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Abstract

Two direct systems of Boundary-Domain Integral Equations, BDIEs, associated with a mixed
boundary value problem for the stationary compressible Stokes system with variable viscosity co-
efficient in an exterior domain of R3 are derived. This is done by employing the Stokes surface and
volume potentials based on an appropriate parametrix (Levi function) in the third Green identities
for the velocity and pressure. Mapping properties of the potentials in weighted Sobolev spaces
are analysed. Finally, the equivalence between the BDIE systems and the BVP is shown and the
isomorphism of operators defined by the BDIE systems is proved.
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1 Introduction

In this paper we consider Boundary-Domain Integral Equations, BDIEs, for the stationary variable-
viscosity Stokes system of partial differential equations (PDEs). The Stokes equations describe viscous
fluid flows and approximate the Navier-Stokes system under the small Reynolds number. The Stokes
equations model also incompressible linearly elastic materials with variable shear modulus but we will
mainly use the terminology related to fluids. Here we will also allow for variable compressibility (for
example, due to variation of the fluid temperature).

Boundary integral equations and the hydrodynamic potentials for the Stokes system with constant
viscosity, have been extensively studied by numerous authors, see e.g., [18, 19, 14, 31, 32, 15, 35, 36].
This approach normally requires the fundamental solution to be available in an explicit form, especially
if the boundary integral equations are then to be solved numerically. In the case of constant viscosity,
fundamental solutions for both, velocity and pressure, are available.

However, explicit fundamental solutions are not available in the variable-coefficient case for which
a parametrix (Levi function), see, e.g., [22, 5, 24, 25], can be used instead, in order to derive systems of
Boundary Domain Integral Equations (BDIEs). Parametrix for a scalar PDE is not unique and neither
is it in the case of a PDE system, particularly the Stokes system. Choosing the right parametrix
is crucial in order to establish relatively simple relationships of the surface and volume potentials
with their counterparts in the constant coefficient case, which is essential in proving the equivalence
and invertibility theorems. The boundary-domain integral equations to the mixed BVP in bounded
domains for the compressible Stokes system with variable viscosity have been investigated in [9] (see
also [24] and [26] for the incompressible case).

In this paper, we derive two direct BDIE systems associated with the considered mixed boundary
value problem for the stationary compressible Stokes system with variable viscosity, defined in an
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exterior domain of R3. This is done by employing the Stokes surface and volume potentials based on
the parametrix (Levi function) used in [24, 26, 9] in the third Green identities for the velocity and
pressure. Then we analyse mapping properties of the potentials in weighted Sobolev spaces. Finally,
we show equivalence between the BDIE systems and the BVP and prove the invertibility theorems for
the operators defined by the BDIE systems.

2 Preliminaries

Let Ω := Ω+ be a unbounded (exterior) simply connected domain in R3 and let Ω− := R3 \ Ω+

be the complementary (bounded) subset of Ω. The boundary ∂Ω is simply connected, closed and
infinitely smooth for simplicity. Furthermore, ∂Ω := ∂ΩN ∪ ∂ΩD where both ∂ΩN and ∂ΩD are non-
empty, simply-connected, open, disjoint manifolds of ∂Ω. In addition, the border of these two smooth
submanifolds is also infinitely smooth.

In what follows, Hs(Ω), Hs(∂Ω) are the Bessel potential spaces, where s ∈ R is an arbitrary real
number (see, e.g., [19, 20]). We recall that Hs coincide with the Sobolev-Slobodetsky spaces W s

2 for
any non-negative s. For an open set Ω′, we, as usual, denote D(Ω′) = C∞comp(Ω

′), while D(Ω′) is the

restriction to Ω′ of the space D(R3). In what follows we use the bold notation: Hs(Ω) = [Hs(Ω)]3 for

3-dimensional vector spaces. We denote by H̃
s
(Ω) the subspace of Hs(R3) defined as H̃

s
(Ω) := {g :

g ∈ Hs(R3), supp g ⊂ Ω}; similarly, H̃
s
(S1) = {g ∈Hs(∂Ω), supp g ⊂ S1} is the Sobolev space of

functions having support in S1 ⊂ ∂Ω. We will use the following notation for derivative operators:

∂j = ∂xj :=
∂

∂xj
with j = 1, 2, 3; ∇ := (∂1, ∂2, ∂3).

Furthermore, to ensure unique solvability of the BVPs in exterior domains, we will need the
weighted Sobolev spaces, see, e.g., [13, 29, 10, 11, 19, 28, 1, 6, 16]. Let us first introduce the weighted
Lebesgue space

L2(ρ−1; Ω) = {g : ρ−1g ∈ L2(Ω)},

where
ρ(x) = (1 + |x|2)1/2.

Let H1(Ω) denote the following weighted Sobolev (Beppo-Levi) space

H1(Ω) := {g ∈ L2(ρ−1; Ω) : ∇g ∈ L2(Ω)}

endowed with the corresponding norm

‖g‖2H1(Ω) := ‖ρ−1g‖2L2(Ω) + ‖∇g‖2L2(Ω).

The analogous vector counterpart of H1(Ω) reads

H1(Ω) := {g ∈ L2(ρ−1; Ω) : grad g ∈ L2(Ω)3×3}.

It is well known that D(Ω) is dense in H1(Ω), see [13] (cf. also [6, Section 2] and more references
therein). If Ω is unbounded, then the seminorm

|g|H1(Ω) := ‖∇g‖L2(Ω),

is equivalent to the norm ‖g‖H1(Ω) in H1(Ω) [19, Chapter XI, Part B, §1]. If Ω− is bounded, then

H1(Ω−) = H1(Ω−). If Ω′ is a bounded subdomain of an unbounded domain Ω and g ∈H1(Ω), then
g ∈H1(Ω′).

Let H̃
1
(Ω) be the completion of D(Ω) in H1(R3); it can be also characterised as H̃

1
(Ω) = {g :

g ∈ H1(R3), supp g ⊂ Ω}. Let H̃
−1

(Ω) := [H1(Ω)]∗ and H−1(Ω) := [H̃
1
(Ω)]∗ be the corresponding

dual spaces. Evidently, the space L2(ρ; Ω) ⊂H−1(Ω).

For any distribution g in H̃
−1

(Ω), we have the following representation property (see [29, Section
2.5]), gj =

∑3
i=1 ∂igij + g0

j , gij ∈ L2(R3), g0
j ∈ L2(ρ;R3) and gij , g

0
j = 0 outside the domain Ω,

i, j ∈ {1, 2, 3}. Consequently, D(Ω) is dense in H̃
−1

(Ω) and D(R3) is dense in H−1(R3).
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Let µ be the viscosity coefficient, p the pressure field and v the velocity field. In this paper, for an
arbitrary couple (p,v), the stress tensor operator, σij , and the Stokes operator, Aj , are defined for a
compressible fluid as

σji(p,v)(x) := −δji p(x) + µ(x)

(
∂vi(x)

∂xj
+
∂vj(x)

∂xi
− 2

3
δji divv(x)

)
, (2.1)

Aj(p,v)(x) :=
∂

∂xi
σji(p,v)(x) =

∂

∂xi

(
µ(x)

(
∂vj(x)

∂xi
+
∂vi(x)

∂xj
− 2

3
δji divv(x)

))
− ∂p(x)

∂xj
, j, i ∈ {1, 2, 3}, (2.2)

where δji is the Kronecker symbol. Henceforth we assume the Einstein summation in repeated indices
from 1 to 3 if not stated otherwise.

Note that (2.1) is a particular case of a more general relation between stress and strain rate tensors
for isotropic compressible Newtonian fluids (cf., e.g., Appendix III, Part I, Section 1, p.339 in [33]),

σji(p,v)(x) := −δji p(x) + µ(x)

(
∂vi(x)

∂xj
+
∂vj(x)

∂xi

)
+ λ(x)δji divv(x), (2.3)

where µ(x) > 0 and λ(x) ∈ R. In this paper we take λ(x) = −2
3µ(x), which corresponds to the

assumption that the strain rate tensor does not contribute to the volumetric part (matrix trace) σii
of the stress tensor σji.

Throughout this paper, we will assume the following condition to ensure boundedness properties
of the integral operators introduced further on.

Condition 2.1
µ ∈ C1(R3) ∩ L∞(R3) : ρ∇µ ∈ L∞(R3).

In addition, there exist constants C1 and C2 such that

0 < C1 < µ(x) < C2. (2.4)

Remark 2.2 If µ satisfies condition 2.1, then the functions µ and
1

µ
are multipliers in the space

H1(Ω), i.e., there exists positive constants C3(µ) and C4(µ) independent of h such that

‖µh‖H1(Ω) ≤ C3(µ)‖h‖H1(Ω), ‖h
µ
‖H1(Ω) ≤ C4(µ)‖h‖H1(Ω) ∀h ∈ H1(Ω). (2.5)

The operator A acting on (p,v) ∈ L2(Ω)×H1(Ω) is well defined in the weak sense as long as the
variable coefficient µ(x) is essentially bounded, i.e. µ ∈ L∞(Ω). Indeed, in the sense of distributions
the operator A is defined as

〈A(p,v),u〉Ω = −E((p,v),u), ∀u ∈ D(Ω), (2.6)

where

E ((p,v),u) :=

∫
Ω
E ((p,v),u) (x) dx, (2.7)

and the function E ((p,v),u) is defined as

E ((p,v),u) (x) : =
1

2
µ(x)

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)(
∂vi(x)

∂xj
+
∂vj(x)

∂xi

)
− 2

3
µ(x)divv(x) divu(x)− p(x)divu(x). (2.8)

The bilinear form E :
[
L2(Ω)×H1(Ω)

]
× H̃

1
(Ω)→ R is evidently bounded. Thus, by the density

of D(Ω) in H̃
1
(Ω), the operator

A : L2(Ω)×H1(Ω)→H−1(Ω)
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defined by (2.6) for any u ∈ H̃
1
(Ω) is also bounded and gives the weak form of operator (2.2).

We will also make use of the following space, (cf., e.g., [7], [6]),

H1,0(Ω;A) := {(p,v) ∈ L2(Ω)×H1(Ω) : A(p,v) ∈ L2(ρ; Ω)},

endowed with the norm, ‖ · ‖H1,0(Ω;A), where

‖(p,v)‖H1,0(Ω;A) :=
(
‖p‖2L2(Ω) + ‖v‖2H1(Ω)

+ ‖ρA(p,v)‖2L2(Ω)

)1/2
.

Similar to [21, Theorem 3.12], one can prove the following assertion.

Theorem 2.3 Let µ satisfy condition 2.1. Then the space D(Ω)×D(Ω) is dense in H1,0(Ω;A).

For sufficiently smooth functions (p,v) ∈ Hs−1(Ω±) ×Hs(Ω±) with s > 3/2, we can define the
classical traction (conormal derivative) operators, T c± = {T c±i }3i=1, on the boundary ∂Ω as

T c±i (p,v)(x) := [γ±σij(p,v)(x)]nj(x)

= −ni(x)γ±p(x) + nj(x)µ(x)γ±
(
∂vi(x)

∂xj
+
∂vj(x)

∂xi
− 2

3
δji divv(x)

)
, x ∈ ∂Ω, (2.9)

where nj(x) denote the components of the unit normal vector n(x) to the boundary ∂Ω directed
outwards the exterior domain Ω. Moreover, γ± denote the trace operators from inside and outside Ω
which according to the trace theorem satisfy the mapping property γ± :H1(Ω)→H1/2(∂Ω).

Traction operators (2.9) can be continuously extended to the canonical traction operators T± :
H1,0(Ω±,A)→H−1/2(∂Ω) defined in the weak form (cf. [7, 6, 24, 9]), as

〈T+(p,v),w〉∂Ω :=

∫
Ω±

[
A(p,v)γ+

−1w + E
(
(p,v),γ+

−1w
)]
dx

∀ (p,v) ∈H1,0(Ω±,A), ∀w ∈H1/2(∂Ω),

where the operator γ+
−1 : H1/2(∂Ω)→H1(Ω) denotes a continuous right inverse of the trace operator

γ+ :H1(Ω)→H1/2(∂Ω).
Furthermore, if (p,v) ∈ H1,0(Ω,A) and u ∈ H1(Ω), the following first Green identity holds, cf.

[12, Section 2.3],

〈T+(p,v),γ+u〉∂Ω =

∫
Ω

[A(p,v)u+ E ((p,v),u) (x)]dx. (2.10)

Applying identity (2.10) to the pairs (p,v), (q,u) ∈H1,0(Ω,A) with exchanged roles and subtract-
ing the one from the other, we arrive at the second Green identity, cf. [20, 21],

〈T+(p,v),γ+u〉∂Ω − 〈T+(q,u),γ+v〉∂Ω =

∫
Ω

[
Aj(p,v)uj − Aj(q,u)vj + q div v − p divu

]
dx.

(2.11)

In this paper, we derive the systems of boundary-domain integral equations, which are equivalent
to the following mixed compressible exterior Stokes problem.

Mixed problem For f ∈ L2(ρ,Ω), ϕ0 ∈ H1/2(∂ΩD), g ∈ L2(Ω) and ψ0 ∈ H−1/2(∂ΩN ), find
(p,v) ∈H1,0(Ω,A) such that:

A(p,v) = f in Ω, (2.12a)

div v(x) = g in Ω, (2.12b)

γ+v = ϕ0, on ∂ΩD (2.12c)

T+(p,v) = ψ0 on ∂ΩN . (2.12d)

Theorem 2.4 Let µ satisfy condition 2.1. The mixed BVP (2.12) has at most one solution in the
space H1,0(Ω;A).
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Proof: Let us suppose that there are two possible solutions: (p1,v1) and (p2,v2) belonging to the
spaceH1,0(Ω;A), that satisfy the BVP (2.12). Then, the pair (p,v) := (p2,v2)−(p1,v1) ∈H1,0(Ω;A)
satisfies the homogeneous version mixed BVP (2.12). Substituting (q,u) = (p,v) in the first Green
identity (2.10), which holds since (p,v) ∈H1,0(Ω;A), we obtain,∫

Ω

1

2
µ(x)

(
∂vi(x)

∂xj
+
∂vj(x)

∂xi

)2

dx = 0.

As µ(x) > 0, this can be satisfied only if v is a rigid motion, i.e., v(x) = a+b×x with some constant
vectors a and b, [20, Lemma 10.5]. However, taking into account the Dirichlet condition γ+v = 0,
we deduce that v ≡ 0. By the Neumann condition T+(p,v) = 0, it is easy to conclude that p = 0.
Hence, v1 = v2 and p1 = p2. �

BVP (2.12) can be represented by the following operator,

AM :H1,0(Ω,A)→ L2(ρ; Ω)× L2(Ω)×H1/2(∂ΩD)×H−1/2(∂ΩN ). (2.13)

which is continuous, and by Theorem 2.4 also injective.

3 Parametrix and Remainder

When µ(x) = 1, the operator A becomes the constant-coefficient Stokes operator Å, for which we
know an explicit fundamental solution defined by the pair of functions (q̊k, ůk), where summation in
k is not assumed, ůkj represent components of the incompressible velocity fundamental solution and

q̊k represent the components of the pressure fundamental solution (see e.g. [18, 15, 14]).

q̊k(x,y) = − (xk − yk)
4π|x− y|3

=
∂

∂xk

(
1

4π|x− y|

)
, (3.1)

ůkj (x,y) = − 1

8π

{
δkj

|x− y|
+

(xj − yj)(xk − yk)
|x− y|3

}
, j, k ∈ {1, 2, 3}. (3.2)

Therefore, the couple (q̊k, ůk) satisfies

∂

∂xk
q̊k(x,y) =

3∑
i=1

∂2

∂x2
k

(
1

4π|x− y|

)
= −δ(x− y), (3.3)

Åj(x)(q̊k(x,y), ůk(x,y)) =
3∑
i=1

∂2ůkj (x,y)

∂x2
i

− ∂q̊k(x,y)

∂xj
= δkj δ(x− y), (3.4)

divxů
k(x,y) = 0. (3.5)

Here and henceforth, δ(·) is Dirac’s distribution.
Let us denote σ̊ij(p,v) := σij(p,v)|µ=1, T̊ ci (p,v) := T ci (p,v)|µ=1. Then by (2.1) the stress tensor

of the fundamental solution reads as

σ̊ij(x)(q̊k(x,y), ůk(x,y)) =
3

4π

(xi − yi)(xj − yj)(xk − yk)
|x− y|5

,

and the classical boundary traction of the fundamental solution becomes

T̊ ci (x)(q̊k(x,y), ůk(x,y)) : = σ̊ij(x)(q̊k(x,y), ůk(x,y))nj(x)

=
3

4π

(xi − yi)(xj − yj)(xk − yk)
|x− y|5

nj(x).

Let us define a pair of functions (qk,uk)3
k=1,

qk(x,y) =
µ(x)

µ(y)
q̊k(x,y) = −µ(x)

µ(y)

xk − yk
4π|x− y|3

, j, k ∈ {1, 2, 3}, (3.6)

ukj (x,y) =
−1

µ(y)
ůkj (x,y) = − 1

8πµ(y)

{
δkj

|x− y|
+

(xj − yj)(xk − yk)
|x− y|3

}
. (3.7)
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Then by (2.1),

σij(x)(qk(x,y),uk(x,y)) =
µ(x)

µ(y)
σ̊ij(x)(q̊k(x,y), ůk(x,y)), (3.8)

Ti(x)(qk(x,y),uk(x,y)) := σij(x)(qk(x,y),uk(x,y))nj(x)

=
µ(x)

µ(y)
T̊i(x)(q̊k(x,y), ůk(x,y)). (3.9)

No summation in k is assumed in (3.8)-(3.9).
Substituting (3.6)-(3.7) in the Stokes system with variable coefficient, (2.2) gives

Aj(x)(qk(x,y),uk(x,y)) = δkj δ(x− y) +Rkj(x,y), (3.10)

where

Rkj(x,y) =
1

µ(y)

∂µ(x)

∂xi
σ̊ij(x)(q̊k(x,y), ůk(x,y))

=
3

4πµ(y)

∂µ(x)

∂xi

(xi − yi)(xj − yj)(xk − yk)
|x− y|5

= O(|x− y|)−2) (3.11)

is a weakly singular remainder and no summation in k is assumed in (3.10)-(3.11). This implies that
(qk,uk) is a parametrix of the operator A. Let us keep in mind that we have not assumed summation
on the index k in (3.8)-(3.11).

Note that a parametrix is generally not unique (cf. [25] for BDIEs based on an alternative

parametrix for a scalar PDE). The possibility to factor out µ(x)
µ(y) in (3.8)-(3.9) and ∇µ(x)

µ(y) in (3.11)

is due to the careful choice of the parametrix in form (3.6)-(3.7) and this essentially simplifies the
analysis of parametrix-based potentials and BDIE systems further on.

4 Hydrodynamic potentials

Let first h and h be sufficiently smooth scalar and vector functions on Ω, e.g., h ∈ D(Ω), h ∈ D(Ω).
Let us define the parametrix-based Newton-type and remainder vector potentials for the velocity,

[Uh]k(y) = Ukjhj(y) :=

∫
Ω
ukj (x,y)hj(x)dx,

[Rh]k(y) = Rkjhj(y) :=

∫
Ω
Rkj(x,y)hj(x)dx,

and the scalar Newton-type and remainder potentials for the pressure,

[Qh]j(y) = Qjh(y) :=

∫
Ω
qj(y,x)h(x)dx = −

∫
Ω
qj(x,y)h(x)dx, (4.1)

Qh(y) :=Q·h(y) =Qjhj(y) =

∫
Ω
qj(y,x)hj(x)dx = −

∫
Ω
qj(x,y)hj(x)dx, (4.2)

R•h(y) = R•jhj(y) := −2 p.v.

∫
Ω

∂q̊j(x,y)

∂xi

∂µ(x)

∂xi
hj(x)dx− 4

3
hj
∂µ

∂yj
(4.3)

= −2
〈
∂iq̊

j(·,y) , hi∂jµ
〉

Ω
− 2hi(y)∂iµ(y), (4.4)

for y ∈ R3. The integral in (4.3) is understood as a 3D strongly singular integral (in the sense of the
Cauchy principal value). The bilinear form in (4.4) should be understood in the sense of distributions,
and the equality between (4.3) and (4.4) holds since〈

∂iq̊
j(·,y), hi∂jµ

〉
Ω

=−
〈
q̊j(·,y), ∂i(hi∂jµ)

〉
Ω

+
〈
niq̊

j(·,y), hi∂jµ
〉
∂Ω

=− lim
ε→0

〈
q̊j(·,y), ∂i(hi∂jµ)

〉
Ωε

+
〈
niq̊

j(·,y), hi∂jµ
〉
∂Ω

= lim
ε→0

〈
∂iq̊

j(·,y), hi∂jµ
〉

Ωε
− lim
ε→0

〈
niq̊

j(·,y), hi∂jµ
〉
∂Ωε\∂Ω

=v.p.

∫
Ω

∂q̊j(x,y)

∂xi

∂µ(x)

∂xi
hj(x)dx− 1

3
hj
∂µ

∂yj
,
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where Ωε = Ω \ B̄ε(y) and Bε(y) is the ball of radius ε centred in y, which implies that

− 2
〈
∂iq̊

j(·,y) , hi∂jµ
〉

Ω
− 2hi(y)∂iµ(y)

= −2 v.p.

∫
Ω

∂q̊j(x,y)

∂xi

∂µ(x)

∂xi
hj(x)dx− 4

3
hj(y)

∂µ(y)

∂yj
= R•h(y).

In addition, we will introduce the operators U,Q,R and R• whose definitions coincide, respectively,
with the definition of the operators U ,Q,R and R• with the sole difference that Ω = R3.

Let us now define the parametrix-based velocity single layer potential and double layer potential
as follows:

[V h]k(y) = Vkjhj(y) := −
∫
∂Ω
ukj (x,y)hj(x) dS(x), y /∈ ∂Ω,

[Wh]k(y) = Wkjhj(y) := −
∫
∂Ω
T cj (x; qk,uk)(x,y)hj(x) dS(x), y /∈ ∂Ω.

For the pressure we will need the following single-layer and double layer potentials:

Πsh(y) = Πs
jhj(y) :=

∫
∂Ω
q̊j(x,y)hj(x)dS(x), y /∈ ∂Ω

Πdh(y) = Πd
jhj(y) := 2

∫
∂Ω

∂q̊j(x,y)

∂n(x)
µ(x)hj(x)dS(x), y /∈ ∂Ω.

It is easy to observe that the parametrix-based integral operators, with the variable coefficient µ,
can be expressed in terms of the corresponding integral operators for the constant-coefficient case,
µ = 1, marked by ,̊

Uh =
1

µ
Ůh, (4.5)

[Rh]k =
−1

µ

[
∂jŮki(hj∂iµ) + ∂iŮkj(hj∂iµ)− Q̊k(hj∂jµ)

]
, (4.6)

Qh =
1

µ
Q̊(µh), (4.7)

R•h = −2∂iQ̊j(hj∂iµ)− 2hj∂jµ, (4.8)

V h =
1

µ
V̊ h, Wh =

1

µ
W̊ (µh), (4.9)

Πsh = Π̊sh, Πdh = Π̊d(µh). (4.10)

We will further use (4.5)-(4.10) as definitions of the potentials in the left-hand sides of these relations,
when the densities h and h are more general functions or distributions on Ω or ∂Ω.

Note that although the constant-coefficient velocity potentials Ůh, V̊ h and W̊h are divergence-
free in Ω±, the corresponding potentials Uh, V h and Wh are not divergence-free for the variable
coefficient µ(y). Note also that by (3.1) and (4.1),

Q̊jh = −∂jN∆h, (4.11)

where

N∆h(y) = − 1

4π

∫
Ω

1

|x− y|
h(x)dx (4.12)

is the harmonic Newton potential. Hence

divQ̊h = ∂jQ̊jh = −∆N∆h = −h. (4.13)

Moreover, for the constant-coefficient potentials we have the following well-known relations,

Å(Π̊sh, V̊ h) = 0, Å(Π̊dh, W̊h) = 0 in Ω±, (4.14)

Å(Q̊h, Ůh) = h. (4.15)
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In addition, by (4.11) and (4.13),

Åj(
4

3
h,−Q̊h) = −∂i

(
∂iQ̊jh+ ∂jQ̊ih−

2

3
δji divQ̊h

)
− 4

3
∂jh

= −(∆Q̊jh+ ∂jdivQ̊h− 2

3
∂jdivQ̊h)− 4

3
∂jh = 0 (4.16)

4.1 Mapping properties

The following assertions are well known for the constant coefficient case, see e.g. Lemmas A.3 and
A.4 in [16] and references therein. Then by relations (4.5)-(4.10), we obtain their counterparts for the
variable-coefficient case. Let us highlight that the operators U ,Q, Q,R, R• are defined in the same
way as U ,Q,Q,R and R• if we take Ω = R3.

Remark 4.1 For sufficiently smooth h, the Newtonian volume potential over R3, cf. (4.12), is defined
as

N∆h(y) =

∫
R3

E∆(x,y)h(x) dx, (4.17)

where

E∆(x,y) =
−1

4π|x− y|
is the fundamental solution of the Laplace equation and moreover N∆∆h = ∆N∆h = h, i.e. the
operator N∆ is inverse to to the Laplace operator ∆. On the other hand, it is well known (see,
e.g., [30, Theorem 1.2], [13, Theorem III.2]) that the Laplace operator ∆ : H1(R3) → H−1(R3) has
a continuous inverse, ∆−1 : H−1(R3) → H1(R3) and thus N∆h = ∆−1h for any h ∈ D(R3). As
remarked in [6], due to the density of D(R3) in H−1(R3) this provides a continuous extension of the
operator N∆ defined by (4.17) to the extended continuous Newtonian potential operator

N∆ : H−1(R3)→ H1(R3). (4.18)

Theorem 4.2 The following operators are continuous under condition 2.1,

U :H−1(R3)→H1(R3), (4.19)

U : H̃
−1

(Ω)→H1(Ω), (4.20)

Q : L2(R3)→H1(R3), (4.21)

Q : L2(Ω)→H1(Ω), (4.22)

Q :H−1(R3)→ L2(R3), (4.23)

Q : H̃
−1

(Ω)→ L2(Ω), (4.24)

R : L2(ρ−1;R3)→H1(R3), (4.25)

R : L2(ρ−1; Ω)→H1(Ω), (4.26)

R• : L2(ρ−1;R3)→ L2(R3), (4.27)

R• : L2(ρ−1; Ω)→ L2(Ω). (4.28)

Proof: Let us consider relations (4.5) and (4.7). The continuity of operators U , U , Q and Q in
(4.19), (4.20), (4.23), and (4.24) then follows from the continuity of the corresponding operators Ů ,
Ů , Q̊ and Q̊ provided in [16, Lemma A.3].

Let us prove now the continuity of operator (4.25), which follows if we prove the continuity of

operators in the right hand side of (4.6). Let us note that by condition 2.1, µ and
1

µ
are bounded

and act as multipliers in the space H1(Ω). In addition, condition 2.1 states that ρ∂iµ ∈ L∞(R3).
Consequently, for any function hj ∈ L2(ρ−1;R3), we have that hj∂iµ ∈ L2(R3), see the proof of [6,
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Theorem 4.1]. It is easy to prove that the operator ∇ : L2(R3)→H1(R3) is continuous, which implies
that ∇(hj∂iµ) ∈H1(R3). Let us prove continuity of the first operator in the right hand side of (4.6).
First, we assume that hj∂iµ in D(R3). Then

∂jŮki(hj∂iµ) = −Ůki∂j(hj∂iµ). (4.29)

By the density of D(R3) in L2(R3) and the continuity of operator Ů :H−1(R3)→H1(R3), cf. (4.19),
we can extend relation (4.29) from hj∂iµ ∈ D(R3) to hj∂iµ ∈ L2(R3). Then, the continuity of operator
h 7→ ∂jŮki(hj∂iµ) : L2(ρ−1;R3)→H1(R3) follows. The continuity of other two operators in the right
hand side of (4.6) can be proved in a similar way. Consequently, operator (4.25) is continuous. The
continuity of operator (4.25) implies the continuity of operator (4.26).

Taking into account (4.8), the continuity of operator (4.27) will follow from the continuity of
the first operator in the right hand side of (4.8). Let hj ∈ L2(ρ−1;R3). Applying a similar den-
sity argument, as in the previous paragraph we can deduce ∂jQ̊(hj∂iµ) = −Q̊∂j(hj∂iµ). Since,
∂j(hj∂iµ) ∈ H−1(R3), the we have the inclusion ∂jQ̊(hj∂iµ) ∈ L2(R3) for any hj ∈ L2(ρ−1;R3),
with the corresponding norm estimate. This implies the continuity of operator (4.27). Continuity of
operator (4.28) is implied by the continuity of operator (4.27).

The mapping properties of operators (4.21) and (4.22) differ from the
ones for operators (4.23) and (4.24) and need to be proved separately.
Let us consider φ ∈ D(R3). Then by (4.11) and (4.12) we have

Q̊jφ = −∂jN∆φ = −
∫
R3

∂E∆

∂yj
(x,y)φ(x) dx =

∫
R3

∂E∆

∂xj
(x,y)φ(x) dx

= −
∫
R3

E∆(x,y)
∂φ(x)

∂xj
dx = −N∆(∂jφ). (4.30)

For any h ∈ L2(R3),

‖∂jh‖H−1(Rn) = sup
ξ∈D(R3),‖ξ‖H1(Rn)=1

|〈∂jh, ξ〉R3 | = sup
ξ∈D(R3),‖ξ‖H1(Rn)=1

|〈h, ∂jξ〉R3 |

≤ sup
ξ∈D(R3),‖ξ‖H1(Rn)=1

‖h‖L2(R3)‖∂jξ‖L2(R3) ≤ ‖h‖L2(R3). (4.31)

Due to the density of D(R3) in H1(R3), this implies that ∂jh ∈ H−1(Rn) and moreover the operator
∂j : L2(R3)→ H−1(R3) is continuous.

As a result, the density ofD(R3) in L2(R3) and the continuity of operator (4.18) in (4.30) imply that
Q̊jφ = −N∆(∂jφ) ∈ H1(R3) for any φ ∈ L2(R3) and moreover, the operator Q̊j : L2(R3)→ H1(R3) is
continuous. Then operator (4.21) and thus operator (4.22) are continuous as well. �

Theorem 4.3 The following operators are continuous under condition 2.1

V : H−1/2(∂Ω)→H1(Ω), (4.32)

Πs : H−1/2(∂Ω)→ L2(Ω), (4.33)

W : H1/2(∂Ω)→H1(Ω), (4.34)

Πd : H1/2(∂Ω)→ L2(Ω). (4.35)

Proof: Let us consider relations (4.9) and (4.10). The continuity of the operators V , Πs, W and Πd

then follows from the continuity of the operators V̊ , W̊ , Π̊s and Π̊d which has already being proved
in [16, Lemma 3.3].

�
In the proofs further further, second order derivatives of the coefficient µ(x) will appear and apart

from Condition 2.1, we will sometimes need to assume the following additional condition.

Condition 4.4
µ ∈ C2(R3) : ρ2∂j∂iµ ∈ L∞(R3). (4.36)
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Theorem 4.5 The following operators are continuous under Conditions 2.1 and 4.4,

(Πs,V ) : H−1/2(∂Ω)→H1,0(Ω;A), (4.37)(
Πd,W

)
: H1/2(∂Ω)→H1,0(Ω;A), (4.38)(

Q̊,U
)

: L2(ρ; Ω)→H1,0(R3;A), (4.39)

(R•,R) :H1(Ω)→H1,0(Ω;A), (4.40)(
4

3
µI,−Q

)
: L2(Ω)→H1,0(Ω;A). (4.41)

Proof: Let us consider first the single layer potentials (Πsh,V h) ∈ H1(Ω) × L2(Ω) for h ∈
H−1/2(∂Ω). Let us apply the operator A taking into consideration (4.9) and (4.10)

Aj (Πsh,V h) = Aj
(

Π̊sh,
1

µ
V̊ h

)
= Åj

(
Π̊sh, V̊kh

)
+ ∂k

(
µ

[
∂j(1/µ)V̊kh+ ∂k(1/µ)V̊jh−

2

3
δkj ∂i(1/µ)V̊ih

])
.

Now, the term Åj
(

Π̊sh, V̊kh
)

vanishes and due Conditions 2.1 and 4.4, the last term belongs to

L2(ρ; Ω) since V̊ h ∈H1(Ω), which implies the continuity of operator (4.37).
The same argument works for the double layer potential

(
W ,Πd

)
h with h ∈H1/2(∂Ω)and implies

the continuity of operator (4.38). In addition it works for the Newtonian potentials (U ,Q) with the

sole difference that Åj
(
Q̊h, Ůkh

)
= hj and h ∈ L2(ρ; Ω). This implies the continuity of operator

(4.39).
For operator (4.40), h ∈H1(Ω) ⊂ L2(ρ−1; Ω) and hence the operator (R•,R) :H1(Ω)→ L2(Ω)×

H1(Ω) is continuous due to Theorem 4.2. Let us prove that A (R•,R) : H1(Ω) → L2(ρ; Ω) is
continuous. Indeed, by (2.2),

Aj(R•h,Rh) = Åj(R•h, µRh)− 2 ∂iMij(Rh), (4.42)

where

Mij(u) :=
1

2
(uj∂iµ+ ui∂jµ)− 1

3
δijul∂lµ.

Hence due to Theorem 4.2 and Conditions 2.1 and 4.4, the operator ∂iMijR : H1(Ω) → L2(ρ; Ω) is
continuous. Moreover, by (4.6), (4.8) and (4.15), Åj(R•h, µRh) = −2 ∂iMij(h), hence by Conditions
2.1 and 4.4 the operator Åj(R•, µR) : H1(Ω) → L2(ρ; Ω) is continuous. Then (4.42) implies the
continuity of operator A(R•, µR) :H1(Ω)→ L2(ρ; Ω) and hence of operator (4.40).

For operator (4.41) we proceed in a similar manner to obtain that

A
(

4

3
µh,−Qh

)
= A

(
4

3
µh,− 1

µ
Q̊(µh)

)
= Åj

(
4

3
µh,−Q̊(µh)

)
+ 2 ∂iMij(Qh) = 2 ∂iMij(Qh)

due to (4.16). By the continuity of operator (4.22) in Theorem 4.2 and due to Conditions 2.1 and 4.4,
the operator ∂iMijQ : L2(Ω)→ L2(ρ; Ω) is continuous, implying the continuity of operator (4.41).

�
Let us now define direct values on the boundary of the parametrix-based velocity single layer

and double layer potentials and introduce the notations for the conormal derivative of the latter, for
sufficiently smooth scalar and vector functions h and h on ∂Ω, e.g., h ∈ D(∂Ω), h ∈ D(∂Ω),

[Vh]k(y) = Vkjhj(y) := −
∫
∂Ω
ukj (x,y)hj(x) dS(x), y ∈ ∂Ω, (4.43)

[Wh]k(y) =Wkjhj(y) := −
∫
∂Ω
T cj (x; qk,uk)(x,y)hj(x) dS(x), y ∈ ∂Ω, (4.44)

[W ′h]k(y) =W ′kjhj(y) := −
∫
∂Ω
T cj (y; qk,uk)(x,y)hj(x) dS(x), y ∈ ∂Ω, (4.45)

L±h(y) := T±(Πdh,Wh)(y), y ∈ ∂Ω. (4.46)
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Here T± are the canonical derivative (traction) operators for the compressible fluid that are well
defined due to Theorem 4.5.

Similar to the potentials in the domain, we can also express the boundary operators in terms of
their counterparts with the constant coefficient µ = 1,

Vh =
1

µ
V̊h, Wh =

1

µ
W̊(µh), (4.47)

[W ′h]k = [W̊ ′h]k −
(
∂iµ

µ
[V̊h]k +

∂kµ

µ
[V̊h]i −

2

3
δki
∂jµ

µ
[V̊h]j

)
ni. (4.48)

We will further use relations (4.47) and (4.48) as definitions of the potentials Vh, Wh, and W ′h
when their densities h and h are more general functions or distributions on ∂Ω.

Theorem 4.6 Let s ∈ R. Let S1 and S2 be two non empty manifolds on ∂Ω with smooth boundaries
∂S1 and ∂S2, respectively. Then the following operators are continuous under Conditions 2.1 and 4.4,

V : Hs(∂Ω)→Hs+1(∂Ω), W : Hs(∂Ω)→Hs+1(∂Ω), (4.49)

rS2V : H̃
s
(S1)→Hs+1(S2), rS2W : H̃

s
(S1)→Hs+1(S2), (4.50)

L± : Hs(∂Ω)→Hs−1(∂Ω), W ′ : Hs(∂Ω)→Hs+1(∂Ω). (4.51)

Moreover, the following operators are compact,

rS2V : H̃
s
(S1)→Hs(S2), (4.52)

rS2W : H̃
s
(S1)→Hs(S2), (4.53)

rS2W ′ : H̃
s
(S1)→Hs(S2). (4.54)

Proof: As in Theorem 4.4 of [9], the continuity of operators in (4.49)-(4.51) follows from relations
(4.47)-(4.48) and continuity of the counterpart operators for the constant coefficient case, see e.g.
[15, 14]. Then compactness of operators (4.52)-(4.54) is implied by the Rellich compactness embedding
theorem. �

Theorem 4.7 If τ ∈ H1/2(∂Ω), h ∈ H−1/2(∂Ω), then the following relations hold on ∂Ω under
Conditions 2.1 and 4.4,

γ±V h = Vh, γ±Wτ = ∓1

2
τ +Wτ (4.55)

T±(Πsh,V h) = ±1

2
h+W ′h. (4.56)

Proof: The proof of the theorem directly follows from relations (4.9), (4.47)-(4.48) and the analogous
jump properties for the counterparts of the operators for the constant coefficient case of µ = 1, see,
e.g., [14, Lemma 5.6.5].

�
Let us introduce the notations

L̊τ (y) = L̊±τ (y) := T̊
±

(Π̊dτ , W̊τ )(y), L̂τ (y) := L̊(µτ )(y), y ∈ ∂Ω, (4.57)

where the first equality is implied by the Lyapunov-Tauber theorem for the constant-coefficient Stokes
potentials.

The following theorem is proved similar to [9, Theorem 4.6] but with different spaces involved.

Theorem 4.8 Let Conditions 2.1 and 4.4 hold and τ ∈H1/2(∂Ω). Then

(L±k − L̂k)τ =

γ±
(
µ

[
∂i

(
1

µ

)
W̊k(µτ ) + ∂k

(
1

µ

)
W̊i(µτ )− 2

3
δki ∂j

(
1

µ

)
W̊j(µτ )

])
ni. (4.58)
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Proof: By Theorem 4.5, the operator (Πd,W ) : H1/2(∂Ω) → H1,0(Ω;A) is continuous. By The-
orem 2.3, there exists a sequence (πm,wm)∞m=1 ⊂ D(Ω) × D(Ω) converging to (Π̊d(µτ ), W̊ (µτ ))

in H1,0(Ω;A). Then, due to (4.9)-(4.10), the sequence (πm,
1

µ
wm)∞m=1 ⊂ D(Ω)×D(Ω) converges to

(Π̊d(µτ ),
1

µ
W̊ (µτ )) = (Πdτ ,Wτ ) in H1,0(Ω;A) and by continuity of the canonical traction operators

T± : H1,0(Ω±;A)→H−1/2(∂Ω), and definition (4.46) we can establish the following equality

L±k τ := T±k (Πdτ ,Wτ ) = T±k (Πdτ ,Wτ ) = lim
m→∞

T±k (πm,
1

µ
wm). (4.59)

On the other hand,

T±k (πm,
1

µ
wm) = T c±k (πm,

1

µ
wm) = γ±σik(π

m,
1

µ
wm)ni

= γ±σ̊ik(π
m,wm)ni + γ±

(
µ

[
∂i

(
1

µ

)
wmk + ∂k

(
1

µ

)
wmi −

2

3
δki ∂j

(
1

µ

)
wmj

])
ni

→ L̊±k (µτ ) +G±(τ ) as m→∞,

where

G±(τ ) := γ±
(
µ

[
∂i

(
1

µ

)
W̊k(µτ ) + ∂k

(
1

µ

)
W̊i(µτ )− 2

3
δki ∂j

(
1

µ

)
W̊j(µτ )

])
ni

since

γ±σ̊ik(π
m,wm)ni = T̊ c±k (πm,wm) = T̊±k (πm,wm)→ T̊±k

(
Π̊d(µτ ), W̊ (µτ )

)
= L̊±k (µτ ).

This implies (4.58).
�

Similar to [9, Corollary 4.7], the next assertion follows from Theorems 4.8 and 4.5.

Corollary 4.9 Let S1 be a non-empty submanifold of ∂Ω with smooth boundary and Conditions 2.1
and 4.4 hold. Then, the operators

L̂ : H̃
1/2

(S1)→H−1/2(∂Ω), (L± − L̂) : H̃
1/2

(S1)→H1/2(∂Ω), (4.60)

are continuous and the operators

(L± − L̂) : H̃
1/2

(S1)→H−1/2(∂Ω), (4.61)

are compact.

For bounded domains, we had compactness of the remainder operators R and R• implied by the
Rellich compact embedding theorem, which does not hold for exterior (unbounded) domains considered
in this paper. To overcome this issue, we prove that the for exterior domains the operators R and
R• are limits of some sequences of compact operators and thus are also compact. We will require the
following condition.

Condition 4.10 lim|x|→∞ ρ(x)∇µ(x) = 0.

The proof of the following assertion is similar to [6, Lemma 7.4] for the corresponding scalar case.

Lemma 4.11 Let Conditions 2.1 and 4.10 hold. Then for any sufficiently large η > 0,

(i) the operator R can be represented as R = Rs,η + Rc,η, where ‖Rs,η‖H1(Ω)→H1(Ω) → 0 as

η →∞, while Rc,η :H1(Ω)→H1(Ω) is compact;

(ii) the operator R• can be represented as R• = R•s,η + R•c,η, where ‖R•s,η‖H1(Ω)→L2(Ω) → 0 as

η →∞, while R•c,η :H1(Ω)→ L2(Ω) is compact.
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Proof: (i) Let B(0, η) be a ball with centre in 0 ∈ R3 and radius η > 0 large enough such that
∂Ω ⊆ B(0, η). Consider a cut-ff function χ ∈ D(B(0, 2η)) such that 0 ≤ χ ≤ 1 in R3 and χ = 1 in
B(0, η). Let us now define two operators,

Rc,ηg :=R(χg), Rs,ηg :=R((1− χ)g) for g ∈H1(Ω). (4.62)

Taking into account (4.6), the divergence theorem (cf. (4.29)) and that 1− χ = 0 on ∂Ω, we obtain,

‖Rs,ηg‖H1(Ω) = ‖R((1− χ)g)‖H1(Ω)

=

∥∥∥∥ 1

µ

(
∂jŮ·ihij + ∂iŮ·jhij − Q̊·hjj

)∥∥∥∥
H1(Ω)

=

∥∥∥∥ 1

µ

(
Ů·i(∂jhij) + Ů·j(∂ihij)− Q̊·hjj

)∥∥∥∥
H1(Ω)

≤ C4(µ)
(
‖Ů‖H̃−1

(Ω)→H1(Ω)
‖∂i(hi· + h·i)‖H̃−1(Ω)

+ ‖Q̊‖L2(ρ;Ω)→H1(Ω)‖∂i‖hjj‖L2(Ω)

)
,

where hij := (1− χ)gj∂iµ, C4(µ) is from Remark 2.2 We also have the following estimates,

‖∂i(hi· + h·i)‖H̃−1(Ω)
≤ ‖(h+ h>)‖L2(Ω)3×3 ≤ 2‖[(1− χ)g ⊗∇µ]‖L2(Ω)3×3

≤ 2 ‖g‖L2(ρ−1;Ω)‖ρ∇µ‖L∞(R3\B(0,η)) ≤ 2‖g‖H1(Ω)‖ρ∇µ‖L∞(R3\B(0,η)),

‖hjj‖L2(Ω) = ‖(1− χ)g · ∇µ‖L2(Ω)

≤ ‖g‖L2(ρ−1;Ω)‖ρ∇µ‖L∞(R3\B(0,η)) ≤ ‖g‖H1(Ω)‖ρ∇µ‖L∞(R3\B(0,η)).

Then we obtain the following estimate for the norm of Rs,ηg

‖Rs,ηg‖H1(Ω) ≤ C4(µ)
(

2 Ů‖H̃−1(Ω)→H1(Ω)
+ ‖Q̊‖L2(ρ;Ω)→H1(Ω)

)
‖g‖H1(Ω)‖ρ∇µ‖L∞(R3\B(0,η)). (4.63)

Taking the limit as η → ∞ in (4.63), we have ‖ρ∇µ‖L∞(R3\B(0,η)) → 0 by virtue of Condition 4.10.
Therefore ‖Rs,η‖H1(Ω)→H1(Ω) → 0 as η →∞, which completes the proof for operator Rs,η.

Let us prove now that Rc,ηg is compact. By definition, χ = 0 if y in R3 \ B(0, 2η) and hence

the multiplication by χ is a continuous mapping from H1(Ω) to H̃
1
(Ω). Consequently, the operator

Rc,η :H1(Ω)→H1(Ω), satisfies the following relations

Rc,ηg =R(χg) =RE̊Ω2η
rΩ2η

(χg) =RE̊Ω2η
E rΩ2η

(χg). (4.64)

Here rΩ2η
is the continuous restriction operator from H̃

1
(Ω) to H̊

1
(Ω2η), where H̊

1
(Ω2η) ⊂H1(Ω2η)

is the completion of space D(Ω2η) in the norm of H1(Ω2η), E̊Ω2η
is the operator of extension by zero

outside Ω2η for functions defined in Ω2η and it is a continuous operator from H̊
1
(Ω2η) to H1(Ω) and

from L2(Ω2η) to L2(Ω), E : H1(Ω2η)→ L2(Ω2η) is the embedding operator that is compact on the
bounded domain Ω2η due to the Rellich compact embedding theorem. The operator R : L2(Ω) →
H1(Ω) is continuous by virtue of Theorem 4.2. Then the continuity of all operators in the right-hand
side of (4.64) and the compactness of one of them imply (see e.g. [4, Proposition 6.3]) that the operator
Rc,η :H1(Ω)→H1(Ω) is compact.

(ii) Reasoning in a similar way, we can obtain the corresponding result for the remainder pressure
operator. To this end, let us define the operators

R•c,ηg := R•(χg), R•s,ηg := R•((1− χ)g) for g ∈H1(Ω). (4.65)

Taking into account the relations (4.8), we can obtain the following inequality

‖R•s,ηg‖L2(Ω) = ‖R•((1− χ)g)‖L2(Ω) = 2‖∂iQ̊jhij + hjj‖L2(Ω)

≤ 2‖Q̊jh·j‖H1(Ω) + 2‖hjj‖L2(Ω) ≤ 2(‖Q̊‖L2(Ω)→H1(Ω) + 1)‖h‖L2(Ω)3×3 ,
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where

‖h‖L2(Ω)3×3 = ‖[(1− χ)g ⊗∇µ]‖L2(Ω)3×3

≤ ‖g‖L2(ρ−1;Ω)‖ρ∇µ‖L∞(R3\B(0,η)) ≤ ‖g‖H1(Ω)‖ρ∇µ‖L∞(R3\B(0,η)).

Hence

‖R•s,ηg‖L2(Ω) ≤ 2(‖Q̊‖L2(Ω)→H1(Ω) + 1)‖g‖H1(Ω)‖ρ∇µ‖L∞(R3\B(0,η)). (4.66)

Since ‖ρ∇µ‖L∞(R3\B(0,η)) → 0 as η →∞ by Condition 4.10, inequality (4.66) implies that ‖R•s,η‖H1(Ω)→H1(Ω) →
0 as η →∞, which completes the proof for operator R•s,η.

Let us prove now that R•c,ηg is compact. First, the operator R•c,η : H1(Ω) → L2(Ω), satisfies the
following relations

R•c,ηg = R•(χg) = R•E̊Ω2η
rΩ2η

(χg) = R•E̊Ω2η
E rΩ2η

(χg). (4.67)

Here rΩ2η
is the continuous restriction operator from H̃

1
(Ω) to H̊

1
(Ω2η), E̊Ω2η

is the operator of

extension by zero outside Ω2η for functions defined in Ω2η and it is a continuous operator from H̊
1
(Ω2η)

to H1(Ω) and from L2(Ω2η) to L2(ρ−1; Ω), E : H1(Ω2η)→ L2(Ω2η) is the embedding operator that is
compact on the bounded domain Ω2η due to the Rellich compact embedding theorem. The operator
R• : L2(ρ−1; Ω)→ L2(Ω) is continuous by virtue of Theorem 4.2. Then the continuity of all operators
in the right-hand side of (4.67) and the compactness of one of them imply that the operator R•c,η :

H1(Ω)→ L2(Ω) is compact. �

Theorem 4.12 Let Conditions 2.1 and 4.10 hold. Then the following operators are compact,

R :H1(Ω)→H1(Ω), R• :H1(Ω)→ L2(Ω). (4.68)

Proof: By Lemma 4.11,

‖R−Rc,η‖H1(Ω)→H1(Ω) = ‖Rs,η‖H1(Ω)→H1(Ω) → 0,

‖R• −R•c,η‖H1(Ω)→H1(Ω) = ‖R•s,η‖H1(Ω)→H1(Ω) → 0 as η →∞.

Hence the sequence of compact operators Rc,η converges to the operator R and the sequence of
compact operators R•c,η converges to the operator R•. Then (see e.g. [4, Theorem 6.1]) both operators
in (4.68) are compact as well.

�

5 The Third Green Identities

The following assertion presents the third Green identities based on the parametrix (qk,uk), in the
exterior domain. Its proof is word-for-word with the proof of corresponding result in [9, Theorem 5.1]
for the bounded domain, if we replace there H1,0(Ω;A) by H1,0(Ω;A) and employ the second Green
identity (2.11) and the density Theorem 2.3 in the exterior domain.

Theorem 5.1 For any (p,v) ∈H1,0(Ω;A), the following third Green identities hold under Condition
2.1,

p+R•v −ΠsT+(p,v) + Πdγ+v = Q̊A(p,v) +
4µ

3
divv in Ω, (5.1)

v +Rv − V T+(p,v) +Wγ+v = UA(p,v)−Qdivv in Ω. (5.2)
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If the couple (p,v) ∈ H1,0(Ω;A) is a solution of the Stokes PDE system (2.12a)-(2.12b) with
variable coefficient, then (5.1) and (5.2) give

p+R•v −ΠsT+(p,v) + Πdγ+v = Q̊f +
4µ

3
g in Ω, (5.3)

v +Rv − V T+(p,v) +Wγ+v = Uf−Qg in Ω. (5.4)

Consequently under Condition 2.1 we can obtain the trace and under Conditions 2.1 and 4.4 the
traction of the third Green identities for (p,v) ∈H1,0(Ω;A) on ∂Ω.

1

2
γ+v + γ+Rv − VT+(p,v) +Wγ+v = γ+Uf−γ+Qg, (5.5)

1

2
T+(p,v) + T+(R•,R)v −W ′T+(p,v) +L+γ+v = T+(Q̊f +

4µ

3
g,Uf−Qg). (5.6)

Note that the traction operator T+ is well defined on all the potentials in (5.6) due to the mapping
properties provided by Theorem 4.5.

The following two assertions are instrumental for the proof of equivalence of the BDIE systems
and the BVPs.

Lemma 5.2 Let conditions 2.1 and 4.4 hold. Let v ∈ H1(Ω), p ∈ L2(Ω), g ∈ L2(Ω), f ∈ L2(ρ; Ω),
Ψ ∈H−1/2(∂Ω) and Φ ∈H1/2(∂Ω) satisfy the equations

p+R•v −ΠsΨ + ΠdΦ = Q̊f +
4µ

3
g in Ω, (5.7)

v +Rv − VΨ +WΦ = Uf−Qg in Ω. (5.8)

Then (p,v) ∈H1,0(Ω,A) and the couple solves the equations

A(p,v) = f , div v = g.

Moreover, the following relations hold true,

Πs(Ψ− T+(p,v))−Πd(Φ− γ+v) = 0 in Ω, (5.9)

V (Ψ− T+(p,v))−W (Φ− γ+v) = 0 in Ω. (5.10)

Proof: By virtue of Theorem 4.5, it is easy to deduce that (p,v) ∈H1,0(Ω,A). The remaining part
of the proof follows word-for-word from [9, Lemma 5.3]. �

Lemma 5.3 Let ∂Ω = S1∪S2, where S1 and S2 are open non-empty non-intersecting simply connected

submanifolds of ∂Ω with infinitely smooth boundaries. Let Ψ∗ ∈ H̃
−1/2

(S1), Φ∗ ∈ H̃
1/2

(S2). If

Πs(Ψ∗)−Πd(Φ∗) = 0, VΨ∗(x)−WΦ∗(x) = 0, in Ω, (5.11)

then Ψ∗ = 0 and Φ∗ = 0 on ∂Ω.

Proof: Let us employ relations (4.10) in the first equation in (5.11) to obtain

Π̊sΨ∗ − Π̊d(µΦ∗) = 0 in Ω. (5.12)

Multiplying the second equation in (5.11) by µ and applying relations (4.9), we obtain

V̊Ψ∗ − W̊ (µΦ∗) = 0 in Ω. (5.13)

Then we apply the trace operator to both sides of the equation taking into account Theorem 4.7,

V̊Ψ∗ +
1

2
µΦ∗ − W̊(µΦ∗) = 0 on ∂Ω. (5.14)

15



Now we apply the traction operator to (5.12) as the pressure equation and to (5.13) as the velocity
equation, keeping in mind relations (4.56) and (4.57), to obtain

1

2
Ψ∗ + W̊ ′Ψ∗ − L̊(µΦ∗) = 0 on ∂Ω. (5.15)

To simplify the notation, let us denote Φ̂ := (µΦ∗) and Ψ̂ := Ψ∗. We consider now the system of
equations given by restrictions of (5.14) to S1 and (5.15) to S2 taking into account that Φ∗ = 0 on S1

and Ψ∗ = 0 on S2,

−V̊Ψ̂ + W̊Φ̂ = 0 on S1, (5.16)

−W̊ ′Ψ̂ + L̊Φ̂ = 0 on S2. (5.17)

A similar system has been considered in [15, Theorem 3.10], where, however, the operators W̊ and

W̊ ′ were obtained using the normal vector directed outward of the bounded domain, which leads to
the change of signs in front of these operators. Nevertheless, introducing the new variable Ψ̂− = −Ψ̂,
we again return to the system of the form (5.16)-(5.17) which by [15, Theorem 3.10] implies that it
has only the trivial solution and hence Ψ∗ = 0, Φ∗ = 0. �

6 BDIE systems

We aim to obtain two different segregated BDIE systems for the mixed BVP (2.12) employing a
procedure similar to [5], [24] and [22] and references therein. To this end, let the functions Φ0 ∈
H1/2(∂Ω) and Ψ0 ∈H−1/2(∂Ω) be respective extensions of the boundary functions ϕ0 ∈H1/2(∂ΩD)
and ψ0 ∈H−1/2(∂ΩN ) in (2.12c) and (2.12d). Then we can represent

γ+v = Φ0 +ϕ, T+(p,v) = Ψ0 +ψ on ∂Ω, (6.1)

where ϕ ∈ H̃
1/2

(∂ΩN ) and ψ ∈ H̃
−1/2

(∂ΩD) are unknown boundary functions that will be considered
as formally independent of (segregated from) from functions (p,v) in the domain.

6.1 BDIE system M11∗

Let us now take equations (5.3) and (5.4) in the domain Ω and restrictions of the trace equation
(5.5) and the conormal derivative equation (5.6) to the boundary parts ∂ΩD and ∂ΩN , respectively.
Substituting there representations (6.1) and considering further the unknown boundary functions ϕ
and ψ as formally independent of the unknown domain functions p and v, we obtain the following
system, M11∗, of four boundary-domain integral equations for four unknowns, (p,v) ∈ H1,0(Ω,A),

ϕ ∈ H̃
1/2

(∂ΩN ) and ψ ∈ H̃
−1/2

(∂ΩD),

p+R•v −Πsψ + Πdϕ = F0 in Ω, (6.2a)

v +Rv − V ψ +Wϕ = F in Ω, (6.2b)

r∂ΩDγ
+Rv − r∂ΩDVψ + r∂ΩDWϕ = r∂ΩDγ

+F −ϕ0 on ∂ΩD, (6.2c)

r∂ΩNT
+(R•,R)v − r∂ΩNW

′ψ + r∂ΩNL
+ϕ = r∂ΩNT

+(F0,F )−ψ0 on ∂ΩN , (6.2d)

where

F0 = Q̊f+
4

3
µg + ΠsΨ0 −ΠdΦ0, F = Uf−Qg + VΨ0 −WΦ0. (6.3)

Applying Lemma 5.2 to (6.3), keeping in mind the equations (6.2a) and (6.2b), and taking into account
the mapping properties delivered by Theorems 4.2, 4.3 and 4.5, we obtain that (F0,F ) ∈H1,0(Ω,A).

We denote the right hand side of BDIE system (6.2) as

F11
∗ := [F0,F11] = [F0,F , r∂ΩDγ

+F −ϕ0, r∂ΩNT
+(F0,F )−ψ0], (6.4)
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which implies F11
∗ ∈H1,0(Ω,A)×H1/2(∂ΩD)×H−1/2(∂ΩN ).

Note that the domain equations, (6.2a) and (6.2b), look like equations of the second kind, while
both boundary equations, (6.2c) and (6.2d), as equations of the first kind, which is hinted by the
indices 11 in the notations of the system and the corresponding operators.

Note also that BDIE system (6.2) can be split into the BDIE system, M11, of 3 vector equations
(6.2b), (6.2c), (6.2d) for 3 vector unknowns, v, ψ and ϕ, and the separate equation (6.2a) that can be
used, after solving the system, to obtain the pressure, p. However since the couple (p,v) shares the
space H1,0(Ω,A), equations (6.2b), (6.2c), (6.2d) are not completely separate from equation (6.2a).

System M11∗ given by equations (6.2a)-(6.2d) can be written using matrix notations as

M11
∗ X = F11

∗ , (6.5)

where X = (p,v,ψ,ϕ) ∈ L2(Ω)×H1(Ω)×H̃
−1/2

(∂ΩD)×H̃
1/2

(∂ΩN ) represents the 4-tuple containing
the unknowns of the system. The matrix operator M11

∗ is defined by

M11
∗ =


I R• −Πs Πd

0 I +R −V W
0 r∂ΩDγ

+R −r∂ΩDV r∂ΩDW
0 r∂ΩNT

+(R•,R) −r∂ΩNW ′ r∂ΩNL

 . (6.6)

We note that the mapping properties of the operators involved in the matrix imply the continuity
of the operator

M11
∗ : L2(Ω)×H1(Ω)× H̃

−1/2
(∂ΩD)× H̃

1/2
(∂ΩN )

→ L2(Ω)×H1(Ω)×H−1/2(∂ΩD)×H1/2(∂ΩN ).

The following result can be proved by applying an argument similar to [9, Remark 6.1].

Remark 6.1 The term F11
∗ = 0 if and only if (f , g,Φ0,Ψ0) = 0.

6.2 BDIE system M22∗

Let us now obtain the BDIE system of the second kind, which will be hinted by the indices 22
(although with the spaces for unknowns and right-hand sides coinciding only up to ’tilde’). To this
end, let us take equations (5.4) and (5.3) in the domain Ω, as in M11∗, but, unlike M11∗, restriction
of the conormal derivative equation (5.6) to the Dirichlet part of the boundary, ∂ΩD, and restriction
of the trace equation (5.5) to the Neumann boundary part of the boundary, ∂ΩN . Substituting there
representations (6.1) and considering the unknown boundary functions ϕ and ψ again as formally
independent of the unknown domain functions v and p, we obtain the following system, M22∗, of four

boundary-domain integral equations for four unknowns, (p,v) ∈ H1,0(Ω,A), ϕ ∈ H̃
1/2

(∂ΩN ) and

ψ ∈ H̃
−1/2

(∂ΩD),

p+R•v −Πsψ + Πdϕ = F0 in Ω (6.7a)

v +Rv − V ψ +Wϕ = F in Ω, (6.7b)

1

2
ψ + r∂ΩDT

+(R•,R)v − r∂ΩDW
′ψ + r∂ΩDL

+ϕ = r∂ΩDT
+(F0,F )− r∂ΩDΨ0 on ∂ΩD, (6.7c)

1

2
ϕ+ r∂ΩNγ

+Rv − r∂ΩNVψ + r∂ΩNWϕ = r∂ΩNγ
+F − r∂ΩNΦ0 on ∂ΩN . (6.7d)

where the terms in the right hand sides F0 and F are given by (6.3).
Note that BDIE system (6.7a)-(6.7d) can be split into the BDIE system, M22, of 3 vector equations,

(6.7b)-(6.7d), for 3 vector unknowns, v, ψ and ϕ, and the separate equation (6.7a) that can be used,
after solving the system, to obtain the pressure, p. However, since the couple (p,v) shares the space
H1,0(Ω,A), equations (6.7b), (6.7c) and (6.7d) are not completely separate from equation (6.7a).
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System M22∗ can be written using matrix notations as

M22
∗ X = F22

∗ , (6.8)

where the matrix operator M22
∗ is defined by

M22
∗ =


I R• −Πs Πd

0 I +R −V W

0 r∂ΩDT
+(R•,R) r∂ΩD

(
1

2
I −W ′

)
r∂ΩDL+

0 r∂ΩNγ
+R −r∂ΩNV r∂ΩN

(
1

2
I +W

)

 , (6.9)

the 4-tuple X = (p,v,ψ,ϕ) ∈ H1,0(Ω;A) × H̃
−1/2

(∂ΩD) × H̃
1/2

(∂ΩN ) represents the unknowns of
the system, and the 4-tuple

F22
∗ = [F0,F , r∂ΩDT

+(F0,F )− r∂ΩDΨ0, r∂ΩNγ
+F − r∂ΩNΦ0]

is the right hand side and F22
∗ ∈H1,0(Ω;A)×H−1/2(∂ΩD)×H1/2(∂ΩN ).

Due to the mapping properties of the operators involved in (6.9), we have the continuous mapping

M22
∗ : L2(Ω)×H1(Ω)× H̃

−1/2
(∂ΩD)× H̃

1/2
(∂ΩN )

→ L2(Ω)×H1(Ω)×H−1/2(∂ΩD)×H1/2(∂ΩN ).

The following result can be proved by applying an argument similar to [9, Remark 6.2].

Remark 6.2 The term F22
∗ := [F0,F , r∂ΩDT

+(F0,F )−r∂ΩDΨ0, r∂ΩNγ
+F −r∂ΩNΦ0] = 0 if and only

if (f , g,Φ0,Ψ0) = 0.

7 Equivalence theorem

The following result is analogous to the equivalence theorems proven for bounded domains in [9,
Theorem 6.3] (cf. also the equivalence result for boundary integral equations associated with the
mixed problem for strongly elliptic systems in bounded domains in [20, Theorem 7.9]).

Theorem 7.1 (Equivalence Theorem) Let f ∈ L2(ρ; Ω), g ∈ L2(Ω) and let Φ0 ∈H−1/2(∂Ω) and
Ψ0 ∈ H−1/2(∂Ω) be some fixed extensions of ϕ0 ∈ H1/2(∂ΩD) and ψ0 ∈ H−1/2(∂ΩN ) respectively.
Let conditions 2.1 and 4.4 hold.

(i) If some (p,v) ∈ L2(Ω)×H1(Ω) solves the mixed BVP (2.12), then the set (p,v,ψ,ϕ), with

ϕ = γ+v −Φ0, ψ = T+(p,v)−Ψ0 on ∂Ω, (7.1)

belongs to H1,0(Ω;A)× H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN ) and solves BDIE systems (6.2) and (6.7).

(ii) If (p,v,ψ,ϕ) ∈ L2(Ω)×H1(Ω) × H̃
−1/2

(∂ΩD) × H̃
1/2

(∂ΩN ) solves one of the BDIE systems,
(6.2) or (6.7), then it also solves the other BDIE systems. Furthermore, the pair (p,v) belongs
to H1,0(Ω;A) and solves the mixed BVP (2.12), while ψ and ϕ satisfy (7.1).

(iii) BDIE systems (6.2) and (6.7) have at most one solution (p,v,ψ,ϕ) in the space L2(Ω)×H1(Ω)×
H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN ).
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Proof: (i) Let (p,v) ∈ L2(Ω) × H1(Ω) be a solution of BVP (2.12). Since f ∈ L2(ρ; Ω), then
(p,v) ∈H1,0(Ω;A). Let us define the functions ϕ and ψ by (7.1). By the BVP boundary conditions,
γ+v = ϕ0 = r∂ΩDΦ0 on ∂ΩD and T+(p,v) = ψ0 = r∂ΩNΨ0 on ∂ΩN . Then (7.1) implies that

(ψ,ϕ) ∈ H̃
−1/2

(∂ΩD) × H̃
1/2

(∂ΩN ). Taking into account the third Green identities (5.3)-(5.6), we
obtain that (p,v,ϕ,ψ) solves BDIE systems (6.2) and (6.7).

(ii-11) Let (p,v,ψ,ϕ) ∈ L2(Ω) ×H1(Ω) × H̃
−1/2

(∂ΩD) × H̃
1/2

(∂ΩN ) solve BDIE system (6.2).
Then equations (6.2a), (6.2b) and Theorem 4.5 imply that (p,v) ∈ H1,0(Ω;A) and the canonical
conormal derivative T+(p,v) is well defined. If we take the trace of (6.2b) restricted to ∂ΩD, use
the jump relations (4.55) for the trace of V and W in Theorem 4.7, and subtract it from (6.2c), we
arrive at r

∂ΩD
γ+v − 1

2r∂ΩD
ϕ = ϕ0 on ∂ΩD. Since ϕ vanishes on ∂ΩD, this implies that the Dirichlet

condition (2.12c) is satisfied.
Repeating the same procedure but now taking the traction of (6.2a) and (6.2b), restricted to ∂ΩN ,

using jump relations (4.56) and (4.46) for the tractions of (Πs,v) and (Πd,W ), and subtracting it
from (6.2d), we arrive at r

∂ΩN
T (p,v)− 1

2r∂ΩN
ψ = ψ0 on ∂ΩN . Since ψ vanishes on ∂ΩN ,, this implies

that the Neumann condition (2.12d) is satisfied.
Because Φ0 = ϕ0, on ∂ΩD and Ψ0 = ψ0, on ∂ΩN , we also obtain the inclusions

Ψ∗ := ψ + Ψ0 − T+(p,v) ∈ H̃
−1/2

(∂ΩD), Φ∗ = ϕ+ Φ0 − γ+v ∈ H̃
1/2

(∂ΩN ). (7.2)

By relations (6.2a) and (6.2b) the hypotheses of Lemma 5.2 are satisfied with Ψ = ψ + Ψ0 and
Φ = ϕ+Φ0 . As a result, we obtain that the couple (p,v) satisfies (2.12a) and (2.12b) and, moreover,

Πs(Ψ∗)−Πd(Φ∗) = 0, V (Ψ∗)−W (Φ∗) = 0 in Ω (7.3)

Due to inclusions (7.2) and relations (7.3), Lemma 5.3 for S1 = ∂ΩD, and S2 = ∂ΩN implies Ψ∗ = 0
and Φ∗ = 0 on ∂Ω and thus relations (7.1) hold.

Hence, by item (i) the set (p,v,ψ,ϕ) solves also BDIE system (6.7).

(ii-22) Let now (p,v,ψ,ϕ) ∈ L2(Ω) ×H1(Ω) × H̃
−1/2

(∂ΩD) × H̃
1/2

(∂ΩN ) solve BDIE system
(6.7). Then equations (6.7a), (6.7b) and Theorem 4.5 imply that (p,v) ∈H1,0(Ω;A) and the canonical
conormal derivative T+(p,v) is well defined. Applying Lemma 5.2 with Ψ = ψ+Ψ0 and Φ = ϕ+Φ0

to BDIEs (6.7a)-(6.7b), we deduce that the couple (p,v) solves PDE system (2.12a)-(2.12b) and

Πs(Ψ∗)−Πd(Φ∗) = 0, V (Ψ∗)−W (Φ∗) = 0, in Ω, (7.4)

where

Ψ∗ := ψ + Ψ0 − T+(p,v), Φ∗ := ϕ+ Φ0 − γ+v, on ∂Ω. (7.5)

Taking the traction of (6.7a) and (6.7b) restricted to ∂ΩD and subtracting it from (6.7c) we get

r
∂ΩD

T+(p,v)− r
∂ΩD

Ψ0 = ψ, on ∂ΩD. (7.6)

Taking the trace of (6.7b) restricted to ∂ΩN and subtracting it from (6.7d) we get

r
∂ΩN

γ+v − r
∂ΩN

Φ0 = ϕ, on ∂ΩN . (7.7)

Due to (7.6) and (7.7), we have Ψ∗ ∈ H̃
−1/2

(∂ΩD) and Φ∗ ∈ H̃
1/2

(∂ΩN ). Now, we can apply
Lemma 5.3 with S1 = ∂ΩD and S2 = ∂ΩN , to obtain Ψ∗ = 0 and Φ∗ = 0 on ∂Ω, which by (7.5) imply
relations (7.1). Since r∂ΩDΦ0 = ϕ0 and r∂ΩNΨ0 = ψ0, relations (7.1) imply boundary conditions
(2.12c) and (2.12d). Thus the couple (p,v) is a solution of BVP (2.12) and hence, by item (i) the set
(p,v,ψ,ϕ) solves also BDIE system (6.2).

Finally, item (iii) follows from items (i) and (ii) and the fact that the BVP (2.12) has at most one
solution, see Theorem 2.4. �
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8 Isomorphism results

In addition to the “narrow” spaces,H1,0(Ω;A)×H̃
−1/2

(∂ΩD)×H̃
1/2

(∂ΩN ), mostly considered up to
now, we now prove the boundary-domain integral operator isomorphism properties also in the “wider”
spaces, with L2(Ω)×H1(Ω) instead of H1,0(Ω;A). To this end, we introduce the notations

X :=H1(Ω)× H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN ), X∗ := L2(Ω)× X,

Y11 :=H1(Ω)×H1/2(∂ΩD)×H−1/2(∂ΩN ), Y11
∗ := L2(Ω)× Y11,

Y22 :=H1(Ω)×H−1/2(∂ΩD)×H1/2(∂ΩN ), Y22
∗ = L2(Ω)× Y22.

8.1 Isomorphism properties of BDIE operator M11
∗

Recall that operator M11
∗ is given by (6.6).

Theorem 8.1 Let conditions 2.1, 4.4 and 4.10 hold. Then, the operator

M11
∗ : X∗ → Y11

∗ , (8.1)

where M11
∗ is presented by (6.6), is an isomorphism.

Proof: Let M̃11
∗ : X∗ → Y11

∗ be the matrix operator

M̃11
∗ :=


I R• −Πs Πd

0 I −V W
0 0 −r∂ΩDV r∂ΩDW
0 0 −r∂ΩNW̊ ′ r∂ΩN L̂

 .
Note that the operator M̃11

∗ is an upper block-triangular matrix operator. The first two diagonal
blocks are given by the identity operators I and I, whereas the third diagonal block can be represented
as [

−r∂ΩDV r∂ΩDW
−r∂ΩNW̊ ′ r∂ΩN L̂

]
= diag(

1

µ
I, I)

[
−r∂ΩDV̊ r∂ΩDW̊
−r∂ΩNW̊ ′ r∂ΩN L̊

]
diag(I, µI)◦ (8.2)

Taking into account [15, Theorem 3.10] (cf. also the argument at the end of Lemma 5.3 proof), block

(8.2) is an isomorphism and thus the operator M̃11
∗ : X∗ → Y11

∗ is an isomorphism and hence is a
Fredholm operator with zero index.

The operator M11
∗ − M̃11

∗ : X∗ → Y11
∗ has the form

M11
∗ − M̃11

∗ =


0 0 0 0
0 R 0 0
0 r∂ΩDγ

+R 0 0

0 r∂ΩNT
+(R•,R) r∂ΩN (W̊ ′ −W ′) r∂ΩN (L+ − L̂)

 .
and is compact due to the compactness of operatorsR and R• given by Theorem 4.12 and of operators
W ′, W̊ ′ and L+ − L̂ given by Theorem 4.6 and Corollary 4.9.

Therefore, the operator M11
∗ : X∗ → Y11

∗ is Fredholm with zero index. Moreover, this operator is
also injective by virtue of Theorem 7.1, which implies that it is an isomorphism. �

Theorem 8.2 Let conditions 2.1, 4.4 and 4.10 hold. Then the operator

M11
∗ :H1,0(Ω;A)× H̃

−1/2
(∂ΩD)× H̃

1/2
(∂ΩN )→H1,0(Ω;A)×H1/2(∂ΩD)×H−1/2(∂ΩN ) (8.3)

is an isomorphism.
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Proof: Let us consider the solution X = (M11
∗ )−1F11

∗ ∈ X∗ of the system (6.5). Here F11
∗ ∈

H1,0(Ω;A) ×H1/2(∂ΩD) ×H−1/2(∂ΩN ) is an arbitrary right hand side and (M11
∗ )−1 is the inverse

of operator (8.1), which exists by virtue of Theorem 8.1.
Applying Lemma 5.2 to the first two equations of the system M11∗, we get that X ∈H1,0(Ω;A)×

H̃
−1/2

(∂ΩD) × H̃
1/2

(∂ΩN ) if F11
∗ ∈ H1,0(Ω;A) × H1/2(∂ΩD) × H1/2(∂ΩN ). Consequently, the

operator (M11
∗ )−1 is also the continuous inverse of the operator (8.3). �

8.2 Solvability of the mixed BVP and equivalence of constant-coefficient BIEs

The proved results for the BDIE system M11∗ immediately lead to the following assertion for the
mixed BVP (note that in a more general setting the mixed BVP solvability for the variable-coefficient
Stokes system in exterior domains was considered in [17]).

Theorem 8.3 Let f ∈H1,0(Ω;A), g ∈ L2(ρ; Ω), ϕ0 ∈H1/2(∂ΩD) and ψ0 ∈H−1/2(∂ΩN ). In addi-
tion, let conditions 2.1, 4.4 and 4.10 hold. Then, the BVP (2.12) is uniquely solvable in H1,0(Ω;A).
Furthermore, the mixed BVP operator (2.13) is an isomorphism.

Proof: Let Φ0 ∈ H1/2(∂Ω) and Ψ0 ∈ H−1/2(∂Ω) be some extensions of ϕ0 ∈ H1/2(∂ΩD) and
ψ0 ∈H−1/2(∂ΩN ), respectively.

The BDIE system M11∗ is uniquely solvable by Theorem 8.2 and is equivalent to the BVP (2.12) by
Theorem 7.1. In addition, as operator (8.3) is an isomorphism. The BVP solution uniqueness (that is,
independence of the chosen extensions Φ0 and Ψ0) is implied by Theorem 2.4, while the continuity of
the extension operators, well known for smooth domain boundary ∂Ω and smooth interfaces between
∂ΩD and ∂ΩN , completes the continuity of the inverse to BVP operator (2.13).

�
When µ = 1, the operator A becomes Å, R = R• ≡ 0 and the boundary-domain integral

equations system (6.2) becomes a BIE system with 2 vector equations and 2 vector unknowns on the
boundary ∂Ω,

r∂ΩD

(
1

2
ψ − W̊ ′ψ + L̊ϕ

)
= r∂ΩDT

+(F0,F )− r∂ΩDΨ0, on ∂ΩD, (8.4)

r∂ΩN

(
1

2
ϕ− V̊ψ + W̊ϕ

)
= r∂ΩNγ

+F − r∂ΩNΦ0, on ∂ΩN . (8.5)

and the representation formulas for (p,v) in Ω,

p = F0 + Π̊sψ − Π̊dϕ in Ω, (8.6)

v = F + V̊ ψ − W̊ϕ in Ω. (8.7)

where the terms F0 and F are given by (6.3).
By considering µ = 1 in Theorem 8.1 and Corollary 8.3, we obtain the following assertion for the

constant coefficient case.

Corollary 8.4 Let µ = 1 in Ω, f ∈ L2(Ω) and g ∈ L2(ρ; Ω). Moreover, let Φ0 ∈ H1/2(∂Ω) and
Ψ0 ∈ H−1/2(∂Ω) be some extensions of ϕ0 ∈ H1/2(∂ΩD) and ψ0 ∈ H−1/2(∂ΩN ), respectively.
Furthermore, let conditions 2.1, 4.4 and 4.10 hold.

(i) If some (p,v) ∈ L2(ρ; Ω)×H1(Ω) solves the mixed BVP (2.12), then the solution is unique, the

couple (ψ,ϕ) ∈ H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN ) given by

ϕ = γ+v −Φ0, ψ = T+(p,v)−Ψ0 on ∂Ω, (8.8)

solves the BIE system (8.4)-(8.5) and (p,v) satisfies (8.6)-(8.7).

(ii) If a couple (ψ,ϕ) ∈ H̃
−1/2

(∂ΩD) × H̃
1/2

(∂ΩN ) solves BIE system (8.4)-(8.5), then the couple
(p,v) ∈ H1,0(Ω;A) given by (8.6)-(8.7) solves the mixed BVP (2.12) and relations (8.8) hold.

Moreover, the BDIE solution is unique in H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN ).
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8.3 Isomorphism properties of BDIE operator M22
∗

Let us first provide two assertions to obtain some special operator representations for the right-hand
sides of the considered BDIE system.

Lemma 8.5 Let S = S1 ∪ S2, where S1 and S2 are two open non-intersecting simply connected
non-empty submanifolds of ∂Ω with infinitely smooth boundaries. For any 4-tuple

F = (F0,F ,Ψ,Φ) ∈H1,0(Ω;A)×H−1/2(S1)×H1/2(S2)

there exists a unique 4-tuple

(g∗,f∗,Ψ∗,Φ∗) = C̃S1,S2F ∈ L2(ρ; Ω)×L2(ρ; Ω)×H−1/2(∂Ω)×H1/2(∂Ω) (8.9)

such that

Q̊f∗ +
4

3
µg∗ + ΠsΨ∗ −ΠdΦ∗ = F0 in Ω, (8.10a)

Uf∗ −Qg∗ + VΨ∗ −WΦ∗ = F in Ω, (8.10b)

rS1Ψ∗ = Ψ on S1, (8.10c)

rS2Φ∗ = Φ on S2, (8.10d)

and

C̃S1,S2 :H1,0(Ω;A)×H−1/2(S1)×H1/2(S2)→ L2(Ω)×L2(Ω)×H−1/2(∂Ω)×H1/2(∂Ω) (8.11)

is a continuous operator.

Proof: The proof is similar to the one for bounded domains in [9, Lemma 7.5]. Let Ψ0 = E
−1/2
S1

Ψ ∈
H−1/2(∂Ω) and Φ0 = E

1/2
S2

Φ ∈H1/2(∂Ω) be extensions of Ψ and Φ to the entire boundary ∂Ω from
S1 and S2, respectively. Here EsSi : Hs(Si)→Hs(∂Ω), i = {1, 2}, |s| ≤ 1, are some linear continuous
extension operators from Si to ∂Ω (cf. [34, Subsection 4.2]). Then any other extensions, Ψ∗ and Φ∗,
of the Ψ and Φ can be represented as

Ψ∗ = Ψ0 + ψ̃, ψ̃ ∈ H̃
−1/2

(S2), (8.12)

Φ∗ = Φ0 + ϕ̃, ϕ̃ ∈ H̃
1/2

(S1). (8.13)

The distributions Ψ∗ and Φ∗ satisfy the conditions (8.10c) and (8.10d) for any ψ̃ and ϕ̃. Consequently,
it is only necessary to choose g∗,f∗, ψ̃ and ϕ̃ such that equations (8.10a)-(8.10b) are satisfied.

Applying relations (4.5)-(4.10), equations (8.10a)-(8.10b) are reduced to

Q̊f∗ +
4

3
µg∗ + Π̊s

(
Ψ0 + ψ̃

)
− Π̊d (µΦ0 + µϕ̃) = F0, (8.14)

Ůf∗−Q̊(µg∗) + V̊
(
Ψ0 + ψ̃

)
− W̊ (µΦ0 + µϕ̃) = µF . (8.15)

Applying the Stokes operator with constant viscosity µ = 1, Å, to equations (8.14) and (8.15), and
the divergence operator to equation (8.15), we obtain

f∗ = Å(F0, µF ), (8.16)

g∗ =
1

µ
div(µF ), (8.17)

which shows that the function f∗ is uniquely determined by F0 and F and belongs to L2(ρ; Ω) since
(F0, µF ) ∈H1,0(Ω;A) by virtue of the mapping properties given by Theorem 4.5. In addition, (8.17)
shows that g∗ is also uniquely determined by F and belongs to L2(ρ; Ω) since µF ∈H1(Ω).
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Substituting (8.16) and (8.17) into equations (8.14)-(8.15) we obtain

Π̊sψ̃ − Π̊d(µϕ̃) = J0F , V̊ ψ̃ − W̊ (µϕ̃) = JF in Ω, (8.18)

where the operators J0 and J are defined as

J0F :=

(
F0 −

4

3
div(µF )− Q̊

(
Å(F0, µF )

)
− Π̊s(E

−1/2
S1

Ψ) + Π̊d(µE
1/2
S2

Φ)

)
, (8.19)

JF :=
(
µF − Ů

(
Å(F0, µF )

)
+ Q̊div(µF )− V̊ (E

−1/2
S1

Ψ) + W̊ (µE
1/2
S2

Φ)
)
, (8.20)

Let ψ̃ and ϕ̃ satisfy (8.18). Then they also satisfy the system

rS2γ
+
(
V̊ ψ̃ − W̊ (µϕ̃)

)
= rS2

(
γ+JF

)
, (8.21)

rS1

[
T̊

+
(

Π̊s(ψ̃)− Π̊d(µϕ̃), V̊ ψ̃ − W̊ (µϕ̃)
)]

= rS1

(
T̊

+
(J0F ,JF)

)
. (8.22)

Using matrix notations it can be written as follows[
rS2V̊ rS2γ

+W̊
rS1W ′ rS1L̊

] [
ψ̃
µϕ̃

]
=

[
rS2 (γ+JF)

rS1

(
T̊

+
(J0F ,JF)

) ] . (8.23)

The matrix operator given by the left-hand side of equation (8.23) is an isomorphism between the

spaces H̃
−1/2

(S2)× H̃
1/2

(S1) and H1/2(S2)×H−1/2(S1) (see [15, Theorem 3.10] and the argument
at the end of Lemma 5.3 proof).

Therefore the solution of system (8.23) can be written as (ϕ̃, ψ̃) = C̊F , where C̊ is a continuous
operator, which together with (8.16)-(8.17), (8.12)-(8.13) and continuity of the extension operators

E
±1/2
Si

produces a linear continuous operator C̃S1,S2 in (8.11). Hence we proved that if a 4-tuple
(g∗,f∗,Ψ∗,Φ∗) satisfying (8.10) does exist, it can be written as (8.9).

Let us prove that Ψ∗ and Φ∗, obtained by substituting in (8.12) and (8.13) a solution (ψ̃, ϕ̃) of
(8.23), and f∗, g∗, given by (8.16)-(8.17), satisfy (8.10). Equations (8.10c) and (8.10d) are immediately

implied by (8.12) and (8.13). The couple
(

Π̊sψ̃ − Π̊d(µϕ̃), V̊ ψ̃ − W̊ (µϕ̃)
)

satisfies the incompressible

homogeneous Stokes system with µ = 1. It is easy to check that the same system is also satisfied by the
couple (J0F ,JF). By (8.21)-(8.22), the couples satisfy the same mixed boundary conditions and thus
they coincide also in the domain Ω by the uniqueness Theorem 2.4 with µ = 1, i.e., equations (8.18)
hold and substitution of (8.19) and (8.20) into their right hand sides leads to (8.10a) and (8.10b).

Since the extension operators E
±1/2
Si

are not unique, we still need to prove that the operator C̃S1,S2 is
unique. To this end, let us consider system (8.10) with zero right-hand side F . Then representations
(8.16)-(8.17) imply f∗ = 0, g∗ = 0, while (8.10c)-(8.10d) and (8.12)-(8.13) give Ψ∗ = ψ̃, Φ∗ =
ϕ̃ on ∂Ω, and finally (8.23) implies ψ̃ = 0, ϕ̃ = 0. This means the solution (g∗,f∗,Ψ∗,Φ∗) of
inhomogeneous system (8.10) is unique, along with the uniqueness of operator C̃S1,S2 . �

Corollary 8.6 For any

F = (F0,F1,F2,F3) ∈H1,0(Ω;A)×H−1/2(S1)×H1/2(S2),

there exists a unique 4-tuple

(g∗,f∗,Ψ∗,Φ∗) = CS1,S2F ∈ L2(ρ; Ω)×L2(ρ; Ω)×H−1/2(∂Ω)×H1/2(∂Ω),

such that

Qf∗ +
4

3
µg∗ + ΠsΨ∗ −ΠdΦ∗ = F0 inΩ, (8.24)

Uf∗ + Q̊g∗ + VΨ∗ −WΦ∗ = F1 inΩ, (8.25)

rS1(T+(F0,F1)−Ψ∗) = F2 on S1, (8.26)

rS2(γ+F1 −Φ∗) = F3 on S2, (8.27)

and

CS1,S2 :H1,0(Ω;A)×H−1/2(S1)×H1/2(S2)→ L2(ρ; Ω)×L2(ρ; Ω)×H−1/2(∂Ω)×H1/2(∂Ω)

is a continuous operator.
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Proof: Let us take Ψ := rS1T
+(F0,F1) − F2, which implies Ψ ∈ H−1/2(S1). Firstly, F2 ∈

H−1/2(S1). In a similar fashion, let Φ := rS2γ
+F1 − F3, which implies Φ ∈ H1/2(S2). Then the

Corollary follows from Lemma 8.5.
�

Recall that operator M22
∗ is given by (6.9).

Theorem 8.7 Let conditions 2.1, 4.4 and 4.10 hold. Then the operator

M22
∗ :H1,0(Ω;A)×H̃

−1/2
(∂ΩD)×H̃

1/2
(∂ΩN )→H1,0(Ω;A)×H−1/2(∂ΩD)×H1/2(∂ΩN ) (8.28)

is an isomorphism.

Proof: Let us consider system (6.8) with an arbitrary right hand side

F22
∗ ∈H1,0(Ω;A)×H−1/2(∂ΩD)×H1/2(∂ΩN ).

By Corollary 8.6, the right hand side F22
∗ can be written in form (8.24)-(8.27) with S1 = ∂ΩD and

S2 = ∂ΩN . In addition,
(g∗,f∗,Ψ∗,Φ∗) = C∂ΩD,∂ΩNF

22
∗

where the operator

C∂ΩD,∂ΩN :H1,0(Ω;A)×H−1/2(∂ΩD)×H1/2(∂ΩN )→ L2(ρ; Ω)×L2(ρ; Ω)×H−1/2(∂Ω)×H1/2(∂Ω)

is continuous. Then by Corollary 8.3 and Theorem and 7.1(i,iii), there exists a unique solution of the
equation M22

∗ X = F22
∗ . This solution can be represented as X = (p,v,ψ,ϕ) = (M22

∗ )−1F22
∗ with the

operator

(M22
∗ )−1 :H1,0(Ω;A)×H−1/2(∂ΩD)×H1/2(∂ΩN )→H1,0(Ω;A)× H̃

−1/2
(∂ΩD)× H̃

1/2
(∂ΩN )

represented by

(p,v) = A−1
M (f∗, g∗, r∂ΩDΦ∗, r∂ΩNΨ∗),

ψ = T+(p,v)−Ψ∗,

ϕ = γ+v −Φ∗,

where the operator

A−1
M : L2(ρ; Ω)× L2(Ω)×H1/2(∂ΩD)×H−1/2(∂ΩN )→H1,0(Ω,A)

is continuous, see Corollary 8.3. Consequently, the operator (M22
∗ )−1 is a right inverse of the operator

(8.28). In addition, (M22
∗ )−1 is also the double sided inverse due to the injectivity of (8.28) given by

Theorem 7.1(iii).
�

System (8.4)-(8.5) can be expressed using matrix notations as

M̊22X̊ = F̊22, (8.29)

where X̊ = (ψ,ϕ) ∈ H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN ), the operator

M̊22 : H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN )→H−1/2(∂ΩD)×H1/2(∂ΩN ), (8.30)

is defined by

M̊22 =

 r∂ΩD

(
1

2
I − W̊ ′

)
r∂ΩDL̊

−r∂ΩN V̊ r∂ΩN

(
1

2
I + W̊

)
 , (8.31)
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and the right hand side F̊22 ∈H−1/2(∂ΩD)×H1/2(∂ΩN ) is given by

F̊22 =

[
r∂ΩD

(
T̊+(F0,F )−Ψ0

)
r∂ΩN (γ+F −Φ0)

]
. (8.32)

Operator (8.30) is evidently continuous and moreover, by Corollary 8.4(ii) it is also injective.

Theorem 8.8 Let conditions 2.1, 4.4 and 4.10 hold. Then, the operator

M̊22 : H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN )→H−1/2(∂ΩD)×H1/2(∂ΩN ) (8.33)

is an isomorphism.

Proof: A solution of the system (8.29) with an arbitrary right hand side

F̊22 = [F̂
22

2 , F̂
22

3 ] ∈H−1/2(∂ΩD)×H1/2(∂ΩN )

is given by the pair (ψ,ϕ) which satisfies the following extended system, cf. (8.4)-(8.7),

M̂22X = F̂22 (8.34)

where X = (p,v,ψ,ϕ), F̂22 = (0,0, F̊22
2 , F̊

22
3 ) and

M̂22 =


I 0 −Π̊s Π̊d

0 I −V̊ W̊

0 0 r∂ΩD

(
1

2
I − W̊ ′

)
r∂ΩDL̊

0 0 −r∂ΩN V̊ r∂ΩN

(
1

2
I + W̊

)

 (8.35)

By Theorem 8.7 with µ = 1, the operator

M̂22 :H1,0(Ω;A)×H̃
−1/2

(∂ΩD)×H̃
1/2

(∂ΩN )→H1,0(Ω;A)×H−1/2(∂ΩD)×H1/2(∂ΩN ) (8.36)

is an isomorphism. Hence system (8.34) always has a solution χ = (M̂22)−1F̂22 and particularly

(ψ,ϕ) =
(

((M̂22)−1F̂22)3, (M̂22)−1F̂22)4

)
. This implies that operator (8.33) is surjective. By Corol-

lary 8.4 operator (8.33) is also injective and hence is an isomorphism.
�

Let us prove that operator M22
∗ is an isomorphism also in wider spaces.

Theorem 8.9 Let conditions 2.1, 4.4 and 4.10 hold. Then, the operator

M22
∗ : X∗ → Y22

∗ (8.37)

is an isomorphism

Proof: Let us consider the following operator

M̃22
∗ =


I 0 −Πs Πd

0 I −V W

0 0 r∂ΩD

(
1

2
I − W̊ ′

)
r∂ΩDL̂

0 0 −r∂ΩNV r∂ΩN

(
1

2
I +W

)

 (8.38)
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We can express the operator M̃22
∗ in the form

M̃22
∗ = diag(I,

1

µ
I, I,

1

µ
I)M̂22

∗ diag(I, µI, I, µI). (8.39)

The operator M̂22
∗ defined by (8.35) can be understood as a block triangular operator matrix with

the following three diagonal block operators

I : L2(Ω+)→ L2(Ω+),

I : H1(Ω+)→H1(Ω+),

M̊22 : H̃
−1/2

(∂ΩD)× H̃
1/2

(∂ΩN )→H−1/2(∂ΩD)×H1/2(∂ΩN ).

By Theorem 8.8, the operator M̊22 is an isomorphism. Consequently, M̂22
∗ is an isomorphism as well.

As µ is strictly positive, the diagonal matrices are invertible and the operator M̃22
∗ is an isomorphism.

The operator M22
∗ − M̃22

∗ : X∗ → Y22
∗ has the form

M22
∗ − M̃22

∗ =


0 R• 0 0
0 R 0 0

0 r∂ΩDT
+(R•,R) r∂ΩD

(
W̊ ′ −W ′

)
r∂ΩD

(
L+ − L̂

)
0 r∂ΩNγ

+R 0 0

 .
and is compact due to the compactness of operatorsR and R• given by Theorem 4.12 and of operators
W ′, W̊ ′ and L+ − L̂ given by Theorem 4.6 and Corollary 4.9.

Therefore, the operator M22
∗ : X∗ → Y22

∗ is Fredholm with zero index. Moreover, this operator is
also injective in virtue of Theorem 7.1 and the Remark 6.2, which implies that its an isomorphism. �

8.4 Isomorphism properties of split BDIE operators

Since the unknown p appears only in the first equation and there is no interaction between p and
v through the wider space X∗ (in contrast to the narrow space containing H1,0(Ω;A)), we can split
the BDIE system to the smaller system containing three vector equations for the unknown 3-tuple
X 3 = (v,ψ,ϕ) ∈ X and the remaining first equation considered as the representation formula for p.
Hence the operators that define the smaller split systems M11 and M22 are given by

M11 =

 I +R −V W
r∂ΩDγ

+R −r∂ΩDV r∂ΩDW
r∂ΩNT

+(R•,R) −r∂ΩNW ′ r∂ΩNL

 ,

M22 =


I +R −V W

r∂ΩDT
+(R•,R) r∂ΩD

(
1

2
I −W ′

)
r∂ΩDL+

r∂ΩNγ
+R −r∂ΩNV r∂ΩN

(
1

2
I +W

)
 .

The corresponding right hand sides are given by

F11 := [F , r∂ΩDγ
+F −ϕ0, r∂ΩNT

+(F , F )−ψ0] ∈ Y11,

F22 := [F , r∂ΩDT
+(F0,F )− r∂ΩDΨ0, r∂ΩNγ

+F − r∂ΩNΦ0] ∈ Y22.

Consequently, we can write the systems M11 and M22 as

M11X 3 = F11, M22X 3 = F22.

Since the pressure unknown only appears on the first equation of the BDIE systems M11∗ and M22∗,
the invertibility of the operators M11 and M22 is implied by the invertibility of the operators M11

∗
and M22

∗ , which leads us to the following assertion.

Corollary 8.10 The operators

M11 : X→ Y11 and M22 : X→ Y22

are isomorphisms.
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9 Conclusion

In this paper, we considered the mixed problem for compressible Stokes system with a variable smooth
viscosity coefficient in a three-dimensional exterior domain with a smooth boundary. The Stokes
equations right-hand sides are from the weighted L2(Ω) spaces, the Dirichlet data from the space

H
1
2 (∂ΩD) and the Neumann data from the space H−

1
2 (∂ΩN ). Introducing the third Green identity

for exterior domains, the BVP was reduced to two systems of Boundary-Domain Integral Equations
and their equivalence to the original BVP was shown. After showing compactness of the remainder
operators in the exterior domain, where the Rellich compactness theorem is not directly applicable, we
proved that the associated operators are isomorphisms in the corresponding weighted Sobolev spaces.

Employing methods similar to [23], this approach can be extended to Lipschitz domains, non-
smooth coefficients, and more general PDE right-hand sides. Challenges of the mixed boundary
conditions on Lipschitz boundaries can be addressed implementing results of [20] and [27].
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