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In this paper we consider both simpler and more general forms of
a nonlinear partial differential equation arising from a particular
model of a rod vibrating longitudinally (cf. Jaunzemis [4],

Love [6]). This is the Euler equation derived from a Lagrangian.

= H[%“tz + Lfuug —wu ,Dldx dt, QcIR. 1
t; Q

Setting 5L=0 provides the equation of motion. Here f, W are
generally nonlinear functions (W is the strain-energy density of the
material and f is a function corresponding to the product of a non-
linear Poisson's ratio with a variable radius of gyration about the
central axis of the rod). Elsewhere ([9]) we consider f(u, ) to
become singular as u_— -1 for physical reasons of material inversion,
but now we generalize in another direction and let f(¢)=¢ .

If we define

dw (Ux)

X

W(ux,ux) =w(ux),

=o(ux) , 2.

then the equation of motion obtained is

utt_uxxtt_Gx(ux)zo' 3.

We may consider more generally the equation

un_uxxtt_Tx(X’ t7ux’uxt’u’ut)=0 4.

(see [8]) where the nonlinear function T depends on the two dependent and
independent variables as well as on the first spatial derivatives of u and

u,. However in the case of elasticity it is appropriate for T to have
dependence only on x,u,and u,, and we consider primarily homogeneous

materials for which T has the form

T=ou, )+1t@,) . 5.
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In places, we indicate also how one treats the more general problem 4.
The paper proves local and global existence results for various spaces with

xelR,t>0, Some of these spaces are chosen to demonstrate possible

behaviour of solutions as x—- o, and are interesting in view of

solitary wave solutions (see [10]) which are known to exist.

First several restrictions are imposed on o,t and W to permit sufficient

tractability in investigating local and global existence.
Presence or absence of viscous terms does not affect the
question of global existence since the equation will be shown to possess

globally unique solutions even in the hyperelastic case, when t=0.
Any assumptions of viscous damping such as ¢t(¢p)>0VdelRonly

help to improve matters by letting solutions decay to equilibrium as

t >+ . On the other hand when ¢t(¢p)<0 is permitted, this may

produce solutions growing as t » + o . and is equivalent to making the

change of independent variable t - —t and looking at the case of

0t(p)>0, ast->—oo. In certain cases this may lead to blow-up of

solutions in finite time, as in the undamped nonlinear
string (Lax [5]). Here we consider three cases, generally grouped
together for ease of presentation, in which blow-up does not occur

1.e. for which solutions exist for all time t > 0.

Hypothesis H1) Let t(.) be locally Lipschitz - continuous,
i.e. Vo,yelRsuch that for some R>0

o|<R,

\|1|< R, there exists a constant I'(R) > 0,
I'(R) >+ as R~ with [1(¢)—1(y)| <T(R)|p—y].

H1)i) ¢t (d)>0,V d eIR ,

H1)ii) (¢p)=0,

H1)iii) ¢r(¢)=—%, some o >0.



3
It will be seen later that the appropriate 'energy' estimate becomes
less useful as we proceed from Hi) through Hii) to Hiii). Further

hypotheses required for o(.), W(.) are

H2) Let o(.) be locally Lipschitfz -continuous (without loss of
generality we may take the same Lipschitz constant I'(R) as
in H1), and set c(0)=0.

H3) Assume W(9)>0,V¢eIR.

We provide some notation.

L”(IR) denotes the space of measurable real-valued functions on R

for which

% o i
e, ( [t de )P <o, 1<p <o,
—

or
| f1 ., =ess (IR SUP |f(x)| <o, when p = .

m,p
0

The Sobolev spaces W m> o

(IR), I<p<ow,W (IR),m € IN ,
consist of those functions in L¥(IR) all of whose generalized
derivatives up to and including order m belong to Lp(IR).

We define norms on W, " (IR), W (IR) by

. 1
m j -
el = (X e ) s p <o,
m, p =0 dx

or

m o glf
£ - . ,
I Hm’w JZ,O | i [ )

respectively.

Each of the spaces W(I)n’p(IR), Wm’OO(IR)is a Banach space under the

given norm.
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let Y be a Banach space and let A be a bounded or semibounded set in IR .
Then the Banach space Ck(A;Y),keNU{O} is the class of k-times

J
continuously differentiable mappings j—ljl (t): A~,Y, 0<j<k.
t

Ck(A;Y) has the norm

k dju
lu | = en II=— (|
k,Y jzo teA dt? Y

Similarly, we define the Banach space L'(A ; Y) to be the class of
measurable mappings u(t):A =Y such that for ueL' (A;Y)

lullyy = inu(t)nY dt < o0

Now we want to consider local existence of solutions to equation 4.
with 1 given by 5. The domain of x will be taken to be the real line

over which the following Cauchy data are given -
uy,(x) =u(x,0),u,(x) =u,(x,0),x elR . 6.

We present the proof in two stages. The Theorem applies to the space

xe Wb (IR)ﬂWé’2 (IR) which is the broadest to which our method
applies. The possibility of working in a larger space Wé’p (IR),p <o,

using other techniques such as a monotonicity approach is not considered
here, due partly to the restrictions thereby imposed on o but also because
there appear to be difficulties in the conservative case (t=0). The
Corollary that follows the Theorem is concerned with restricting the
initial data to special classes of functions which decay at various
rates as |x|»o and showing that the solution to 4., 5., 6. behaves
likewise (this is independent of the choice of subsidiary H1i), H1i1)
or H1iii).

Theorem 1 Let hypotheses H1) and H2) be satisfied, and suppose that
u,(x), u,(x) € W(IR) N W,;? (IR) . Then there exists a solution

u(x,t) to 4, 5. and 6. belonging to C'([0,7[;W"*(IR)NW,” (IR)



defined on a maximal interval [0,t[, t< . If 1<, then
||u(., t)”l,oo + ||ut(., t)”]m —> ©oas t—> 1,

Remark 1 The proof of the Theorem is divided into two steps, one
of which we postpone until later. Here we show that equation 4.
is formally equivalent to an integro-differential equation which we
solve by contraction mapping. The Theorem will be proved when it is
shown that the solution found in this way solves 4. in a weak sense.

Henceforth we consider this to be true.

Proof of Theorem 1

We write 4., 5., as
2 _
(1-20 X)utt = OX(G+I). 7.
and we assume u(towo,t) =V t> 0.

Formally operating on 7. with (1—8)2()_1 we obtain

u, (60 = _OfowG(x,é>a§(c+r>da

=— Ojo G&(x,é)(0+r)d§ 8.

— 00
where

le_‘x_(:‘, 9.

G(x.8) = 7

and, on integrating twice with respect to time, 8. becomes

u(xt) = up(x) + tup(x) - f; _Oift—n) Gg (X, 6) (o + 1) dS d7. 10.
The derivative of 10. with respect to x is given by
u (1) = u') (%) + ) (x) —(}) i(t—n) Gy, (.E)(o + 1) dedn
- }(t—n)(cﬂ)dn 11.

0



We try to find a fixed pointin W " (IR )1 W > (IR ) for the operator

equation
t «©
(Au)(x,t) = uq (x) + tu, (x) = | I(t—n)Gé(X,ﬁ)(GH) dg dn 12.
0—o0

using a standard application of the contraction mapping principle
(see e.g. [1]), which then implies the existence of a unique solution
for 10. To show that the fixed point exists we need to demonstrate that

A maps the ball
B(R) = {u(x,t) € C'([0,T]; W (IR) N W,* (IR):

:|u1’W1’°°+|u1’W1’2 <R} 13.

into itself for T sufficiently small, and that A is a contraction, i.e.
that for some R,T>0, 0 < 6< 1 and all u, v € B(R),
|Au|1 X < |u|1 . and |Au—AV|1 . <0 |u—V|1 " 14.

where | |1 X denotes the norm inside 13.

To satisfy 14. it may in fact be shown ([8]) that because of the
similarity in the steps of the calculations it is sufficient to verify

that

‘(Au)X‘D < ‘HX‘D and ‘(Au)X — (AV)X ‘D < O‘ux -V 15.

o

where

|4 () |D = swp (oGO, +]oC t)||2 +H¢t (s t)HOO + H(I)t (. t)Hz) 16.
te[0,T]

is the norm associated with C'([0,T];L”(IR)NL*(IR)) .
Writing

Ol =l ol + v o, .
and noticing that (Au),  is given by the right side of 11., we find that

(Au),

5 S|u'0|E +(1 +T)|u'1|E +



+| .[ (t—n)ng(GﬁLT)d%de

— 0

O — =

t
| [ (t=m)(o+ndn|
0

t
< Juy'lg ++T) Julg +C] (j)(t—n)(6+r)dn|D

where G > 0 depends only on the Greens function. Thus by 13., HI,

and H2.,

t
+ COR)(A+T) [ |u |y dn ,
0

| (Au) <|lu +(1+T)|u

X |D 0 |E 1 |E
that is

[(Aw)_ |y <lug'ly + (+T) [u,'lp +CROR)TA+T) 18.

x|D OlE

where the inequalities follow from the definition of the norms and
properties of the Bochner integral (Yosida [11]). Hence 18. shows that
provided there exists some R > 0, T > 0 such that there holds

lug'lg +(1+T)Jup'lg + CRO(R)T(A1+T) <R 19.

then AB(R) < B(R)

In a similar way, A can be shown to be a contraction provided

R, T>0 exist such that for some finite constant C ' > 0
C'TR)YTAd+T)<6<1. 20.

Conditions 19. and 20. may be simultaneously satisfied by choosing
large enough R and small enough T > 0, which thereby proves the
existence of a unique fixed point for 12. and hence the existence of

a unique solution u(x, t) to the integral equation 10., with

u(C'([0,T]; W " (IR)N W, ?(IR)).



The last part of the Theorem is proved by a routine continuation
argument as found in Reed ([7]), replacing the interval of existence

[0,T] by [0, t[, where 1 is the supremum of the T over which existence holds.

For the Corollary to this Theorem we are interested in finding whether
if the initial data approach zero at a certain rate as x —>*oo then the

solution to the problem does so also. More clearly, by way of an
example, we might ask that given ea|x|(|u0(x)\+|u1(x)|)—>0as|x|—>oo,

a some positive number, does e“’X|(|u(x,t)|+|ut(x,t)|)—>O,t>0 as

|x|>©? To treat this question more fully we define a general

class of function, together with associated Banach spaces.

Let y=y(x) satisfy the conditions

1sw(x)<e0‘|x|,03a<§, 21.

y(x+y) Sy)y(y) Vx,y €IR, 22.

y(x) continuous on R 23.
and

—k<y'(0-)<y'(0+) <k for some k>0. 24.

Further let J = J(x) >0, let Z=Cl([O,T];Wl’OO(IR)ﬂW(l)’z(IR)) and

Z(J) ={ueZ:Ju and Ju, eC'([0,T); L”(IR) N L*(IR))} 25.
with corresponding norm (see 14.)
||u||Z(J) = |u|l,X +Julp +[Jug [p 26.
Note that when J(x) = 1 VxelR,Z(J) reduces to Z

since the norms are then equivalent.
We now prove

Corollary 1. Let y(x) satisfy 21. - 24. Provided wu,,yu,',yu, and

yu,' belong to L*(IR)NL”(IR), there exists a unique solution u(x, t) to



4. under the conditions of Theorem 1, with u(x,t)eZ(y) defined

over a maximal interval of existence [0,7[. If T < o, then

”u”Z(\y) —>S>w ast—o1t .

Proof The procedure of Theorem 1 can be repeated with the ball

B(R) now replaced by

B,(R) = {ueZ(\u):”u”Z(W) < R} 27.

It is sufficient to show that if ueZ(y) then AueZ(y) since the

fixed point argument then completes the proof as before. We therefore
establish estimates corresponding to those of Theorem 1 by considering

the representative term

y()(Aw) (X, )=y(x)uy" () +ty(x)u,'(x)

t 0
—[t-my(x) | Gax(xyi)(ﬁﬂ)didn
0 —©

t
— [(t=m)y(x)(c+1)dn. 28.
0

We note that since yu, € B,(R) then
y(o+1) € L'(0,T ; L (IR) N L*(IR)) for appropriate T > 0. This can be

seen using hypotheses H1., H2. :-

t
[t=n)llw(O(a(, )+, )|, dn

0
t
S(I)(t—n) Iy QLR Uy () [+ Uy G DIl d7
for sup  {f[uxlly +llual2} < R.

t [0,1]
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Thus
j(t—n)” v (M) + w.n)|,dn < 2T°TR) R. 29.
0
A similar result may likewise be established for
j(t—n)ll\v()(c(.,n) + (). dn,
0

and so the last term of 28. is bounded in C'([0,T];L*(IR)N L*(IR))

for 0<t<T. We need to obtain the same type of estimates as 29. for the

second last term also. These are obtained as follows. Since
y(c+1)e L*(IR)NL*(IR) for almost all t, it is only necessary to

show there exists a finite constant C>0 such that
[l ‘V(-)ngx GOTEdE|, < clflwOfOI., 30.
and

() [ Gy GOFEE N, <cllyOEO I, 31

for all f(x) with yf e L*(IR)N L*"(IR) .
We denote by K and M, [[y()f(.)|l, and [[w()f()], respectively.
k

Hence, for almost all &,[f(§)[< .
v(©)

Thus

Luix) fe X6l kKD —|x-g| v
2w(x>_fooe £(8)|de < z_fooe o) &

s% Tl 8lyx—gide . by 22,

S%Ie(a—l)lx—ildé , by 21,
<CllvOfO ..

where C=C(a)<o for a<l, and so certainly for OSOLS%. Hence 30.

follows at once on taking the essential supremum of the first and last

parts of the inequality.
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Next we have,

| W(-)L\ G, GOTE) R

o

< [vieo| 5 [t da} dx

—00

8

<1 [y2(x) Te""‘é' de Te""‘i £2(£)de dx
L[ [veerr@ad =1,

where we used the Cauchy Schwartz inequality for the second last
line, and in the last line interchanged the order of integration by

applying Fubini's Theorem. On noting that by 22. ,

L< ] [V @OPE[vE-xe ™ Tdxdg

—00

00 00

L@ 2@ e laxae

IN

IA

ClyOfOI
we obtain 31., where C=C(a)<o for 0SOL<%.

It is now straightforward to complete the proof of the Corollary
using again the first part and then continuing as outlined in the
proof of the Theorem. Fuller details are in [8], Yosida [11], Elcrat
and Maclean [3].

We make the further remark that the above procedure may also be applied
in some other equations - here for example, when T =T(x,t,u_,u,,u,u,)

- but in this case the proof becomes slightly more elaborate involving an

intermediate space Y(y) of function pairs [u, v],
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Y (y) = {[u,v] e {([0,T]; W (IR) N W,*(R)}?

Dy, wvl, [yu,yu e {C([0,T]; L"(IR) N L* (IR)}* }
which reduces to Z(y) once it is shown that v=u,.
To finally complete the proof of Theorem 1 it is only necessary to verify
that the solution to the integral equation 10. solves the differential
equation 4. (5., 6.). As is evident, we have so far considered solutions
which can generally only be interpreted in a weak sense for 4. Thus we

have the following definitions and a Lemma to Theorem 1.

Definition Let ¢ = ¢(x,t), y =y (x,t) € I’(]0,T[x IR),0<t, <t,<T
and  <d(,.), w(,)>= j [ oxtyxt) dxdt 32.

denote the inner product on L*(]0,T[ x IR).

Let f =(x), g = g(x) eL’*(IR)

o

and (f(), g() = [ F(0) gx) dx 33.

—00

denote the inner product on L*(R)

Lemma 1 The unique solution u(x, t) to equation 10. satisfies
u(x,t) € C([0,e[; W' (IR) N Wy” (IR))
and for every ¢(x,t) e C'([0,T]; W,'(IR)) there holds

<ULQE >+ <Uy, 0y >—<O+T,04 >
t t
:(ut,¢)|: +(uxt,¢x)|:,VT<r. 34.

Proof The first part may be seen by differentiating the right side of
10. twice with respect to t and noticing that all the terms are continuous

int by H1., H2. and Theorem 1.

The second part follows on substituting u; and uy¢ from 10. into the first
two terms of 34. and integrating by parts (see [8]) for ¢(x,t)eC7(]0, T[xIR),

then using density to include all ¢(x,t).
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Remark 2 Results on regularity may now be found when hypotheses H1.
and H2. are strengthened and initial data are made smoother but since
these are straightforward reapplications of the contraction mapping
principle or simple 'bootstrap' arguments for time dependence, we

avoid stating them and again refer to [8] for details.

Remark 3 It is possible to prove by a continuation argument that the

interval of existence [0,z of the regular solutions in Remark 2 is

the same as that in Theorem 1 under the same hypotheses on the initial

data and o(.) and 7(.), and the same may hold for solutions corresponding
to data as given in Corollary 1. Therefore it is only necessary to obtain
global existence (i.e. 7 =o0) of solutions in W"*(IR) N W,?(IR) to infer

global existence in any of the other spaces alluded to above under the

appropriate conditions.

Lemma 1 leads immediately to a result concerning continuous dependence
of solutions on their initial data :-
Lemma 2 Suppose u(x, t) and umy(x, t) are solutions of 5., 6, corresponding

to initial data 7., and uom(x), uin(x) respectively, where {uom}, {uin}

are bounded sequences in W"*(IR) such that
Uy, ()= uy() in W?(IR), 35.
u, ()= u,() in Wp? (IR), 36.

as m,n — o0,

Then for some t>0,

u(x,t),u, (x,t) e C*([0,1; Wy (IR) N W (IR)).

Further, for all t€[0,T],T<t, as m,n > o

u, (,t) > u(,t)in W,* (R), 37.

mn

u, (L) > u,(,t)in W2 (IR), 38.
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U (> 1) ——>u(.,t) weak —starin W"*(IR) , 39.

umnt(.,t)—*>ut(.,t)weak—starin W' (R), 40.

Proof Every bounded sequence in W"”(IR) contains a subsequence
which converges weak-* to a member of W"*(IR) (e.g. [11]). Ifa
sequence converges to a member in the norm topology of W, ?(IR) and
is bounded in W"*(IR) then we may show that the entire sequence

converges weak-* to that element in W"”(R) ([2], P.76).
Thus 35. and 36. imply

Uym () ——>1u,(.) weak —*in W"*(R)
and

u,, () ——1u,(.) weak —*in W"*(IR) .

Similarly 39. and 40. follow when 37. and 38. are proved. These

latter are obtained by setting
Win (X,t) = umn (X,t) - u(x,t). 41.
Then by Lemma 1 with <,> defined in L%(]0,T[ x R),
< Wmnt,q>t >+ < Wmnxt,(bxt >—<Omn *+ Trn —G—‘L’,(I)X >
=(Wmnt , @) 1 +Wmnx , ) |g 42,
where the meaning of G,,,Ty, 1S evident. We may substitute
(I):Wmnt in 42. to obtain

2 T
| Wnn, O[3+ 2 < Oy +Tiun =0 =7, Wi > =0 43.

Letting
2
lugm —u, ||1’2 = Oym > 44.

v —u ||f2 =3 45.
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and using HI1., H2., 43. shows

T
I Won, G TE <80+ ) U Wann G I+ 1 Wong ) 1dn 47,

where C=C(I'(R))(see the proof of Theorem 1).
t
But Wy (x,0)= Wi (%,0) + 2] Wi (5,1) Wiy (x,1) d

and so

T
I W G T < 8gm + [ 1 Wi ) 12, + 1 Wi ) [2,Jdn 48,

Adding 47. and 48. finally gives an inequality to which Gronwall's Lemma
may be applied, and so

| W G T+ Wan T 12 < (B + 8in)exp (C+DT), 49,

giving the desired results, since 0,,, 0,, >0 as m,n — oo.

Before turning to the final question of global existence, we investigate
a simple property concerning the propagation of initial discontinuities
in the first derivatives of the given data.

We define the 'jump' [¢(.,.)](X) in ¢(x.,) at a point x by the relation
[6CIIC X)) = o(x",) — o(x7,) . 50.

Lemma 3 Let u(x, t) be the solution of 4. -6. and suppose

u,(x) e C'(OIR \ Y ym ) u,(x) € C'(IR \ ,,) where %,m»>%in < IR are
arbitrary sets of m,ne NU{0} points at which u,'(x), respectively u,'(x)

has a discontinuity. Then the only points at which discontin-

uities in ux(x, t), ux(x, t) may occur for t>0 are contained in ¥, Uy -

Proof By Theorem 1, the solution u(x, t) for 4. -6. satisfies

g (50 = ug' (%) + ') = [ [ (-G (x,E)(0(uy) + T(ug,)dedn

- Lt (t-m)(o(u,) + t(u,,)) dn 51,
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for almost every x. It is easy to show that the map

o0

b(x) > j Gex (x,8)0(8)de takes L (R) into Cp (R) 1<p<e,

and so the third term in 51.is continuous. Thus

[u, GOI) = [u'O1x) + tlu"()](x)
j). (t—n)([o(ux(,n)](x) + [T(uxy (,n))](x))dn . 52.
Similarly,
[uy GOIE) = [u' O]x) - i ([o(ux () ](x) + [T(ugy(n))](x))dn. 53
By hypotheses HI., H2., adding 52., 53. implies that for te[0,T]<[0,7] ,
[[ux GOTE)| + [Tuyg (GO1X) |
S (DI [+ A+T) [[u'()](x) |

+ (1+T)F(R)J(I[ux ()X | + [[uxy (:m)](X)])

< (I[u,' Q1| + A+Dlu,'O1®)|) exp(TA+T)T (R)) 54.

where the last inequality is a consequence of Gronwall's lemma.

Hence for x ey ,Uyx,, the right side is zero, and the result follows
immediately.

Finally we show that under mild additional hypotheses there appear
solutions to 4. - 6. which exist globally in time.

Theorem 2 In addition to the conditions of Theorem 1 let hypotheses H3.
and H1 1), 11) or ii1) hold. Then the solution u(x,t) of 4, - 6.

belongs to the class C*([0,t[; W'"®(R) n W,"* (R)) for every

finite t©>0.
Proof We may use Lemma 1 to derive an 'energy estimate for u(x,t)

on replacing ¢(x,t) by U, (x,t) in the expression 34. This delivers
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0 0 t o
L uf +Ug e + [ Wu)ds + [ [ ugt(uy)dxdt
-0 0

—0 —0

=1 [@ +u2)dx + [ W())dx = E, |

where we have let t; >0 and t, =t<rtin 34.

In cases HI. 1), ii) we therefore have the a priori bounds

Hlu, o (0+ [ W(u)dx() <E,
and

%H u, ||? 52 (t) - jW(uX)dX(t) = EO

In cases HI. ii1) we rewrite 55. and use Gronwall's lemma.

Hu lh s O+ [Wu)d() = B + 4 [ [uke dxdt.

0 —o0
implies
2 t
[ Uy ||2 () < Epe®

and, in turn, therefore

Tlhucllis (O+ [ W (uyg)dx (1)< E (1++eh).

55.

55 i)

55 ii)

55 iii)

The bounds 55. are in themselves insufficient except in a special case

when o is uniformly Lipschitz continuous. Here we must supplement them

by pointwise bounds on uy, uy: valid almost everywhere. To do this most

conveniently, we add two further hypotheses which may however be relaxed,

or disposed of entirely when the rod is finite.
H4. Let 0<K<®o be such that o, W are assumed to satisfy,
for |¢| =2 K,

(o< o (@] < W(9) .
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HS5. (case HI. 1)) Let PeN, 0<K<o be such that for |[®|>K,

-1

wp)=ap>’, some o > 0 .
Now we differentiate 10. twice with respect to t and once with respect
to x, giving

U + G(ux) + r(uxt) = —_J'OOGax (G(ué) H(uﬁt))d& : 56.

Thus in case H1. i), using 55.,

00

uttx+G+TS{ ) Gax(crdi}u(i |,|u§t|<K

+ { OI;GaX(O+Td§}u§ blug 1= K

< 2I(K) j Géx(x,é)dé
1
o W(u,)ds + o j|ugt 2P
< 2T(K) + E +cojo|U 2Pl e 57.

0 £t

Next we multiply both sides of 57. by |ux¢| and integrate with respect

to time to obtain

Ug (x,6)+ W(Uy(x,1) + juxn t dn (x)

0

<Iu’® (x)+ W(u,'(x)) +j‘|uxn(2l“(K)+E0 +GT|uén I’ dé)dn(x). 58.

In particular therefore, fort € [0,T],



19

juxﬁ’ dn(x) < E, (x) + QT(K) + Eo)j | ugy | dn (x)

+ o flugy | [ lug, P! dedn(x)
0 —o0

where E,(x) =1 U,” (x) + W(u,' (x))

So by Hoélder's inequality and 55.,

1

t 5 t 5
[ugl dn(x) < E,(x) + (20 (K) + EO)T{ijn R dn(x)}

L
2p

+c{i|uxn P dn(x)}zp{ L T|ugn 2P d&dn}

1

t »
<E,(x)+(2I(K)+ EO)T{ [l P dn(x)}

L
2

t »
+o{j|uxn P dn(x)} E, 59.
0
It follows that the term on the left side of 59. is uniformly
bounded for almost every x and each t € [0,T]. By 58. and H4.,
t is immediate that also uyx (x,t) and ux; (x,t) remain uniformly
bounded, i.e. we have that for some J, 0<j<oo,

t
I G ) s T GO Il [ ug tdnl, < T, Vee[o,T]. 60.

0
Using these estimates in 10. shows

a0 [l u GO < (1) <o 61.

where f(t) is uniformly bounded on every finite interval [0,T],

Similarly, in case H1. ii) when 7 = 0, 56. leads to
Uy, +0<T(K)+ jW(ué)da

<T(K)+E 62.
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and 58. becomes
Lug (x,0) + W(ug (x,1)

< Ex + I'(K) + EO)(%j (l—i-ux,z1 ) dn(x)) 63.

0

Therefore, by Gronwall's inequality, for t € [0,T],
ug (%,1) < {2E,(x) + [[(K) + E,]T }exp[[(K) + E,)t] 64.
and we obtain, as before,
[uC Ol s v ) e < g(t) <o 65.

where g(t) grows at most exponentially in time.

od

In case HI. iii) when 1= —7’ a >0 we have

T (0—0U . )de|+0 Uyl
|uttx+c|3|_ij§X 2“& :

snm+jwwgm+;m@mMJ%wmm
+ %‘uxt‘

1 %t
<ST(K) + E, + §E2¢ + F|u,|. 66

where we used the inequality preceding 55.iii). Multiplying by

|lux¢| and integrating,

t (o}
Tul, (x,0)+ W(Uy) < E (x) + jr((K)+EO+%Eo%eﬂjmxn(x,n)mn
0

t
+%J.uxil (x,n) dn
0

1 S
SEl(x)+%[F(K)T +E,T+E; eZTJ

t

T) quﬁ (x,n)dn 67.
0

o
2

1
+§((F(K)+ E,+a+§Ej e
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from which, again by Grtonwall's lemma
u (0 <(2E,0+TR)T+ET+E2¢2 T Jex P()+E,+o+ EF 2 |t 68.

and we have

[uC ) [l » T GOl < h(t) < oo 69.
where h(t) is exponentially bounded on every finite interval [0,T].
We have therefore found in each case that an a priori bound for
lul, wloot|ul,wl,2 (see Theorem 1) exists on every finite interval
of the form [0,T] . A standard continuation argument therefore proves
that these solutions exist for all time t €[0,%] (see, for example,

Reed [7], or [8]).
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