required to examine the decay of the
reflected waves in a larger number of segments and bifur-
cations similar to those of the arterial system. Introducing
the effect of tapering vessel can give more insight about
the propagation of pressure in the arterial system.
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