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 16 

Additive manufacturing of functional metallic parts based on layer-by-layer melting and 17 

solidification suffers from the detrimental effects of high-temperature processing such as large 18 

residual stresses, poor mechanical properties, unwanted phase transformations, and part distortion. 19 

Here we utilize the kinetic energy of powder particles to form solid-state bonding and overcome 20 

the challenges associated with the high temperature processing of metals. Specifically, we 21 

accelerated powders to supersonic impact velocities (~600 m/s) and exploited plastic deformation 22 

and softening due to high strain rate dynamic loading to 3D print Ti-6Al-4V powders at 23 

temperatures (800 °C, 900 °C) well below their melting point (1626 °C). By using processing 24 

conditions below the critical powder impact velocity and controlling the surface temperature, we 25 

created mechanically robust, porous metallic deposits with spatially controlled porosity (apparent 26 

modulus 51.7±3.2 GPa, apparent compressive yield strength 535±35, porosity 30±2%). When the 27 

mechanical properties of solid-state 3D printed Ti-6Al-4V were compared to other additive 28 

manufactured techniques, the Young’s modulus was similar, but the compressive yield strength 29 

was up to 42% higher. Post heat treatment of solid-state printed porous Ti-6Al-4V modified the 30 

mechanical behavior of the deposit under compressive loading. Additionally, the 3D printed 31 

porous Ti-6Al-4V was shown to be biocompatible with MC3T3-E1 SC4 murine preosteoblast 32 

cells, indicating the potential biomedical applications of these materials. Our study demonstrates 33 

a single-step, solid-state additive manufacturing method for producing biocompatible porous metal 34 

parts with higher strength than conventional high temperature additive manufacturing techniques. 35 
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1. Introduction 38 

Conventional processing routes to fabricate metallic cellular structures constrain material 39 

selection [1–3] and part geometry, which is mostly limited to planar shapes [4,5]. Additionally, 40 

powder metallurgy based methods for creating cellular solids restrict pore size and shape while 41 

requiring post processing steps to remove sacrificial space holders (i.e. by dissolution or thermal 42 

degradation) [2]. The need for specific mechanical and functional properties as well as 43 

manufacturing flexibility for a wide range of metallic materials has brought interest in using 44 

additive manufacturing techniques in various industrial applications [6–10]. Additive 45 

manufacturing is promising for fabricating complex geometries but has several drawbacks 46 

associated with the high temperature processing of metals that often result in undesired mechanical 47 

properties [8,11–14].   48 

Supersonic powder deposition (cold spraying) is a technology that is used to overcome the 49 

challenges associated with the high temperature processing of metallic parts [15]. In cold spray 50 

deposition, plastic deformation due to a high strain rate dynamic loading is utilized to form solid-51 

state bonding between metallic powders [16]—the building blocks of the final parts. In cold 52 

spraying, powders are accelerated by a supersonic jet of compressed gas through a de Laval nozzle 53 

[15]. This is unlike other additive manufacturing processes, where powders are either laid down 54 

on a powder bed as is done in selective laser melting (SLM) and selective electron beam melting 55 

(SEBM) [17,18] or fed by a powder feeder at velocities up to 10 mm/s as is done in directed energy 56 

deposition (DED) [19–21]. Some Ti-6Al-4V porous structures have been fabricated by additive 57 

techniques such as SLM [22], SEBM [23–25], DED [26], and binderjet [27]. These studies have 58 

produced porous geometries by using a pattern of holes that occupies the build volume by a certain 59 

percentage or by printing a scaffold structure (a toolpath-based porosity). These porous parts have 60 



high porosities ranging between 18% and 80% . To the authors’ knowledge, making porous 61 

structures has never been studied using cold spray, and the high deposition rate of cold spray makes 62 

it a more efficient method of fabrication than the other methods discussed. 63 

In cold spray, the powder impact velocity can be tuned to control the adhesion of metal 64 

powders [15]. If the powder impact velocity (vi) exceeds the critical impact velocity (vcr) and stays 65 

below the erosion velocity (ver), the majority of the powder will adhere to the surface and form a 66 

dense deposit [16,28]. The critical and erosion velocities are temperature-dependent and define the 67 

characteristic window of deposition on the velocity-temperature plane. In the present work, we 68 

intentionally worked in the subcritical velocity domain—a domain that has been avoided so far—69 

to create porous metal deposits from Ti-6Al-4V alloy powders in a single step. The subcritical 70 

velocity domain is where the normalized particle impact velocity (𝜂 =
𝑣𝑖

𝑣𝑐𝑟
 ) is smaller than 1. The 71 

nozzle traverse speed was tuned to create uniform porosity throughout the thickness of the deposit. 72 

Deposits were analyzed with respect to porosity, surface roughness, liquid contact angle on 73 

substrate surface, and mechanical behavior. Moreover, the potential of post heat treatment to tune 74 

the mechanical properties of the porous deposits was demonstrated. Finally, these deposits were 75 

shown to support cell growth, which reveals that this method could be used to fabricate materials 76 

for biomedical implants and devices.   77 

2. Materials and Methods 78 

2.1. Materials  79 

  Ti-6Al-4V alloy powders (Advance Powders and Coatings, Boisbriand, Canada) with a 80 

Gaussian size distribution and particle sizes between 45 and 106 μm were used in this study. The 81 

substrates on which the powders were printed are commercially pure Ti plates of 3-mm thickness. 82 

2.2. Supersonic particle deposition 83 



Supersonic particle deposition was performed using a CGT-Kinetic® 8000 high-pressure cold 84 

spray system. Titanium substrates were used as support structures. The key deposition parameters 85 

are process gas pressure, process gas temperature, and nozzle scan velocity. We studied four 86 

different deposition procedures by varying traverse speed and gas temperature. Specifically, slow 87 

(6 m/min) and fast (12 m/min) nozzle traverse speeds at two different preheated carrier gas 88 

temperatures (800 and 900 °C) were examined. Carrier gas pressure (40 bar), carrier gas (Nitrogen) 89 

and number of passes (5) were kept constant.  90 

2.3. Subcritical deposition 91 

To determine the experimental parameters for subcritical deposition, fluid dynamic 92 

calculations (finite volume two-phase flow analysis of gas and powder in the nozzle and in the free 93 

jet) available in a commercially available software from kinetic-spray-solutions (KSS GmbH, 94 

Buchholz, Germany) were used [29,30]. The contour plot of the normalized particle impact 95 

velocity (𝜂) as a function of gas pressure and temperature was used as a guideline to choose the 96 

experimental processing parameters. We kept the pressure constant at the maximum operating 97 

pressure of the device (P = 40 bar) and chose gas temperatures to tune for 𝜂 values close to but 98 

smaller than 1 to deposit in the subcritical domain. In several iterations, the gas temperatures 99 

fulfilling this requirement for the selected powder sizes were determined to range between 800 100 

and 900 °C. Powder sizes were selected to deviate from the optimum and be larger to allow for a 101 

better adjustment of the subcritical impact conditions. Using these deposition parameters (P = 40 102 

bar and T = 800 and 900 °C) and CFD calculations, we calculated the particle velocity and 103 

temperature upon impact for three different particle diameters as shown in Figure 1(a) (45, 75 and 104 

106 μm corresponding to the minimum, median and maximum diameters in the particle size 105 

distribution range). For simplicity, we refer to these deposition conditions as T800 and T900 in 106 



this paper, which correspond to the temperatures of the carrier gas. We also calculated the window 107 

of deposition for Ti-6Al-4V powders using the respective bulk material properties for the powder 108 

size regime used. During the experiments, substrates were preheated by scanning the substrates 109 

with a warm carrier gas (800 and 900 °C) for two consecutive passes to promote bonding at the 110 

interface. As a result, a stable growth of porous layers was achieved. 111 

2.4. Porosity and pore size measurements  112 

The porosity of the deposits before and after the heat treatment was determined by a 113 

quantitative image analysis of the polished cross sections. The as-printed samples were prepared 114 

by mechanical polishing using several SiC sandpapers and diamond suspensions up to 1 μm, 115 

followed by 0.5 hour of polishing using a SiO2 colloidal suspension. Binary images of the polished 116 

cross sections at the same magnification were used to calculate the pore (black voids) to the total 117 

surface area. The average and standard deviation of five measurements in different areas is 118 

reported. The porosity values reported in this study are a slight overestimate as some particles were 119 

lost during the grinding and polishing process, which is not accounted for in the image analysis. 120 

Therefore, the density of 3D printed samples was also measured using the Archimedes principal, 121 

and the density ratio was corroborated with the image analysis results. The porosities were 122 

determined with the aid of density calculation and hydrostatic weighing. The theoretical density 123 

of Ti used for this determination was 4.5 g/cm3 . For each specimen, measurements were repeated 124 

three times, and the mean value is reported.  125 

2.5. Deposit powder size distribution  126 

To understand the mechanism of the porous structure formation, we analyzed the powder 127 

size distribution in the deposits. The diameter of the adhered powders in 3D printed porous Ti-128 

6Al-4V (T = 800 °C) was determined by measuring particle size in ImageJ. Three SEM images 129 



were taken at 150X and the diameters of 100 particles per image were measured (a total of 300 130 

powder particles across the three images).  131 

2.6. Compression testing 132 

Quasi-static uniaxial compression tests were conducted on Gatan MTEST2000 Uniaxial 133 

Testing Stage. The samples were cut into cross sections of 2 cm × 2 cm, and the specimens were 134 

loaded parallel to their build direction. Three samples were tested for each condition. The average 135 

and the standard deviation of the stress-strain behavior were determined. 136 

2.7. Heat treatment 137 

Ti-6Al-4V is a two-phase alloy comprised of both α and β phases at room temperature. The 138 

α-to-β phase transformation (β transus temperature) occurs at ~970 °C [31].  Heat treatments above 139 

(1050 °C) and below (840 °C) the β-transus temperature were performed in a tube furnace purged 140 

with Argon and at a heating rate of 10 ˚C/min. The specimens were maintained at the designated 141 

temperature for 2 hours followed by furnace cooling.  142 

2.8. X-ray Diffraction 143 

X ray diffraction (XRD) analyses were performed using CuKα radiation on a PANalytical 144 

X’Pert Pro diffraction instrument operating at 45 kV and 40 mA between 30 and 60 deg (2θ) at a 145 

step size of 0.01 degrees and a counting time of 40 seconds per step.  146 

2.9. Roughness 147 

The InfiniteFocus (Alicona, Austria), an optical device for 3D surface measurements, was 148 

used to trace the surface profiles of as-received bulk material and 3D printed specimens using cold 149 

spray deposition. The operating principle of the device combines the small depth of focus with 150 

vertical scanning to provide topographical information from the variation of focus. The captured 151 

information from a 5×5 cm2 scanned area was reconstructed into a 3D topographical data set to 152 



obtain the following surface roughness parameters: arithmetic average (Sa), root mean square (Sq), 153 

maximum valley depth (Sv), and maximum peak height (Sv) [32].  154 

2.10. Calculating contact temperature 155 

The temperature at the impact zone was computed by calculating the temperature rise due 156 

to heat released during impact. It was assumed that almost all kinetic energy is converted to heat 157 

and that the heat is released in a fraction of particle height (𝛽ℎ𝑝), where 𝛽 is the deformation 158 

localization coefficient, and ℎ𝑝  is the particle height after impact. This may be taken as a 159 

representative estimate for the actual temperature for a relative comparison of the results for 160 

different impact parameters. The increase of the contact temperature (𝑇𝑐) due to heat release during 161 

the impact at the contact plane, in the one-dimensional approximation, was calculated as follows 162 

[33,34]:  163 

𝑇𝑐(𝑡) =
𝑉𝑝
3𝑡𝑐

8𝑐𝛽𝜀𝑝𝑑𝑝
∫ erf⁡(

𝑑𝑝𝛽(1−𝜀𝑝)

√4𝛼𝑡𝑐(1−𝜏)
)

1

0
𝑑𝜏                                                                                      Eq. 1 164 

where 𝑣𝑝 is the powder impact velocity, 𝑐 is coefficient of specific heat, 𝑑𝑝 is particle diameter, 165 

𝜀𝑝 is plastic strain, 𝛼 is thermal diffusivity, 𝑡𝑐 is contact time, and 𝜏 =
𝑡

𝑡𝑐
 is the relative time. The 166 

specific values for constants are tabulated in Table I.  167 

Table I: Constant values for calculating contact temperature at impact zone according to Equation 1 168 
[34,35]. 169 

Constants 

C (J/Kg*K) Specific heat 526 

𝛽 Deformation localization 0.1 

K (W/mK) Conductivity 7.2 

𝜌 (Kg/m3) Density 4430 

𝑇𝑐
0⁡(𝐾) Initial contact temperature 300  



𝑇𝑚𝑒𝑙𝑡(𝐾) Melting temperature 1900 

𝐻𝑝 (MPa) Powder hardness 3423 

Definitions 

𝑡𝑐 (s) Contact time 
𝑡𝑐 =

2𝜀𝑝𝑑𝑝
𝑣

 

𝜀𝑝 Plastic strain  𝜀𝑝 = exp(−0.6
𝐻𝑝

𝜌𝑝𝑣𝑝
2)  

ℎ𝑝 Particle height after impact  

𝛼 (m2/s) Thermal diffusivity 
𝛼 =

𝑘

𝑐𝜌
 

𝜏 Relative time 
𝜏 =

𝑡

𝑡𝑐
 

 170 

Dimensional analysis shows that the plastic strain variation during supersonic impact is 171 

dependent on the dimensionless parameter 
𝐻𝑝

𝜌𝑝𝑣𝑝
2 . The expression relating plastic strain to this 172 

dimensionless parameter (𝜀𝑝 = exp(𝐶
𝐻𝑝

𝜌𝑝𝑣𝑝
2)) has the correct asymptotic values i.e. plastic strain 173 

approaches 1 as impact velocity goes to infinity, and plastic strain approaches 0 as particle impact 174 

velocity approaches 0 [34]. The constant C for the analytical expression was calculated based on 175 

a series of finite element simulations at different impact velocities (600 to 1000 m/s in 100 m/s 176 

increments) as described in the next section, which turns out to be equal to 0.6.   177 

2.11. Finite element model 178 

For calculating the contact temperature, the value of plastic strain in powders during impact 179 

is required (according to Eq. 1). An axisymmetric dynamic explicit model was created in 180 

ABAQUS 6.14 to determine the plastic strain. The impact of a single Ti-6Al-4V particle (D = 50 181 

μm) with rigid substrates was modeled. The Johnson-Cook constitutive equation (Eq. 2), which 182 



accounts for strain hardening, strain rate hardening, and thermal softening, describes the powder 183 

deformation behavior.  184 

𝜎 = [𝐴 + 𝐵𝜀𝑝
𝑛] [1 + 𝑐

�̇�𝑝

�̇�𝑝0
⁡�̇�𝑝] [1 − (

𝑇−𝑇0

𝑇𝑚−𝑇0
)𝑚]                                                              Eq. 2 185 

where A, B, n, c and m are material constants and are measured by experiments, 𝜀𝑝 and 𝜀�̇� are the 186 

equivalent plastic strain and equivalent plastic deformation rates, and 𝑇0  is the reference 187 

temperature. Values for constants are reported in Table II.  188 

Table II: Ti-6Al-4V properties for finite element simulation [35]. 189 

Elastic Elastic Modulus E (GPa) 113.8 

Poison ratio 𝜐  0.342 

Plastic Johnson Cook 

constants 

A (MPa) 782.7 

B (MPa) 498.4 

n 0.28 

c 0.028 

m 1 

Reference 

Temperature 

𝑇0 (K) 300 

Reference plastic 

strain rate 

𝜀�̇�0  1×105 

 190 

2.12. Cell Line and Culture Methods  191 

Pre-osteoblast MC3T3-E1 Subclone 4 cells of passage number less than P7 were grown in 192 

standard culture conditions (37°C, 5% CO2) using Alpha Minimum Essential Medium (Life 193 

Technologies, Grand Island, NY) supplemented with 10% fetal bovine serum, 1% penicillin, and 194 

1% streptomycin. After trypsinization, 10,000 cells/cm2 were seeded and cultured on titanium 195 



support materials and porous Ti-6Al-4V for seven days in 12-well tissue culture dishes. Growth 196 

media was exchanged every 2-3 days. Four replicates were performed on each substrate to assess 197 

the biocompatibility and integration of cells into porous substrates. Biocompatibility and 198 

integration of cells into the porous Ti-6Al-4V was inspected using confocal laser scanning 199 

microscopy and scanning electron microscopy. 200 

2.13. Imaging and Image Analysis for Biocompatibility Studies 201 

For confocal laser scanning microscopy experiments, cells were stained with 2 uM Calcein 202 

AM, and 4 uM Ethidium Homodimer-1 from the LIVE/DEAD Viability/Cytotoxicity Kit, for 203 

mammalian cells (Molecular Probes, Eugune, OR). Nuclei were labeled using one to two drops/mL 204 

NucBlue Live Cell Stain ReadyProbes reagent (Molecular Probes, Eugene, OR). 3D image 205 

volumes of cells were obtained using a Nikon A1 Confocal Laser Scanning Microscope (Nikon, 206 

Melville, NY) using a 4x, NA 0.2 objective, and a 20x, NA 0.75 objective. Four image volumes 207 

were captured at each magnification for each sample. Representative LIVE/DEAD images were 208 

presented for each growth condition. The depth that cells grew into the porous deposit was 209 

determined by imaging from the coverslip into the sample until stained cells could no longer be 210 

observed with the 4x objective. The depth was then computed by multiplying the z-step size (13 211 

μm) by the number of slices into the sample where cells were observed; the average depth and 212 

standard error of the mean are reported. Fluorescence images were also shown to demonstrate how 213 

cells were growing on and between the metal powders that create the porous deposit.   214 

Scanning electron microscopy (SEM) was performed to determine the morphology of the 215 

cells on and within the porous Ti-6Al-4V. To prepare the samples for SEM, cells grown on the Ti-216 

6Al-4V porous structure were first fixed in 2.5% glutaraldehyde for one hour, followed by post 217 

fixation in 1% osmium tetroxide for one hour. This procedure was followed by ethanol 218 



dehydration, where cells were treated with increasing concentrations of ethanol (30%, 50% 70% 219 

90% and 100%) for 15 minutes each. 220 

 221 

3. Results and Discussion 222 

To ensure that the deposition parameters for our 3D printed deposits remain below the 223 

window of deposition, we created and referred to an experimental parameter selection map by 224 

performing fluid dynamics calculations as was described in section 2.3. As shown in Figure 1(a), 225 

critical and erosion velocities drop when the powder temperature increases. In addition, all the 226 

processing conditions for the powder under investigation lie beneath the characteristic window of 227 

deposition. Figure 1(b) shows the normalized particle impact velocity, 𝜂, as a function of powder 228 

diameter, which illustrates that a smaller particle diameter results in a higher impact velocity for 229 

the range of interest (shaded in grey). Additionally, the plot shows that a higher temperature is 230 

associated with higher values for 𝜂. 231 

  232 

 233 

Figure 1: Supersonic powder deposition and determination of deposition parameters. (a) Calculated impact 234 
conditions for parameter sets used to manufacture porous deposits with carrier gas temperature T = 800 °C 235 



(red circles) and T = 900 °C (blue triangles) at Pgas = 40 bars. Symbol size is indicative of particle size, and 236 
thresholds for deposit formation in terms of critical velocity. The powder impact conditions are intentionally 237 
outside of the calculated window of deposition used to print porous metallic deposits. (b) Normalized 238 
particle impact velocity (𝜼) as a function of particle diameter with the powder size distribution used in our 239 
experiments (45-105 µm) shaded in blue. 240 

 241 

 242 

Deposition using a nozzle traverse speed of 12 m/min (fast deposition) with a carrier gas 243 

temperature of 800 °C (𝜂 between 0.74 and 0.87) corresponds to a deposited thickness-per-path 244 

ratio of 0.5 mm and results in 30±2% porosity with a uniform distribution across the thickness as 245 

illustrated in Figure (a). We studied the effect of nozzle traverse speed on deposition kinetics by 246 

reducing the nozzle traverse speed to half (6 m/min), which corresponds to a deposited thickness 247 

per pass ratio of 1 mm (slow deposition). Slow deposition resulted in deposits with 25±3 % 248 

porosity. A representative cross section of deposits fabricated with slow deposition is shown in 249 

Figure (b). Comparing Figure (a) and (b) shows that slowing the nozzle traverse speed decreases 250 

porosity. Decreasing the nozzle traverse speed increases the local surface temperature of the pre-251 

deposited material due to a longer gas-deposit interaction, which enhances the deposit quality [36]. 252 

This surface temperature effect on porosity is further confirmed by repeating the fast deposition 253 

experiment at a higher temperature (900 °C). When fast deposition was performed with a carrier 254 

gas temperature of 900 °C, materials were fabricated with buildup thickness per pass similar to 255 

fast deposition with a carrier gas temperature of 800 °C but with lower porosities (27±3%, Figure 256 

(c)). Therefore, a variation in deposit surface temperature due to differences in nozzle traverse 257 

speed can cause modifications in the mesostructure at the interface between each deposition pass 258 

(showing uniform porosity for fast depositions and dense-porous layered structure in the slow 259 

deposition). The results show that the porosity of the deposit (𝜌) can be controlled by 𝜂 and nozzle 260 

traverse speed (𝜌 = 𝑓(𝑉𝑁, 𝜂⁡)), where porosity increases as 𝑉𝑁 increases and as 𝜂 decreases [37]. 261 



𝜂 is a function of the deposition parameters (i.e. gas pressure, temperature, powder diameter). 262 

Deposition parameters are summarized in Table III. Porosity measurement using Archimedes 263 

principal is also reported in the table, which shows slightly lower values with respect to the image 264 

analysis results. Results discussed beyond this point are those of printed deposits with 30±2% 265 

porosity (fast deposition with 800 °C carrier gas temperature) unless noted otherwise.    266 

 267 

Figure 2: Optical micrograph of cross sections of materials printed using (a) fast deposition, and (b) slow 268 
deposition (the red arrows on the left side of panel b show the interfaces between different passes). (c) 269 
Cross section optical micrograph of fast deposition at carrier gas temperature T=900 °C showing similar 270 
structure to fast deposition at carrier gas temperature T=800 °C but with less porosity (porosity 27±3).   271 

Table III: Experimental conditions used for cold spray deposition of titanium powders. Process gas 272 
pressure (40 bar), process gas (nitrogen) and number of passes (5) were kept constant, while temperature 273 

and scan velocity were varied. Porosity from image analysis and Archimedes’ principle are reported in the 274 
last two columns, respectively. 275 

Group name Process gas 

temperature 

(°C) 

Scan 

velocity 

(m/min) 

𝜂 for D = 

75 μm 

Porosity  

(Optical 

method) 

Porosity  

(Archmides 

principle) 

T800-slow 800 6 0.79 25±3% 22±0.07% 

T800-fast 800 12 0.79 30±2% 27±0.1% 

T900-fast 900 12 0.84 27±3% 24±0.08% 

 276 

High velocity impact during cold spray deposition can cause inhomogeneous deformation 277 

and localized heating of the interacting surfaces. To study the possible influences of particle sizes, 278 

the contact temperature was analyzed by the temperature rise at the impact zone as described in 279 



section 2.10. Figure 3(a) shows a plot of powder temperature at the contact plane versus impact 280 

velocity for different powder diameters from 5 µm to 100 µm at the end of contact (𝑡 = 𝑡𝑐). 281 

Velocities used in the present experimental work ranged from 580 m/s to 700 m/s considering the 282 

heterogeneity of the powder sizes, as depicted by the shaded area. As shown in Figure 3(a), the 283 

contact temperatures for different powder sizes were found below the material’s melting point and 284 

to increase with particle size and impact velocity for the full range of particle impact velocities 285 

(590-700 mm/s) and diameters (5-100 μm).  286 

 287 



Figure 3: (a) Contact temperature as a function of particle impact velocity and diameter, where contact 288 
temperature increases with particle size (shaded area shows the range of velocities used experimentally to 289 
fabricate porous metal deposits). (b) Particle size distribution in 3D printed porous Ti-6Al-4V (fast 290 
deposition at carrier gas temperature 800 °C) after deposition. 291 

 292 

Analyzing the powder particle size distribution within our 3D printed porous Ti-6Al-4V 293 

deposits reveals that the majority of powders that adhered to the substrate are in a size range 294 

between 45-57 µm, and the distribution of powders was heavily biased toward smaller powder 295 

sizes. The original powder had a Gaussian size distribution with diameters between 45 and 105 296 

μm. However, in the 3D printed porous Ti-6Al-4V deposit, 65% of powders were in a range 297 

between 45-57 µm, 26% were between 57-69 µm, and 9% were between 69-81 µm (Figure 3(b)). 298 

The maximum powder size in the consolidated deposit was 80 µm, whose value of 𝜂 was 0.8 299 

according to Figure 1 (b)). This implies that powders larger than 80 µm were not bonded during 300 

deposition. This finding illustrates that the effect of decreased impact velocity due to increased 301 

particle size is more significant than that of the increased contact temperature associated with 302 

larger particles. Namely, larger particles do not adhere to the surface despite their higher contact 303 

temperature because of the lower η as shown in Figure 1(b). We note that the estimated upper 304 

particle size of 80 µm is conservative because impact induced deformation can artificially 305 

“increase” the powder size. 306 

Scanning electron micrographs of the top view and cross section of powders after impact 307 

reveal the lateral flow of the material at all points of contact (shown by arrows in Figure 4(a)). 308 

This is due to localized deformation at the high impact velocity and is important in washing out 309 

the broken surface oxides from the contact zone and allowing for direct metallic bonds in addition 310 

to mechanical interlocking at the interface [15]. The cross section of a powder after impact shows 311 

an extensive grain refinement in the impact region (Figure 4(d)) with respect to the undeformed 312 



region (Figure 4(c)). This shows that the 3D printed constructs have spatial gradients in grain 313 

microstructure within each deposit particle due to the dynamic loading that powders experience 314 

during impact. 315 

 316 

Figure 4: Scanning electron micrographs of 3D printed Ti-6Al-4V parts. (a) Top view of a powder particle 317 
after impact. The arrows show lateral material flow at the periphery of the powder upon impact. (b) Cross 318 
section of powder after impact. (c) Magnified view of microstructure in undeformed region of powder 319 
depicted in (b). (d) Magnified view of refined microstructure at impact zone of powder depicted in (b). 320 
Frame pattern indicates the corresponding area in in the cross-section overview. 321 

 322 

To determine how diffusion kinetics especially at the interface between powder particles 323 

influence the mechanics of 3D printed porous deposits, we performed heat treatments at 840 ˚C 324 

and 1050 ˚C for 1 hour (referred to as HT840 and HT1050 in this paper). These treatments are 325 



below and above the beta transus temperature (i.e. the lowest temperature at which a 100% beta 326 

phase can exist; ~970 ˚C for Ti-6Al-4V [31]). Porosities of the heat-treated samples are 38±4% 327 

and 33±2% for 840 ˚C and 1050 ˚C, respectively. The optical micrographs of the heat-treated 328 

samples are shown in Supplemental Figure S1. The slight increase in porosity compared to that of 329 

as-printed samples can be explained by the coalescence of small pores and/or pore rearrangement 330 

as a result of sintering [38]. X-ray diffraction measurements reveal changes in microstructure and 331 

phase structure of the material after heat treatment. Specifically, peaks in X-ray diffraction patterns 332 

become sharper after heat treatment, which corresponds to the healing of defects from deformation 333 

by recrystallization and grain growth (Figure 5(a)). There is also a peak at 2θ = 35.5° after heat 334 

treatment at 1050 ˚C, indicating some remaining beta phase after the heat treatment above the beta 335 

transus temperature. The peak intensities of alpha titanium indicate a slight texture of the as 336 

deposited material, which could be attributed to the degree deformation of particles upon impact. 337 

This texture appears more pronounced after annealing, partcilularly at heat treatment below beta 338 

transus temperature. 339 

 340 

Figure 5: Characterization of the 3D printed Ti-6Al-4V deposits in as-deposited condition and after heat 341 
treatment. (a) X ray diffraction (XRD) pattern of as deposited and annealed samples. (b) Stress-strain 342 
behavior of as-deposited and annealed samples under compression loading.  343 



 344 

The stress-strain behavior of as-deposited porous structures under compression shows a 345 

linear regime followed by a sudden decrease in the stress-strain curve and finally a densification 346 

regime (Figure 5(b)). At low stress level, the deformation is homogenous throughout the specimen 347 

with an initial stress/strain ratio equal to 51.7±3.2 GPa. The sample yields at 535±35 MPa. Above 348 

a critical stress, sudden drop in stress occurs that corresponds to fracture at interparticle boundaries 349 

as shown by the SEM images in Figure 6.  350 

 351 

Figure 6: Post mortem fracture analysis of as deposited samples after compression loading showing 352 
fracture at interparticle boundaries on the (a) milli scale and (b) microscale. 353 
  354 

In heat-treated samples (840 °C, 1050 °C), the stress-strain behavior under compression 355 

has a linear regime, followed by a steady increase of stress as strain is increased (Figure (b)). The 356 

stress-strain behavior of the heat-treated sample at the elevated temperature (1050 °C) shows a 357 

higher compressive yield strength and maximum stress as compared to the heat-treated sample at 358 

lower temperature (840 °C). The apparent initial slopes after heat treatments both above and below 359 

the beta transus temperature are comparable to that in the as-deposited sample (51.7±3.2 GPa, 360 

42.4±2.6 GPa, and 55.1±2.4 GPa for as-deposited, HT840, and HT1050, respectively). However, 361 

the compressive yield stresses of both heat treated samples are higher than that of the as-deposited 362 

(535±35 MPa, 556±26 MPa , and 672±40 MPa for as-deposited, HT840, and HT1050, 363 



respectively). After heat treatments, the interparticle contact area may grow and become 364 

increasingly stronger due to interparticle diffusion. This can compensate for the typical softening 365 

upon coarsening of the microstructure at higher temperatures. Furthermore, coarser 366 

microstructures are known to be less brittle than fine grained material and therefore are more crack 367 

resistant. Thus, failure of contact zones becomes less likely during deformation of annealed 368 

samples and leads to the observed steady increase in average strength until strain is increased 369 

beyond 10% or more. This shows that heat treatment can serve as a new design parameter to control 370 

and improve the stress-strain behavior of porous deposits printed using cold spray, which is 371 

valuable for biomedical, structural and energy absorption applications. Annealing conditions for 372 

designing a foam with a particular stress-strain behavior can be optimized through tuning the 373 

competing influences between stronger interparticle bonding and lower recrystallization softening 374 

for different material applications.  375 

When compared to porous Ti-6Al-4V structures manufactured by other additive 376 

manufacturing methods such as SLM [22], SEBM [23–25], DED [26] and binderjet [27], the 377 

relative compressive yield strength values of this study are higher. Here, the relative compressive 378 

yield strength refers to the ratio of the compressive yield strength of the porous structure compared 379 

to that of a fully dense part (1070 MPa). These values are plotted in Figure  and listed in Table IV 380 

(similar porosities circled in the Figure). The expected relative compressive yield strength values 381 

from the Gibson-Ashby model are plotted for comparison. The model relates the compressive yield 382 

strength with relative density and scales with 0.3(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑦)1.5, though this model only 383 

applies to porosities larger than 70% shown by a solid line in Figure 7 [39]. Indeed, additive 384 

manufactured samples seems to follow the Ashby model up until about 40% porosity, beyond 385 

which a large deviation from the Gibson-Ashby model occurs. This can be explained by the 386 



different deformation modes in high and low porosity ranges that result in a jump in relative 387 

compressive yield strengths; in higher porosity structures, the primary mode of deformation in 388 

compression is buckling of the cell walls, whereas in lower porosity structures, the deformation is 389 

largely shearing or yielding [39]. This shift in primary deformation mode occurs as porosity 390 

decreases because the cell walls become too stocky and short to buckle. The higher relative 391 

apparent compressive yield strength of our deposit can be attributed to significant work hardening 392 

induced by severe plastic deformation during impact which can be a driving force for heterogenous 393 

recrystallization of fine grains at the impact zone after heat treatment cycles.   394 

 395 

 396 

Figure 7: Relative compressive yield strength vs porosity of porous titanium structures fabricated by cold 397 
spray as well as SLM, SEBM, DED and binderjet additive manufacturing technologies. Gibson-Ashby 398 
model is plotted. The data points with similar porosity to our samples are circled in the figure. 399 
 400 

Table IV: Comparison of compressive yield strengths of Ti-6Al-4V porous structures 401 

AM Porosity 

(%) 

Mechanical properties Reference 



Compressive 

yield 

strength 

(MPa) 

Relative 

compressive 

yield 

strength 

Cold 

Spray 

30 535 0.500 Current 

study 38 556 0.520 

33 672 0.628 

SLM 70.2 136 0.127 [22] 

71.9 115 0.107 

68.7 164 0.153 

EBM 72.7 55 0.051 [23] 

50.8 163 0.152 [24] 

60.4 117 0.109 

70.3 83 0.078 

49.8 7.3 0.007 

62 88 0.082 [25] 

74.7 57 0.053 

79.5 82 0.077 

83.5 17 0.016 

DED 29.6 471.9 0.441 [26] 

25.2 571 0.534 

24.4 582.6 0.545 

23 616.1 0.576 

19.3 764.2 0.714 

17.6 807.9 0.755 

17 809.2 0.756 

3 1012.7 0.946 

Binderjet 45 90 0.084 [27] 

57 47 0.043 

 402 
 403 

To evaluate the suitability of porous Ti-6Al-4V for biomedical applications, surface 404 

roughness, contact angle measurment and biocompatibility studies are performed. The arithmetic 405 

mean surface roughness of our 3D printed titanium alloy is 37 µm, which is more than 6 times the 406 

surface roughness of the as-received substrate. The surface roughness falls into the macro 407 

roughness regime (roughness >10 µm), which is important for long-term mechanical stability and 408 

biomedical applications related to primary bone implant fixation [40]. Roughness parameters 409 

(arithmetic average, root mean square, maximum valley depth and maximum peak height) are 410 



tabulated in Table V. Contact angle measurement against distilled water is not possible on these 411 

samples, as the drop is absorbed instantaneously into the pores of the surface (Supplementary 412 

Video S1). This confirms the open-cell structure of the 3D printed titanium alloy. Open cell 413 

structures are particularly important for biomedical applications of porous materials, as they allow 414 

for the transport of nutrients, oxygen, and waste products to and from cells adhering to the porous 415 

substrates.  416 

Table V: Surface roughness parameters of bulk titanium substrates and 3D printed Ti-6Al-4V deposits. * 417 
Parameters are according to ISO 4278 geometrical product specification. Sa :  Arithmetic average, Sq : 418 

Root mean square, Sv : Maximum valley depth, Sp : Maximum peak height 419 

Treatment Sa(μm)* Sq(μm) Sv(μm) Sp(μm) 

Substrate 6 8 54 68 

T800-Fast 37 47 231 204 

T900-Fast 36 46 209 212 

 420 
 421 

Murine preosteoblast cells (MC3T3-E1 SC4, P< 7) are found to be biocompatible with cold 422 

spray fabricated porous Ti-6Al-4V deposits. Preosteoblast cells adhere to the surface of the porous 423 

Ti-6Al-4V and maintain viability over the course of seven days as demonstrated by predominantly 424 

live cells and few dead cells being present after seven days of growth (Figure 8 (a)-(c)). The porous 425 

nature of the deposit’s 3D architecture allowed cells to integrate into the first 275±12 μm of the 426 

porous Ti-6Al-4V, as shown in Figure 8(d). Cells grew directly on the surface of the particles on 427 

the surface as well as between them as evidenced by confocal microscopy (Figure 8 (e)) and 428 

corroborated by SEM imaging (Figure (f),(g)). Pores at the surface have sizes in the range of 80 to 429 

320 μm, which is within the size range shown to be optimal for bone ingrowth (50 to 800 μm) 430 

[17]. These biocompatibility experiments demonstrate that pre-osteoblasts are capable of 431 

integrating into the interstices of the pores of the cold spray fabricated titanium alloy, while 432 



maintaining their viability, which reveals the utility of these materials for cellular ingrowth, an 433 

essential characteristic of successful bone scaffolds [41].  434 

 435 
Figure 8: Biocompatiblity of murine preosteoblasts with Ti-6Al-4V metallic foam. (a-c) Representative 436 
LIVE (green, a)/DEAD (red, b) and Merged (c) confocal microscopy images of cells that grew within the 437 
first 275 μm of a porous titanium substrate. Images are projection images of the average intensities from 438 
confocal microscopy image volumes of 3.2 mm x 3.2 mm x 275 μm. (d) Rendering of a 3D image volume 439 
of preosteoblasts that grew 275 μm into the Ti-6Al-4V porous deposit. (e) Murine preosteoblasts (live cells- 440 
green, cell nuclei-blue) growing around and between titanium powder. Ti-6Al-4V particles are the spherical 441 
black voids within the image. (f) SEM images of cells on surfaces of 3D printed Ti-6Al-4V powders. (g) 442 
Magnified view of cells on 3D printed porous titanium.  443 
 444 
 445 



Beyond biomedical applications, the one-step nature of the process and the high deposition 446 

rates of cold spray (10 cm3/min as opposed to 10 cm3/hour in powder bed metal additive 447 

manufacturing [17,42]) make the method attractive for the fabrication of cellular metals with large-448 

scale industrial applications in construction, transportation, and energy. Additionally, the one-step 449 

subcritical cold spray deposition can be adopted to deposit cellular structures using a wide range 450 

of metallic materials that are already in use in cold spray processing. In this work, we printed 451 

simple rectangular geometries to understand the deposition kinetics and mechanical properties of 452 

these structures. However, this can be easily adopted to make 3D objects by integrating the 453 

supersonic nozzle in cold spray with a commercially avaiable robot as is already achieved by 454 

companies such as Impact Innovation [43], NRC Canada [44] and Speed3D [45]. 455 

4. Conclusion 456 

Subcritical cold spray is demonstrated to enable one-step fabrication of porous Ti-6Al-4V 457 

structures printed by accelerating powders to supersonic impact velocities. Nozzle traverse speed 458 

is tuned to control the distribution of porosity across the deposit thickness. With specific deposition 459 

parameters (VN = 12 m/min, 𝜂~0.8, P = 40 bar, T = 800 °C), a uniform porosity of 30±2% is 460 

obtained. The density of the deposit is demonstrated to be a function of nozzle traverse speed and 461 

normalized powder impact velocity (𝜂). The apparent Young’s modulus of the 3D printed titanium 462 

alloy (51.7±3.2 GPa) is similar while the compressive yield strength is up to 42% higher than that 463 

of the porous structures manufactured by other additive manufacturing methods with the same 464 

porosity. After heat treatment, the elastic modulus does not change significantly, but the average 465 

strength shows a steady increase until plastic strain is increased beyond 10% or more. Finally, the 466 

printed porous metal deposits prove as biocompatible, demonstrating the utility of 3D solid-state 467 



cold spray printing as a potential manufacturing method for producing biomedical implant 468 

materials.  469 

Appendix: 470 

 471 

Figure A.1: Optical micrograph of cross sections of heat-treated Ti-6Al-4V porous samples at (a) 840 °C 472 
(porosity 38±4%) and (b) at 1050 °C (porosity 33±1%).    473 
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Figure captions:  603 

Figure 2: Supersonic powder deposition and determination of deposition parameters. (a) Calculated impact 604 
conditions for parameter sets used to manufacture porous deposits with carrier gas temperature T = 800 °C 605 
(red circles) and T = 900 °C (blue triangles) at Pgas = 40 bars, symbol size is indicative of particle size, and 606 
thresholds for deposit formation in terms of critical velocity. The powder impact conditions are intentionally 607 
outside of the calculated window of deposition used to print porous metallic deposits. (b) Normalized 608 
particle impact velocity (𝜼) as a function of particle diameter with the powder size distribution used in our 609 
experiments (45-105 µm) shaded in blue. 610 
 611 

Figure 2: Optical micrograph of cross sections of materials printed using (a) fast deposition, and (b) slow 612 
deposition (the red arrows on the left side of panel b show the interfaces between different passes).  (c) 613 
Cross section optical micrograph of fast deposition at T=900 °C showing similar structure to fast 614 
deposition at T=800 °C but with less porosity (porosity 27±3).   615 

Figure 3: (a) Contact temperature as a function of particle impact velocity and diameter, where contact 616 
temperature increases with particle size (shaded area shows the range of velocities used experimentally to 617 
fabricate porous metal deposits). (b) Particle size distribution in 3D printed porous Ti-6Al-4V (fast 618 
deposition at 800 °C). 619 

Figure 4: Scanning electron micrographs of 3D printed Ti-6Al-4V parts. (a) Top view of a powder particle 620 
after impact. The arrows show lateral material flow at the periphery of the powder upon impact. (b) Cross 621 
section of powder after impact. (c)Magnified view of microstructure in undeformed region of powder 622 
depicted in (b). (d) Magnified view of refined microstructure at impact zone of powder depicted in (b). 623 
Frame pattern indicates the corresponding area in in the cross-section overview. 624 
 625 

Figure 5: Characterization of the 3D printed Ti-6Al-4V deposits in as-deposited condition and after heat 626 
treatment. (a) X-ray diffraction (XRD) pattern of as deposited and annealed samples. (b) Stress-strain 627 
behavior of as-deposited and annealed samples under compression loading.  628 
 629 

Figure 6: Post mortem fracture analysis of as deposited samples after compression loading showing 630 
fracture at interparticle boundaries on the (a) milli scale and (b) microscale. 631 
 632 

Figure 7: Relative compressive yield strength vs porosity of porous titanium structures fabricated by cold 633 
spray as well as SLM, EBM, DED and binderjet additive manufacturing technologies. Gibson-Ashby model 634 
is plotted. The data points with similar porosity to our samples are circled in the figure. 635 
 636 

Figure 8: Biocompatiblity of murine preosteoblasts with Ti-6Al-4V metallic foam. (a-c) Representative 637 
LIVE (green, a)/DEAD (red, b) and Merged (c) confocal microscopy images of cells that grew within the 638 
first 275 μm of a porous titanium substrate. Images are projection images of the average intensities from 639 
confocal microscopy image volumes of 3.2 mm x 3.2 mm x 275 μm. (d) Rendering of a 3D image volume 640 
of preosteoblasts that grew 275 μm into the Ti-6Al-4V porous deposit. (e) Murine preosteoblasts (live cells- 641 
green, cell nuclei-blue) growing around and between titanium powder. Ti-6Al-4V particles are the spherical 642 
black voids within the image. (f) SEM images of cells on surfaces of 3D printed Ti-6Al-4V powders. (g) 643 
Magnified view of cells on 3D printed porous titanium.  644 



Table captions:  645 

Table VI: Constant values for calculating contact temperature at impact zone according to Equation 1. 646 
 647 

Table VII: Ti-6Al-4V properties for finite element simulation [35]. 648 
 649 

Table VIII: Experimental conditions used for cold spray deposition of titanium powders. Process gas 650 
pressure (40 bar), process gas (nitrogen) and number of passes (5) were kept constant, while temperature 651 
and scan velocity were varied. Porosity from image analysis and Archimedes’ principal are reported in the 652 
last two columns, respectively. 653 

Table IX: Comparison of compressive yield strengths of Ti and Ti-6Al-4V porous structures 654 

Table X: Surface roughness parameters of bulk titanium substrates and 3D printed Ti-6Al-4V deposits. * 655 
Parameters are according to ISO 4278 geometrical product specification. Sa :  Arithmetic average, Sq : 656 
Root mean square, Sv : Maximum valley depth, Sp : Maximum peak height 657 


