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An Improved PSO Algorithm for Smooth Path
Planning of Mobile Robots using Continuous
High-Degree Bezier Curve

Baoye Song, Zidong Warigand Lei Zou

Abstract

In this paper, a new strategy is developed to plan the smaathfpr mobile robots through an improved PSO
algorithm in combination with the continuous high-degreszigr curve. Rather than connecting several low-degree
Bezier curve segments, the use of continuous high-degreieiBeurves facilitates the fulfilment of the requirement
of high-order continuity such as the continuous curvatumevdtive, which is critical for the motion control of the
mobile robots. On the other hand, the smooth path planningalfile robots is mathematically an optimization
problem that can be dealt with by evolutionary computatilgodthms. In this regard, an improved particle swarm
optimization (PSO) algorithm is proposed to tackle the ldcapping and premature convergence issues. In the
improved PSO algorithm, an adaptive fractional-order e#yois introduced to enforce some disturbances on the
particle swarm according to its evolutionary state, thgrebhancing its capability of jumping out of the local
minima and exploring the searching space more thoroughig. Juperiority of the improved PSO algorithm is
verified by comparing with several standard and modified PE§Orighms on some benchmark functions, and the
advantages of the new strategy is also confirmed by sevemgbr@ihensive simulation experiments for the smooth
path planning of mobile robots.

Index Terms

Mobile robot; Continuous Bezier curve; Smooth path plagniAdaptive fractional-order velocity; Particle
swarm optimization.

. INTRODUCTION

The purpose of path planning is to generate a collisionfoege from the starting point to the desti-
nation, and the corresponding research has been ongoingiaee the inception and the implementation
of mobile robots [1], [2]. Technically, the problem of patlapning can be formulated as an optimization
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problem that is subject to several constraints and perfocenariteria (e.g. shortest distance and obstacle-
free route), see [3], [4]. Up to now, an increasing amountlgb@thms have been developed to devise an
optimally planned path for mobile robots such as those usapidly-exploring random tree (RRT) [5],
artificial potential field [6], probabilistic roadmap methgPRM) [7], Voronoi-diagram [8], A [9] and

D* [10], etc.

It is worth pointing out that, for most aforementioned patanming algorithms, the paths generated
are usually polygonal lines which might contain undesiasharp turns [11]. To track these paths, a
robot has to frequently switch their motion states amongp’strotation’ and ‘restart’ [12]. In this case,
the switching of motion states will undoubtedly lead to disitnuous velocity and acceleration, which
will further result in the occurrence of slippage and ovetuaton when a mobile robot is moving at a
high speed [13]. Therefore, planningsenoothyet optimal path is an imperative strategy for the mobile
robot to satisfy multiple optimization constraints sucH@g time/energy cost, high-speed movement, and
complex service tasks [14], [15].

In the context of smooth path planning of mobile robots, ssvagorithms have been presented in the
past few years. For example, an algorithm has been put fdrimaf16] to plan smooth paths using an
improved visibility graph, where the*Aalgorithm has been employed to search for a collision-arud
path, which is then smoothed by using an optimized B-splun@e via the particle swarm optimization
(PSO) scheme. An efficient continuous-curvature path-shiog algorithm has been proposed in [17]
where the parametric cubic Bezier curves are exploited toosimthe obstacle-avoidance path that is
generated by fitting a sequence of way points. A four parametgstic curve has been proposed and
applied for the planning of the smooth robot path in [18], mhéhe complete path can be achieved
by connecting the smooth path subsections. In [19], a gemgorithm (GA) has been applied to plan
an optimal obstacle-free path for the mobile robot, whereis piecewise cubic Hermite interpolating
polynomials are applied for the smoothing of the generagdhal path. In [20], the segments of cubic
Bezier curve have been joined together to obtain a smootht rpath with way points and corridor
constraints. In [21], a new parallel PSO algorithm has bagnfgrward to devise a linear feasible path
for the mobile robot, and then such a path is smoothed by usiagB-spline curve. In [22], the?-
splines have been employed to smoothly connect the endpaoirthe linear path generated by using the
MAKLINK Graph and Dijkstra algorithm.

In the literature mentioned above, the planned smooth athsisually smoothed by using parametric
curves (e.g. Bezier curve) after the procedure of linedn pietnning. As such, the devised paths would lose
their optimality, because the procedure of path smoothsngpi linked directly to the path optimization.
To handle such an optimality loss issue, several methods b@en proposed wirectly design the smooth
path of the mobile robot. For example, a Bézier curve-basedel has been investigated for path planning,
where a novel Chaotic Particle Swarm Optimization (CPS@prithm has been proposed to optimize
the control points of Bézier curve [23]. However, this agarh has not been utilized in the complex
environment of mobile robot, where some motion constraiaige to be considered in the path planning.
The n3-splines have been combined with the parallel genetic @hgorin [24] to design a smooth path
for the autonomous robot, where only the path length has beasidered for the path optimization. In
[25], a new genetic algorithm in combination with the Bezierve has been investigated for the smooth
path planning of mobile robot, but the devised optimal patinterrelated to the new grid-based mobile
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robot workspace, that is, the Bezier curve’s control polrase to be limited to the center of each grid
(rather than arbitrary points of the workspace). To overedhis drawback, a new scheme combining
PSO with cubic Bezier curves has been put forward in [26] twdpce a smooth optimal path for the
mobile robot, but it is very difficult to ensure the high-orad®ntinuity for the connected path segments.

In this paper, a new strategy is developed for the planniageisof the smooth robot path by using
a continuous high-degree Bezier curve and an improved P§Qritdm. Instead of connecting several
low-degree Bezier curve segments (e.g. cubic Bezier cyrves use the continuous high-degree Bezier
curve to fulfill the requirements of the smooth path plannjeg. continuous curvature). Yet, the Bezier
curve’s control points should be optimized to ensure thdopeance of the smooth path, and this is
actually an optimization problem that can be dealt with bglettonary computation (EC) algorithms. In
this regard, an improved PSO algorithm is proposed to tawkbetypical EC-related issues, that is, local
trapping and premature convergence. In the improved PS@ithig, an adaptive fractional-order velocity
is introduced to bring certain disturbances in the seagchiocess, thereby enhancing the possibility for
the particles to jump out of the local minima of the searchiépgce and exploring the searching space
more thoroughly.

The contributions of the current paper are outlined fromftilwing three aspectg1) To satisfy the
smoothness requirement on the planned path, a new appraach a continuous high-degree Bezier curve
is developed, thereby removing the need to connect sevagalents of the smooth curves as done in the
literature. (2) An improved PSO algorithm with adaptivedtianal-order velocity is developed to handle
two frequently occurred obstacles in the smooth robot p&hmng, namely, local trapping and premature
convergence, and the superiority of the improved PSO algoriis verified by several comprehensive
simulation experiments on some well-known benchmarkifingct(3) The issue of planning the smooth
path for the mobile robot is mathematically formulated asautimization problem. Then, the problem
is solved by the newly developed strategy combining themanis high-degree Bezier curve with the
improved PSO algorithm. Finally, the simulation resultsmimstrate that the smooth paths produced by
the new strategy can outperform the paths derived in ouripusvstudies.

The organization of the rest of paper is described as folldvire preliminary of the Bezier curve is
briefly introduced in Section II. In Section Ill, the modajinf the mobile robot and the workspace are first
described in detail. Then, the planning of smooth path ofntledile robot is formulated mathematically
as an optimization problem. Furthermore, the improved P&Orithm with adaptive fractional-order
velocity is elaborated and discussed by comparing withra¢feemous PSO algorithms upon some standard
benchmark functions. In Section IV, the new strategy commgithe continuous high-degree Bezier curve
with the improved PSO algorithm is employed to devise theamoobot path, and the superiority of the
new strategy is illustrated by simulation experimentsaHjn Section V concludes this paper by pointing
out some future works.

[l. PRELIMINARY ON BEZIER CURVE

As a kind of parametric curve, Bezier curve has been widdlized in practical engineering [20] such
as mechanical design and computer graphics [13]. The definif a Bezier curve of degree can be
expressed by [15]:

P(t) =) Bi.(t)p:, t<01], 1)
=0
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where P(t) represents the Bezier curviedenotes the normalized variable of motion tinpe;= (x;, y;)”
indicates a vector of coordinate which consists of the camepts of the X-Y-coordinate of thgh control

point; B; ,,(t) (i = 0, 1,--- ,n) stands for the Bernstein polynomials of degreavhich actually expresses
the Bezier curve’s base functions that can be defined as

. . !
Bin(t) = Citi(1— )i =

mti(l — )" (2)

fori=0,1,---,n.
According to the definition, the first derivative of the Bezairve can be expressed as

Py =T =03 B (b~ i) ®

and its second derivative can be expressed by:

n—2
P(t)=n(n—1) Z Bina(t)(Piv2 — 2Piy1 + Pi).- (4)
i=0

Hence, the curvature along the Bezier curve in the two-dsimeral plane can be computed by:
Pa )Py (t) — Py()Pa(t)
Kk(t) = - - , 5
O="@0+ R0 ©
wherep,(t) (respectivelyp,(t)) andp,(t) (respectivelyp,(t)) indicate the X-Y-coordinate components

of the first and second derivatives of the Bezier curve, respdy. Similarly, we can compute other
derivatives of the Bezier curve iteratively based on thevalbexpressions.

[1l. M ETHODOLOGIES OFSMOOTH PATH PLANNING
A. Modeling of the mobile robot and the workspace
A differential driving wheeled mobile robot (WMR) is consigkd in this paper. The velocity model
of the WMR has been shown in Fig. 1, whergt) and v,(¢) indicate, respectively, the left and right
velocities of the two wheels, denotes the axial distance of the pair of wheels; andt) and vg(¢)
represent, respectively, the angular and linear velacitiethe WMR. Thus, the velocity model of the
WMR is determined as follows [27], [28]:

vr(t) = u(t)

wR(t) = l/2 s (6)
vr(t) = M’ 7)

and the kinematics model of the WMR shown in Fig. 2 can be ega@ by:

Op(t) = wa(t),

Tr(t) = wg(t)- cosOr(t), (8)

yr(t) = wvg(t)-sinbg(t),
wherezr(t) and yg(t) represent, respectively, the coordinate components opdséion of the WMR,
and 0y(t) represents the orientation of the WMR. Correspondinglyt) and yz(¢) indicate the X-Y-
coordinate components of the linear velocity, a#hdt) denotes the anticlockwise angular velocity.
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Fig. 1: Velocity model of the WMR
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Fig. 2: Kinematics model of the WMR

In this paper, the workspace of the WMR is supposed to be adimensional plane, which is the
same environment in [25] and [26] for the convenience comparof the results. The workspace shown
in Fig. 3 is a square plane that has been cut ittoc 2" grids, and each grid is a square &f x 10
units. For each of the grids, it is assigned a grid number hadtack grid indicates a square space that
is infeasible for the WMR because it is occupied by some abstawhile the white grid indicates the
obstacle-free space for the WMR. Obviously, the environnoam be described in more details with a
larger parameter at the cost of increasing the computational load. Therethee parameter. should be
selected according to the performance specification on dlte danning and, in this paper,is set as 4.

Note that the boundaries of the obstacles are extended ordmwe with the robot size. Thus, the
mobile robot can be taken as a unit point of the workspacerdégss of its real size. To determine whether
a unit point is feasible for the mobile robot, the followingterion is defined.
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Fig. 3: Mobile robot workspace

Definition 1: A unit point is feasible if and only if it is not in a black sqeagrid, which contains the
extended boundaries of the obstacles,Ng& N,, whereN, indicates the number set of the black square
grids; N,, indicates a numbered grid that contains the unit point, &edcbnversion from a unit point to
a numbered grid can be expressed by:

Np = [y(#)/10] x 16 + [x(¢)/10], 9)

where |-| represents the mathematical operation of rounding down; and y(¢) indicate the X-Y-
coordinate components of a unit point in the workspace.

B. Problem Description

The objective of this paper is to seek a feasible yet optimadah path for the mobile robot, where
the planned smooth path should fulfill the following criteand constraints: 1) the smooth path planned
in this paper should be a feasible route for the movementeitbbile robot, i.e. an obstacle-avoidance
route; 2) the devised smooth path should satisfy the smesthrequirement of high-order continuity, e.g.
a G3-path [29]; and 3) the curvature and its derivative of theegated smooth path should be minimized
to benefit the path tracking of the mobile robot.

To meet the aforementioned three requirements of the snpmith planning task, a continuous high-
degree Bezier curve is employed to produce a satisfactoppnpath by optimizing the Bezier curve’s
control points. Note that we no longer need to connect seBgaier curve segments (e.g. the cubic
Bezier curves) as done in most existing literature, and rtiages it possible to link the path smoothing
directly to the path optimization. In this case, the plagnai smooth path in this paper is essentially an
optimization problem that seeks a series of control powtsich lead to a feasible and optimal Bezier
curve for the mobile robot path. Accordingly, the objectiuaction of such an optimization problem can
be expressed by:

min J = w; X ||P(t)]] + we x max |k(t)| + w3 X max|&(t)|, t € [0, 1],

st. P(t) ¢ N,, P(t)e€C3, (19)
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wherew; (i = 1,2, 3) denotes the weighting coefficient of the above cost functio || indicates the path
length;| - | represents the absolute value of the curvature and cuevdernivative; and”® stands for the
set of functions with the continuity until the third derixag. Obviously, the smooth path planning of this
paper is a rather complicated optimization problem whosetiso is prone to fall into the local minima.
To tackle this issue, an improved PSO algorithm is in ordel aill be discussed later.

Remark 1:It is worth mentioning that the path consisting of a contmsidigh-degree Bezier curve
outperforms the planned path generated by connectingaeBerier curve segments. On the one hand,
compared to the path composed of Bezier curve segmentsmbige natural for the continuous high-
degree Bezier curve path to satisfy the requirement of bigler continuity. On the other hand, with the
continuous high-degree Bezier curve path, the computatos can be much reduced in the process of
path optimization because the elements of the objectivetimmin Eq. (10) (e.g. the curvature derivative
of the path) can be expressed in the analytic form and therefocurately calculated.

C. The improved PSO algorithm

PSO is an intelligent optimization algorithm presented30][for simulating the swarm behaviors of
animals [30], for example, the flocks of fish and birds. Rdge®SO has been widely utilized to search
for an optimal solution of various optimization problemsrabotics, e.g. the optimal design of controller,
autonomous navigation, and path planning of mobile roltat, e

For PSO, one particle in the swarm acts as a possible optwh&lian of an optimization problem. The
particle, which represents a candidate solution to themap#tion problem, can fly around to explore an
optimal solution of a certain searching space. For evertigarof the swarm, the velocity and position
at thekth iteration will be updated in the next iteration as follows

'Uf—’_l = UJ’UZ{€ + i (xfb — xf) + CQTZ('II;I) - xf)v (11)

okt = gk ket (12)

wherez? andv? of the ith particle represent the position and velocity at ifle iteration, respectively;
xj, andzy, indicate, respectively, thih particle’s best positionpf.;) and the best position of the global
swarm (..;) till iteration k; w is the velocity inertia weight;; andc, denote, respectively, the coefficients
of the particle acceleration;; andr, are two real numbers that are randomly produced and digtdbu
on [0, 1] uniformly.

Up to now, several improved PSO algorithms have been propiosthe literature for the performance
promotion of the original PSO. For example, PSO with lingdecreased inertia weight (which is denoted
as PSO-LDIW) has been presented by Shi and Eberhart tollrasrease the inertia weight of the particle
velocity [31]. PSO with time-vary acceleration coefficier{tvhich is denoted as PSO-TVAC) has been
developed by Ratnaweera and his colleagues [32] to adjestt acceleration coefficients of the velocity
updating function in each iteration. However, the paranseté the above improved PSOs could not be
regulated adaptively according to the state of evolutiothefparticle swarm. To adaptively calculate the
acceleration coefficients and inertia weight of the PSOrélgo, an adaptive PSO (which is denoted as
APSO) was presented in [33] to switch among several velaptyating functions in accordance with the
current evolutionary state that is determined by the catedl evolutionary factor of the particle swarm.
Based on the strategies introduced in [33], the switchin@ P8hich is denoted as SPSO) was proposed
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in [34] to change the velocity updating function based onpghedicted evolutionary state in terms of a
Markov chain. Furthermore, a random delay was introducéd tine velocity updating function of the
switching delayed PSO (which is denoted as SDPSO) in [35] anount of the evolutionary state of
the swarm. Moreover, a multimodal delayed PSO (which is tlshas MDPSO) was presented in [26]
to improve the performance of convergence and robustnesslagtively adding two novel terms in the
velocity updating function. Nevertheless, there are soatieer stringent requirements on these modified
algorithms, e.g. the computational burden and memory géora
To overcome the defects of the modified PSO algorithms meatic@bove and effectively dispose of
the problem of planning a smooth robot path, an improved Pi§@rithm motivated by the algorithm of
PSO with fractional-order velocity (which is denoted as BOR [36] is developed in this paper and the
updating functions of velocity and position are as follows:
Vit = ol + %Oé(l —a)uFt 4 éa(l —a)(2—a)f?+ 21—4a(1 —a)(2—a)(3—a)F?
+ i (af, — of) + cara(al, — af), (13)

gt = b gkt (14)

7 7 )

wherec; andc, are, respectively, calculated as follows:

kmax - k

¢ = (¢ — le) X T + ¢y, (15)
kmax - k

co = (Co — sz) X e + coy, (16)

wherecy; (co;) ande;f (cof) denote, respectively, the initial and final values of theederation coefficients
¢ andes; k. denotes the maximum iteration; and the parameterdicates the fractional order of the
velocity in [36], while in this paperqy is a variable that is linearly and adaptively regulated atiog to
the evolutionary state of the swarm, and it is calculated by

1 k

E’c><

a=0.9—
1—|—6_ f kmax

, (17)

where E’J}’ denotes an evolutionary factor that can reflect the stateh@fstvarm evolution at théth

iteration and is calculated by
dk, — dF
gb

k min
Ef - dﬁlax —dk (18)

whered” andd®. denote the maximum and minimum of an average distance, atdaglg, from one
particle to others in the swarnd’gb denotes the average distance of the;; while the average distance

at thekth iteration (which is denoted a#) can be calculated for thah particle by

k _ 1 : E k k)2
di = o 1j§#i ;(@ k)2, (19)
whereS and D indicate, respectively, the population size of the pagtawvarm and the dimension of each
particle. The algorithm of the improved PSO is completelgailbed in Fig. 4.
Remark 2:In FOPSO, the fractional-order velocities have been intoed into the updating function
of traditional PSO algorithm. The additional fractionatier velocity terms are essentially some kind of
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Improved PSO

|

Evaluate the fitness of all particles and
update Pbest and 8Bbest

l

Compute the mean distance di/C of each
particle according to Eq. (19)

Compute evolutionary factor £ K of the
swarm according to Eq. (18)

}

Compute the fractional order of the velocity
according to Eq. (17)

)

Compute the acceleration coefficient according to
Eq. (15) to (16)

)

Update the velocity and position in accordance
with Eq. (13) to (14)

l

Fig. 4: Flowchart of the improved PSO algorithm

delays of velocity, which can be regarded as some “disturddsinthat will bring some “power” for the
particles to jump out of the local minima. Thus, a better mjtation result can be obtained owing to
the extended search space. It is worth noting that the propérhistorical memory in the fractional-
order velocities can play a similar role as the additionahtein MDPSO, but few memory storage and
computational capacity are required in the FOPSO algoritBimilarly, the velocity of the next iteration
is related to not only the velocity of the current iteratiarn blso the velocities of previous three iterations
in the improved PSO algorithm. This strategy can bring sommeful” disturbances to the process of
convergence, which makes it possible for particles to fly @iuthe local minima of the search space.
Meanwhile, the fractional order of the velocities is lingaand adaptively regulated in terms of the state
of the swarm evolution, which makes it possible for the p#tio explore and exploit the whole search
space more thoroughly so as to obtain an optimum of the glebate.

To test the improved PSO algorithm, several simulation erpnts are implemented upon some
frequently used benchmark functions in this paper. The l@ack functions are formulated as Eqgs. (20)-
(23), all of them are some typical evaluation functions wh@®lutions are difficult to obtain. The
configuration of these functions is demonstrated as TABLEnIwhich the last three columns list,
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respectively, the searching range of each dimension, tteshbld of a successful optimal solution, and
the theoretical optimum value of each benchmark function.

D
Sphere :  fi(x) = Z x7, (20)
i—1
D1
Rosenbrock :  fo(x) = Z 100(zi41 — 22)% + (2, — 1)?, (21)
i—1
D—1

Penalized I:  f3(z) = T 10 sin?(my,) + yi — 1)%[1 + 10 sin*(7y;41
D

.
Il
—

D
+(yp = 1} + > (), (22)
i=1
100(—z; — 10)%,  2; < —10,
v =1+ 1/4(x; + 1), u(z;) =4 0, lz;] < 10,
Schwefel 2.21:  fy(x) =max{|z; |}, 1 <i< D (23)

TABLE I: Configuration of some standard benchmark functions

Function Name Dimension Searching range Threshold Optimum
fi(z)  Sphere 20 [-100, 100]? 0.01 0
f2(x)  Rosenbrock 20 [-30,30]" 100 0
fs(x)  Penalized | 20 [-50,50]" 0.01 0
fa(x)  Schwefel 2.21 20 [-100, 100]P 0.01 0

To compare the improved PSO algorithm with some well-knoBOB, the parameters of the simulations
are set as follows. The size of the swafhequals t20, the dimension of the particl® equals ta20, the
maximum iterationV equals ta20000 in the experiments, and the number of repetitioequals to50 in
each experiment. For each of the benchmark functions, ttferpeance of the improved PSO is evaluated
by comparing with several standard or modified PSOs, inolydhe PSO-LDIW [31], PSO-TVAC [32],
SDPSO [35], MDPSO [26] and FOPSO [36].

The logarithmic mean values of the fitness functions are shiowFigs. 5-8, in which the variation
of the logarithmic mean fitness with the increasing of iterathas been clearly demonstrated by using
diverse mark and line styles. Meanwhile, the statisticshefdptimization solutions have also been listed
in TABLE Il to further compare the performance of the PSO alhms, including the achievable optima,
the mean values and standard deviations of the optima asawéfle success rates of the PSO algorithms
for every benchmark functions.

From Figs. 5-8, it can be clearly observed that the improv8@® Putperforms all other standard and
modified PSOs. For instance, the Sphere function is a typmahodal benchmark function to test the rate
of convergence of the intelligent optimization algorithn@bviously, the mean fithess of the improved
PSO algorithm converges much faster than the algorithmss@-BDIW and FOPSO as shown in Fig. 5,
though the latter ones can achieve slightly better finalnogition results. For the Rosenbrock function,



FINAL VERSION 11

Sphere Rosenbrock
50 ‘ 9 ‘ ‘ ‘
PSO-LDIW
~ v — PSO-TVAC
It 8 \ — » — SDPSO
ofeee $- ‘ ~ ® — MDPSO
\Ad ***k:»»»»»»»» i ~ & —FOPSO
v &= * ) — @ — Improved PSO
= N - N = [N
2 v e L Z sl
5 -sof N L =
o N LI kel
1) v ¢ ¢ - ] “.\\
2 VYV VVFYVV¥F¥RY VYV 2501, &
RSN ¥
S ° ¢ -
< -100} X \ Tl _e Tty
5 . N Sat| v O R S
= PSO-LDIW \ = ! .
~ v — PSO-TVAC g » . YRV YVYVYVVVYFYFVYFYVYYVVYVYY
Lol | - >~ sopso eecese 3'k> N ]
—sof | D >
a — MDPSO *\ 8 Raa g g et
— 4 — FOPSO 2r \ FrEEEEEEEEER
— @ — Improved PSO %o °
200 - ) ) | 1 ) ©0o0000000000
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of iterations: (Swarm=20, Dimension=20) Number of iterations: (Swarm=20, Dimension=20)
Fig. 5: Mean fitness of function Sphere Fig. 6: Mean fitness of function Rosenbrock
Penalized | Schwefel 2.21
10 : : ‘ ‘ :
| 4 PSO-LDIW T NN
sl ~ v - PSO-TVAC || of !‘ii\\: >y it
\ ~ » — SDPSO v a ***’V*Fr—y >
| 8-0-9 — m — MDPSO | ol N N
0 !r,f:{;**’ - ¢ —FOPSO v \;\l “
\"\i\\ S GG Improved PSO _al . LN N
z s Vo ¥ "P—y,»r | = X " a ‘\
E v >y S -of AT N
= -10 e 1 = \ =
2 [ \ 8 - vvvvv¥gvygv
c \ c L] \
2 -15¢ [ ] \ = \ [ &
< U e ¢ = -10f . 1
2 o0t v o vl 2 PSO-LDIW b \
o “1211 - v - pso-TvAC ‘e
o5l \ " 1 _14l |~ » —sDbPso \
\\ "\ — ® — MDPSO . °
-30 . v ] _16} | — ¢ —FoPso o,
vveeeoelseeeeeoe — @ — Improved PSO ®ooo0e
-35 - - - -18 - - -
5000 10000 15000 20000 0 5000 10000 15000 20000
Number of iterations: (Swarm=20, Dimension=20) Number of iterations: (Swarm=20, Dimension=20)
Fig. 7: Mean fitness of function Penalized |  Fig. 8: Mean fitness of function Schwefel 2.21

which is usually treated as a multimodal benchmark functiard to achieve an optimum, the improved
PSO algorithm performs perfectly comparing with other PSgbrthms on both the convergence rate
and the optimum result. For the Penalized | function, sé\R&D algorithms, i.e. PSO-TVAC, MDPSO,
FOPSO and the improved PSO, have similar performance orcthevable optimization results. However,
the convergence rate of the improved PSO is faster than MD&8OFOPSO and a bit slower than its
ancestor PSO-TVAC. This performance is benefited from thealily and adaptively regulated fractional-
order velocity, which can not only maintain the convergenate of standard PSO algorithm but also
make the exploitation and exploration of the searching spaore thoroughly. The above-mentioned
performance of the improved PSO can also be verified by thiengattion results of the Schwefel 2.21
function, where the improved PSO outperforms all the oth@©Ralgorithms on both the convergence
rate and the achievable optimum result.
The superior performance of the improved PSO can also berowdiby the statistics of the opti-

mization results in TABLE Il. For example, the improved PS&h @btain an optimum much better than
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the other PSOs except PSO-LDIW. For the Rosenbrock functimimproved PSO is the winner on the
items of the achievable optimum, the mean value and stardkasdtion of the optimization results, and
the success rate. The similar statistics results on theliPedd function can also affirm the relationship
between the improved PSO and the other ones. Actually, tpeowed PSO is not only the descendant of
PSO-TVAC and FOPSO but also similar to the other PSOs on tdatiqg scheme. Moreover, it is clear
that the superiority of the improved PSO can also be dematestrbased on the statistics results on the
Schwefel 2.21 function. Thus, the improved PSO can outperfine other PSOs in TABLE Il from the
view of comprehensive evaluation on the statistic reséltitionally, it is worth pointing out that both
of the improved PSO and MDPSO have a better success rateitharhter PSOs. But, the improved PSO
requires less memory space comparing with the MDPSO, whitdhramdomly select they,..; and gy

of the previous iterations in the process of optimization.

TABLE II: Statistics of the optimization results

PSO-LDIW  PSO-TVAC  SDPSO MDPSO FOPSO Improved PSO
fi(z) Optimum 340 x 10-202 523 x 10138 131x10~* 498 x 10719 1,69 x 10-198  1.74 x 10~ 20"
Mean 167 x 107188 949 x 1077  3.20x 107 252x 107 127 x 107" 9.01 x 10~14!
Std. Dev. 0.00 6.70x 107 9.97x 1079 1.44x10-%  0.00 6.37 x 10140
Rate 100% 100% 100% 100% 100% 100%
fo(z) Optimum 1.32x107%  1.97x10°2  1.00x 10"} 346x 1074  1.22x10°3  3.86 x 10~
Mean 1.10 x 104 1.87 x 103 1.46 x 102 6.97 x 10 1.09 x 104 1.69 x 10!
Std. Dev. 2.94 x 10* 1.27 x 10 5.95%x 102 4.26 x 102 2.94 x 10 7.88 x 10!
Rate 76% 94% 94% 98% 80% 98%
fs(z) Optimum 2.35x 10732  235x10732  1.34x 1071 235x 10732  235x 10732  2.35 x 10732
Mean 311x 1073 235x 10732 631x107% 235x 10732 236x 10732 236 x 10752
Std. Dev. 2.19x1072  829x10°%  202x 108 829x107% 3.83x1073  3.83x 103
Rate 98% 100% 100% 100% 100% 100%
fi(z) Optimum 952x 10716  212x 1072 1.15x1072 1.74x 10714 268 x 10714 3.63x 1023
Mean 433%x 10713 1.93x 1078  742x1072 274x 1071 205x 1072 1.07x 10~17
Std. Dev. 9.17x 10713 456 x 1078  529x 1072 497 x 10~'1  3.60x 10712  4.86 x 1017
Rate 100% 100% 0% 100% 100% 100%

V. SIMULATION RESULTS

The new strategy combining the continuous high-degreedBezirve with the improved PSO algorithm
has been employed in this section to handle the issue of iplgramooth path for the mobile robot in
the workspace of Fig. 3. The parameters for the simulatigreements are depicted by: the number of
control points is taken as 7 for the continuous high-degrezd curve, the size of population is set as 50
for the particle swarm, the maximum value is set as 100 foitdration, the ratio of penalty is taken as
30 for the path points violating the obstacle-free constraind the weighting coefficients; (i = 1,2, 3)
are empirically taken as 1, 10000 and 1000 in this paperemsely.

To demonstrate the advantages of the new strategy, sevenalbon experiments have been imple-
mented to produce an optimal smooth robot path in the wodespé Fig. 3, and two of the experiment
results have been illustrated in Fig. 9 and 10. In the two safdhe simulation experiments, the starts
and destinations are set, respectively, from Grid 0 to GB8 and Grid 15 to Grid 240. The specific
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coordinate values of the grids are taken as (5, 5) for GridlB5( 155) for Grid 255, (155, 5) for Grid
15, and (5, 155) for Grid 240. In Fig. 9 and 10, the Bezier csreentrol points are denoted by the blue
hollow circles; the convex hull of the high-degree continsi®ezier curve is composed of the blue solid
lines; and the devised optimal smooth path is indicated leyrédd solid curve. In order to contrast the
performance of the generated smooth paths, the countegsaitts of the strategy combining the MDPSO
with the cubic Bezier curve segments [26] have been illtstian Fig. 11 and 12. Though the smooth
paths seem to be similar with each other in Fig. 9 (respdyti#ey. 10) and Fig. 11 (respectively, Fig. 12),
there are essential differences on the these smooth patks.FHg. 9 and its counterpart Fig. 11 for an
example. The smooth path in Fig. 9 is a continuous high-oB#aier curve, while the smooth path in
Fig. 11 is composed of several cubic Bezier curve segmehtssiooth path consisted of curve segments
can be included in the convex hull composed of a feasiblatipath, which itself is a feasible path from
the start to the destination. Nevertheless, it can be obderiearly from Fig. 9 that the convex hull of
the continuous high-degree Bezier curve is no longer aldEasinear path, i.e. it can not be segmented
and then smoothed by the curves like cubic Bezier curves.rbidoubt that the optimization problem is
more difficult for the smooth path planning using continubigh-order Bezier curve. But, the continuous
curve has more advantages on the continuity of the smoothtpah the segment curves.
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Fig. 9: Smooth path | (Continuous high-degreeFig. 10: Smooth path Il (Continuous high-degree
Bezier curve + Improved PSO) Bezier curve + Improved PSO)

Meanwhile, the corresponding curvature curves of theseoiimpaths have been depicted in Fig. 13
and 14, respectively. Obviously, the curvature of the sim@aiths produced via the strategy of this paper
is continuous, which ensures the continuous movement ofrtbkile robot and makes the tracking of
the smooth path much easier. However, there are severahtauevsteps at some of the joints of the
counterpart smooth path segments, which will inevitabldléo several frequent switches of the motion
state of mobile robot. This will undoubtedly result in distiouous velocity and acceleration of the mobile
robot, which can cause the slippage and over actuation ihiglespeed moving cases. Besides, it is really
a complicated task to achieve the smooth connection of ttie gEgments, especially for the high-order
continuity of the smooth robot path. In contrast, the camdus high-order Bezier curve can guarantee
the high-order continuity of the path naturally avoidings tbomplicated work to connect the smooth
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Fig. 13: Curvature of smooth path | Fig. 14: Curvature of smooth path I

path segments, not to mention the criteria on high-ordetimoity can be linked directly to the smooth
path optimization problem. The aforementioned obsermatican be further confirmed by the curvature
derivatives of the smooth paths as shown in Figs. 15 and 1pamtly, the smooth curvature derivatives
imply the continuous curvatures of the smooth paths geeerasing the proposed strategy. Meanwhile,
the steps on the curvature derivatives of the counterparsbmpath segments would lead to discontinuous
curvatures,thereby causing the adverse motion of the mobidot.

Remark 3:lt is worth noting that the planning of smooth path in this @ajs essentially a challenging
optimization problem for the optimizer to seek an optimunosth path for the WMR in the cases of
Fig. 9 and 10. It is very difficult and complex to accomplisksttask because of the following reasons at
least. Firstly, a feasible optimum smooth robot path hasetinla narrow valley full of obstacles nearby,
thus it is very likely to be trapped into a local optimum s@uatthat actually is not a feasible smooth
path. Secondly, the convex hull of the continuous high-éedsezier curve usually will be no longer a
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Fig. 15: Curvature derivative of smooth path | Fig. 16: Curvature derivative of smooth path I

feasible linear path in contrast with the cubic Bezier cuisggments of Fig. 11 and 12, which will make
the strategy of smoothing the linear path not be workablédRh the criteria of minimum curvature and
curvature derivative is linked to the optimization of theath path, which makes the issue of planning
smooth path a multimodal optimization problem that is premdrap into the local optimum solution.
Fortunately, the challenging task of this paper can be ssfaly accomplished by using the strategy
combining the continuous high-degree Bezier curve withithproved PSO algorithm proposed in this
paper, which can achieve advanced performance in companigb the approaches presented in previous
papers [25], [26].

V. CONCLUSIONS

A new strategy combining the continuous high-degree Beaigve with an improved PSO algorithm
has been proposed in this paper for the planning of the smobtt path. In comparison with the smooth
path planning approaches in the literature, the proposedstrategy can improve the smooth path planning
of mobile robot from the following aspects at least. On the band, the smooth paths produced via the
continuous high-degree Bezier curve are masendothet than those composed of several low-degree
Bezier curve segments. That is because the high-orderncityti(e.g. continuous curvature derivative)
can be naturally satisfied along the smooth path made up dincaus high-degree Bezier curve. On the
other hand, the objective function in Eq. (10) can be catedlaccurately with a low computation cost,
since its elements (e.g. curvature derivative of the padin) lme expressed in analytic form. Moreover, an
optimal smooth path can be obtained based on the new strdtegguse the requirements of continuity
are linked directly to the optimization criteria rather theonnecting several smooth curve segments as
done in the literature. Hence, the proposed new strategyuwdoubtedly benefit the motion control of
mobile robot.

To deal with the hard optimization problem of the continubigh-degree Bezier curve, an improved
PSO is proposed to overcome the frequently encounteredepnsbof local trapping and premature
convergence. By introducing an adaptive fractional-ordelocity into the velocity updating function
according to the state of the particle swarm evolution, starsturbances” will be brought to the particle
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swarm. As such, some “power” will make it more likely to jumpt®f the local minima, so as to explore

and exploit the searching space more thoroughly. Thus, tbblgms of local trapping and premature
convergence can be greatly improved. The superiority ofrtiroved PSO algorithm can be verified by
comparing with several standard and modified PSO algorithmseveral well-known standard benchmark
functions. Furthermore, the advantage of the new stratpgy the criteria of the formulated optimization

problem has also been confirmed by the simulation resultsnoiogh path planning.

In future research, we will focus on some interesting topreduding 1) the determination of the
weight coefficients of the fractional-order velocities inparameter domain that could guarantee the
convergence of the algorithm, as well as the combinatioroofesnew strategies that can further promote
the performance of the improved PSO, e.g. the switchingyd@d], the randomly distributed delay
[38], the sigmoid-function-based adaptive weight [39]dahe Markovian state jumping [40]; 2) the
combination of multiobjective optimization algorithmsttvithe developed approaches to further improve
the performance, see e.g. [41], [42] for novel intelligelgbaithms capable of finding the global optimum
of high-dimensional problem efficiently; and 3) the appiica of the developed approaches to some more
complicate situations such as state estimation [43]-[@&ilh planning of multi-robot [46], [47], dynamic
motion planning [48], [49], and three-dimensional trapegtgeneration [50]-[52], etc.
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