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Abstract

In this paper, a new strategy is developed to plan the smooth path for mobile robots through an improved PSO

algorithm in combination with the continuous high-degree Bezier curve. Rather than connecting several low-degree

Bezier curve segments, the use of continuous high-degree Bezier curves facilitates the fulfilment of the requirement

of high-order continuity such as the continuous curvature derivative, which is critical for the motion control of the

mobile robots. On the other hand, the smooth path planning ofmobile robots is mathematically an optimization

problem that can be dealt with by evolutionary computation algorithms. In this regard, an improved particle swarm

optimization (PSO) algorithm is proposed to tackle the local trapping and premature convergence issues. In the

improved PSO algorithm, an adaptive fractional-order velocity is introduced to enforce some disturbances on the

particle swarm according to its evolutionary state, thereby enhancing its capability of jumping out of the local

minima and exploring the searching space more thoroughly. The superiority of the improved PSO algorithm is

verified by comparing with several standard and modified PSO algorithms on some benchmark functions, and the

advantages of the new strategy is also confirmed by several comprehensive simulation experiments for the smooth

path planning of mobile robots.

Index Terms

Mobile robot; Continuous Bezier curve; Smooth path planning; Adaptive fractional-order velocity; Particle

swarm optimization.

I. INTRODUCTION

The purpose of path planning is to generate a collision-freeroute from the starting point to the desti-

nation, and the corresponding research has been ongoing ever since the inception and the implementation
of mobile robots [1], [2]. Technically, the problem of path planning can be formulated as an optimization
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problem that is subject to several constraints and performance criteria (e.g. shortest distance and obstacle-

free route), see [3], [4]. Up to now, an increasing amount of algorithms have been developed to devise an
optimally planned path for mobile robots such as those usingrapidly-exploring random tree (RRT) [5],

artificial potential field [6], probabilistic roadmap method (PRM) [7], Voronoi-diagram [8], A∗ [9] and

D∗ [10], etc.
It is worth pointing out that, for most aforementioned path planning algorithms, the paths generated

are usually polygonal lines which might contain undesirable sharp turns [11]. To track these paths, a

robot has to frequently switch their motion states among ‘stop’, ‘rotation’ and ‘restart’ [12]. In this case,

the switching of motion states will undoubtedly lead to discontinuous velocity and acceleration, which
will further result in the occurrence of slippage and over actuation when a mobile robot is moving at a

high speed [13]. Therefore, planning asmoothyet optimal path is an imperative strategy for the mobile

robot to satisfy multiple optimization constraints such aslow time/energy cost, high-speed movement, and
complex service tasks [14], [15].

In the context of smooth path planning of mobile robots, several algorithms have been presented in the

past few years. For example, an algorithm has been put forward in [16] to plan smooth paths using an
improved visibility graph, where the A∗ algorithm has been employed to search for a collision-avoidance

path, which is then smoothed by using an optimized B-spline curve via the particle swarm optimization

(PSO) scheme. An efficient continuous-curvature path-smoothing algorithm has been proposed in [17]
where the parametric cubic Bezier curves are exploited to smooth the obstacle-avoidance path that is

generated by fitting a sequence of way points. A four parameter logistic curve has been proposed and

applied for the planning of the smooth robot path in [18], where the complete path can be achieved
by connecting the smooth path subsections. In [19], a genetic algorithm (GA) has been applied to plan

an optimal obstacle-free path for the mobile robot, where several piecewise cubic Hermite interpolating

polynomials are applied for the smoothing of the generated optimal path. In [20], the segments of cubic
Bezier curve have been joined together to obtain a smooth robot path with way points and corridor

constraints. In [21], a new parallel PSO algorithm has been put forward to devise a linear feasible path

for the mobile robot, and then such a path is smoothed by usingthe B-spline curve. In [22], theη3-
splines have been employed to smoothly connect the endpoints of the linear path generated by using the

MAKLINK Graph and Dijkstra algorithm.

In the literature mentioned above, the planned smooth pathsare usually smoothed by using parametric
curves (e.g. Bezier curve) after the procedure of linear path planning. As such, the devised paths would lose

their optimality, because the procedure of path smoothing is not linked directly to the path optimization.

To handle such an optimality loss issue, several methods have been proposed todirectly design the smooth

path of the mobile robot. For example, a Bézier curve-basedmodel has been investigated for path planning,
where a novel Chaotic Particle Swarm Optimization (CPSO) algorithm has been proposed to optimize

the control points of Bézier curve [23]. However, this approach has not been utilized in the complex

environment of mobile robot, where some motion constraintshave to be considered in the path planning.
The η3-splines have been combined with the parallel genetic algorithm in [24] to design a smooth path

for the autonomous robot, where only the path length has beenconsidered for the path optimization. In

[25], a new genetic algorithm in combination with the Beziercurve has been investigated for the smooth
path planning of mobile robot, but the devised optimal path is interrelated to the new grid-based mobile
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robot workspace, that is, the Bezier curve’s control pointshave to be limited to the center of each grid

(rather than arbitrary points of the workspace). To overcome this drawback, a new scheme combining
PSO with cubic Bezier curves has been put forward in [26] to produce a smooth optimal path for the

mobile robot, but it is very difficult to ensure the high-order continuity for the connected path segments.
In this paper, a new strategy is developed for the planning issue of the smooth robot path by using

a continuous high-degree Bezier curve and an improved PSO algorithm. Instead of connecting several

low-degree Bezier curve segments (e.g. cubic Bezier curves), we use the continuous high-degree Bezier

curve to fulfill the requirements of the smooth path planning(e.g. continuous curvature). Yet, the Bezier
curve’s control points should be optimized to ensure the performance of the smooth path, and this is

actually an optimization problem that can be dealt with by evolutionary computation (EC) algorithms. In

this regard, an improved PSO algorithm is proposed to tackletwo typical EC-related issues, that is, local
trapping and premature convergence. In the improved PSO algorithm, an adaptive fractional-order velocity

is introduced to bring certain disturbances in the searching process, thereby enhancing the possibility for

the particles to jump out of the local minima of the searchingspace and exploring the searching space
more thoroughly.

The contributions of the current paper are outlined from thefollowing three aspects.(1) To satisfy the

smoothness requirement on the planned path, a new approach using a continuous high-degree Bezier curve

is developed, thereby removing the need to connect several segments of the smooth curves as done in the

literature. (2) An improved PSO algorithm with adaptive fractional-order velocity is developed to handle

two frequently occurred obstacles in the smooth robot path planning, namely, local trapping and premature

convergence, and the superiority of the improved PSO algorithm is verified by several comprehensive

simulation experiments on some well-known benchmark functions. (3) The issue of planning the smooth

path for the mobile robot is mathematically formulated as anoptimization problem. Then, the problem

is solved by the newly developed strategy combining the continuous high-degree Bezier curve with the

improved PSO algorithm. Finally, the simulation results demonstrate that the smooth paths produced by

the new strategy can outperform the paths derived in our previous studies.

The organization of the rest of paper is described as follows. The preliminary of the Bezier curve is

briefly introduced in Section II. In Section III, the modeling of the mobile robot and the workspace are first
described in detail. Then, the planning of smooth path of themobile robot is formulated mathematically

as an optimization problem. Furthermore, the improved PSO algorithm with adaptive fractional-order

velocity is elaborated and discussed by comparing with several famous PSO algorithms upon some standard
benchmark functions. In Section IV, the new strategy combining the continuous high-degree Bezier curve

with the improved PSO algorithm is employed to devise the smooth robot path, and the superiority of the

new strategy is illustrated by simulation experiments. Finally, Section V concludes this paper by pointing
out some future works.

II. PRELIMINARY ON BEZIER CURVE

As a kind of parametric curve, Bezier curve has been widely utilized in practical engineering [20] such

as mechanical design and computer graphics [13]. The definition of a Bezier curve of degreen can be

expressed by [15]:

P (t) =
n

∑

i=0

Bi,n(t)pi, t ∈ [0, 1], (1)



FINAL VERSION 4

whereP (t) represents the Bezier curve;t denotes the normalized variable of motion time;pi = (xi, yi)
T

indicates a vector of coordinate which consists of the components of the X-Y-coordinate of theith control
point;Bi,n(t) (i = 0, 1, · · · , n) stands for the Bernstein polynomials of degreen, which actually expresses

the Bezier curve’s base functions that can be defined as

Bi,n(t) = C i
nt

i(1− t)n−i =
n!

i!(n− i)!
ti(1− t)n−i (2)

for i = 0, 1, · · · , n.

According to the definition, the first derivative of the Bezier curve can be expressed as

Ṗ (t) =
P (t)

dt
= n

n−1
∑

i=0

Bi,n−1(t)(pi+1 − pi), (3)

and its second derivative can be expressed by:

P̈ (t) = n(n− 1)

n−2
∑

i=0

Bi,n−2(t)(pi+2 − 2pi+1 + pi). (4)

Hence, the curvature along the Bezier curve in the two-dimensional plane can be computed by:

κ(t) =
ṗx(t)p̈y(t)− ṗy(t)p̈x(t)

(ṗ2x(t) + ṗ2y(t))
3/2

, (5)

where ṗx(t) (respectively,ṗy(t)) and p̈x(t) (respectively,p̈y(t)) indicate the X-Y-coordinate components

of the first and second derivatives of the Bezier curve, respectively. Similarly, we can compute other
derivatives of the Bezier curve iteratively based on the above expressions.

III. M ETHODOLOGIES OFSMOOTH PATH PLANNING

A. Modeling of the mobile robot and the workspace

A differential driving wheeled mobile robot (WMR) is considered in this paper. The velocity model
of the WMR has been shown in Fig. 1, wherevl(t) and vr(t) indicate, respectively, the left and right

velocities of the two wheels;l denotes the axial distance of the pair of wheels; andωR(t) and vR(t)

represent, respectively, the angular and linear velocities of the WMR. Thus, the velocity model of the
WMR is determined as follows [27], [28]:

ωR(t) =
vr(t)− vl(t)

l/2
, (6)

vR(t) =
vl(t) + vr(t)

2
, (7)

and the kinematics model of the WMR shown in Fig. 2 can be expressed by:










θ̇R(t) = ωR(t),

ẋR(t) = vR(t) · cos θR(t),

ẏR(t) = vR(t) · sin θR(t),

(8)

wherexR(t) and yR(t) represent, respectively, the coordinate components of theposition of the WMR,
and θR(t) represents the orientation of the WMR. Correspondingly,ẋR(t) and ẏR(t) indicate the X-Y-

coordinate components of the linear velocity, andθ̇R(t) denotes the anticlockwise angular velocity.
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Fig. 1: Velocity model of the WMR

Fig. 2: Kinematics model of the WMR

In this paper, the workspace of the WMR is supposed to be a two-dimensional plane, which is the

same environment in [25] and [26] for the convenience comparison of the results. The workspace shown

in Fig. 3 is a square plane that has been cut into2n × 2n grids, and each grid is a square of10 × 10

units. For each of the grids, it is assigned a grid number and the black grid indicates a square space that

is infeasible for the WMR because it is occupied by some obstacles, while the white grid indicates the

obstacle-free space for the WMR. Obviously, the environment can be described in more details with a
larger parametern at the cost of increasing the computational load. Therefore, the parametern should be

selected according to the performance specification on the path planning and, in this paper,n is set as 4.

Note that the boundaries of the obstacles are extended in accordance with the robot size. Thus, the
mobile robot can be taken as a unit point of the workspace regardless of its real size. To determine whether

a unit point is feasible for the mobile robot, the following criterion is defined.
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Fig. 3: Mobile robot workspace

Definition 1: A unit point is feasible if and only if it is not in a black square grid, which contains the

extended boundaries of the obstacles, i.e.Np /∈ Nb, whereNb indicates the number set of the black square
grids;Np indicates a numbered grid that contains the unit point, and the conversion from a unit point to

a numbered grid can be expressed by:

Np = ⌊y(t)/10⌋ × 16 + ⌊x(t)/10⌋, (9)

where ⌊·⌋ represents the mathematical operation of rounding down;x(t) and y(t) indicate the X-Y-

coordinate components of a unit point in the workspace.

B. Problem Description

The objective of this paper is to seek a feasible yet optimal smooth path for the mobile robot, where

the planned smooth path should fulfill the following criteria and constraints: 1) the smooth path planned

in this paper should be a feasible route for the movement of the mobile robot, i.e. an obstacle-avoidance
route; 2) the devised smooth path should satisfy the smoothness requirement of high-order continuity, e.g.

a G3-path [29]; and 3) the curvature and its derivative of the generated smooth path should be minimized

to benefit the path tracking of the mobile robot.
To meet the aforementioned three requirements of the smoothpath planning task, a continuous high-

degree Bezier curve is employed to produce a satisfactory smooth path by optimizing the Bezier curve’s

control points. Note that we no longer need to connect several Bezier curve segments (e.g. the cubic
Bezier curves) as done in most existing literature, and thismakes it possible to link the path smoothing

directly to the path optimization. In this case, the planning of smooth path in this paper is essentially an

optimization problem that seeks a series of control points,which lead to a feasible and optimal Bezier
curve for the mobile robot path. Accordingly, the objectivefunction of such an optimization problem can

be expressed by:

min J = w1 × ‖P (t)‖+ w2 ×max |κ(t)|+ w3 ×max |κ̇(t)|, t ∈ [0, 1],

s.t. P (t) /∈ Nb, P (t) ∈ C3,
(10)
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wherewi (i = 1, 2, 3) denotes the weighting coefficient of the above cost function; ‖ · ‖ indicates the path

length; | · | represents the absolute value of the curvature and curvature derivative; andC3 stands for the
set of functions with the continuity until the third derivative. Obviously, the smooth path planning of this

paper is a rather complicated optimization problem whose solution is prone to fall into the local minima.

To tackle this issue, an improved PSO algorithm is in order and will be discussed later.
Remark 1:It is worth mentioning that the path consisting of a continuous high-degree Bezier curve

outperforms the planned path generated by connecting several Bezier curve segments. On the one hand,

compared to the path composed of Bezier curve segments, it ismore natural for the continuous high-

degree Bezier curve path to satisfy the requirement of high-order continuity. On the other hand, with the
continuous high-degree Bezier curve path, the computationcost can be much reduced in the process of

path optimization because the elements of the objective function in Eq. (10) (e.g. the curvature derivative

of the path) can be expressed in the analytic form and therefore accurately calculated.

C. The improved PSO algorithm

PSO is an intelligent optimization algorithm presented in [30] for simulating the swarm behaviors of

animals [30], for example, the flocks of fish and birds. Recently, PSO has been widely utilized to search

for an optimal solution of various optimization problems inrobotics, e.g. the optimal design of controller,
autonomous navigation, and path planning of mobile robot, etc.

For PSO, one particle in the swarm acts as a possible optimal solution of an optimization problem. The

particle, which represents a candidate solution to the optimization problem, can fly around to explore an
optimal solution of a certain searching space. For every particle of the swarm, the velocity and position

at thekth iteration will be updated in the next iteration as follows:

vk+1

i = wvki + c1r1(x
k
ib − xk

i ) + c2r2(x
k
gb − xk

i ), (11)

xk+1

i = xk
i + vk+1

i , (12)

wherexk
i and vki of the ith particle represent the position and velocity at thekth iteration, respectively;

xk
ib andxk

gb indicate, respectively, theith particle’s best position (pbest) and the best position of the global

swarm (gbest) till iteration k; w is the velocity inertia weight;c1 andc2 denote, respectively, the coefficients
of the particle acceleration;r1 and r2 are two real numbers that are randomly produced and distributed

on [0, 1] uniformly.

Up to now, several improved PSO algorithms have been proposed in the literature for the performance
promotion of the original PSO. For example, PSO with linearly decreased inertia weight (which is denoted

as PSO-LDIW) has been presented by Shi and Eberhart to linearly decrease the inertia weight of the particle

velocity [31]. PSO with time-vary acceleration coefficients (which is denoted as PSO-TVAC) has been

developed by Ratnaweera and his colleagues [32] to adjust the two acceleration coefficients of the velocity
updating function in each iteration. However, the parameters of the above improved PSOs could not be

regulated adaptively according to the state of evolution ofthe particle swarm. To adaptively calculate the

acceleration coefficients and inertia weight of the PSO algorithm, an adaptive PSO (which is denoted as
APSO) was presented in [33] to switch among several velocityupdating functions in accordance with the

current evolutionary state that is determined by the calculated evolutionary factor of the particle swarm.

Based on the strategies introduced in [33], the switching PSO (which is denoted as SPSO) was proposed



FINAL VERSION 8

in [34] to change the velocity updating function based on thepredicted evolutionary state in terms of a

Markov chain. Furthermore, a random delay was introduced into the velocity updating function of the
switching delayed PSO (which is denoted as SDPSO) in [35] on account of the evolutionary state of

the swarm. Moreover, a multimodal delayed PSO (which is denoted as MDPSO) was presented in [26]

to improve the performance of convergence and robustness byadaptively adding two novel terms in the
velocity updating function. Nevertheless, there are some rather stringent requirements on these modified

algorithms, e.g. the computational burden and memory storage.

To overcome the defects of the modified PSO algorithms mentioned above and effectively dispose of

the problem of planning a smooth robot path, an improved PSO algorithm motivated by the algorithm of
PSO with fractional-order velocity (which is denoted as FOPSO) [36] is developed in this paper and the

updating functions of velocity and position are as follows:

vk+1

i = αvki +
1

2
α(1− α)vk−1

i +
1

6
α(1− α)(2− α)vk−2

i +
1

24
α(1− α)(2− α)(3− α)vk−3

i

+ c1r1(x
k
ib − xk

i ) + c2r2(x
k
gb − xk

i ), (13)

xk+1

i = xk
i + vk+1

i , (14)

wherec1 andc2 are, respectively, calculated as follows:

c1 = (c1i − c1f )×
kmax − k

kmax

+ c1f , (15)

c2 = (c2i − c2f )×
kmax − k

kmax

+ c2f , (16)

wherec1i (c2i) andc1f (c2f ) denote, respectively, the initial and final values of the acceleration coefficients

c1 andc2; kmax denotes the maximum iteration; and the parameterα indicates the fractional order of the
velocity in [36], while in this paper,α is a variable that is linearly and adaptively regulated according to

the evolutionary state of the swarm, and it is calculated by

α = 0.9−
1

1 + e−Ek
f

×
k

kmax

, (17)

whereEk
f denotes an evolutionary factor that can reflect the state of the swarm evolution at thekth

iteration and is calculated by

Ek
f =

dkgb − dkmin

dkmax − dk
min

, (18)

wheredkmax anddkmin denote the maximum and minimum of an average distance, respectively, from one

particle to others in the swarm;dkgb denotes the average distance of thegbest; while the average distance

at thekth iteration (which is denoted asdki ) can be calculated for theith particle by

dki =
1

S − 1

S
∑

j=1,j 6=i

√

√

√

√

D
∑

k=1

(xk
i − xk

j )
2, (19)

whereS andD indicate, respectively, the population size of the particle swarm and the dimension of each
particle. The algorithm of the improved PSO is completely described in Fig. 4.

Remark 2:In FOPSO, the fractional-order velocities have been introduced into the updating function

of traditional PSO algorithm. The additional fractional-order velocity terms are essentially some kind of
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Fig. 4: Flowchart of the improved PSO algorithm

delays of velocity, which can be regarded as some “disturbances” that will bring some “power” for the

particles to jump out of the local minima. Thus, a better optimization result can be obtained owing to

the extended search space. It is worth noting that the property of historical memory in the fractional-
order velocities can play a similar role as the additional terms in MDPSO, but few memory storage and

computational capacity are required in the FOPSO algorithm. Similarly, the velocity of the next iteration

is related to not only the velocity of the current iteration but also the velocities of previous three iterations

in the improved PSO algorithm. This strategy can bring some “useful” disturbances to the process of
convergence, which makes it possible for particles to fly outof the local minima of the search space.

Meanwhile, the fractional order of the velocities is linearly and adaptively regulated in terms of the state

of the swarm evolution, which makes it possible for the particle to explore and exploit the whole search
space more thoroughly so as to obtain an optimum of the globalspace.

To test the improved PSO algorithm, several simulation experiments are implemented upon some

frequently used benchmark functions in this paper. The benchmark functions are formulated as Eqs. (20)-
(23), all of them are some typical evaluation functions whose solutions are difficult to obtain. The

configuration of these functions is demonstrated as TABLE I,in which the last three columns list,
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respectively, the searching range of each dimension, the threshold of a successful optimal solution, and

the theoretical optimum value of each benchmark function.

Sphere : f1(x) =

D
∑

i=1

x2

i , (20)

Rosenbrock : f2(x) =

D−1
∑

i=1

100(xi+1 − x2

i )
2 + (xi − 1)2, (21)

Penalized I : f3(x) =
π

D
{10 sin2(πy1) +

D−1
∑

i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]

+ (yD − 1)2}+

D
∑

i=1

u(xi), (22)

yi = 1 + 1/4(xi + 1), u(xi) =











100(−xi − 10)4, xi < −10,

0, |xi| ≤ 10,

100(xi − 10)4, xi > 10.

Schwefel 2.21 : f4(x) = max{| xi |}, 1 ≤ i ≤ D (23)

TABLE I: Configuration of some standard benchmark functions

Function Name Dimension Searching range Threshold Optimum

f1(x) Sphere 20 [−100, 100]D 0.01 0

f2(x) Rosenbrock 20 [−30, 30]D 100 0

f3(x) Penalized I 20 [−50, 50]D 0.01 0

f4(x) Schwefel 2.21 20 [−100, 100]D 0.01 0

To compare the improved PSO algorithm with some well-known PSOs, the parameters of the simulations

are set as follows. The size of the swarmS equals to20, the dimension of the particleD equals to20, the

maximum iterationN equals to20000 in the experiments, and the number of repetitionT equals to50 in

each experiment. For each of the benchmark functions, the performance of the improved PSO is evaluated
by comparing with several standard or modified PSOs, including the PSO-LDIW [31], PSO-TVAC [32],

SDPSO [35], MDPSO [26] and FOPSO [36].

The logarithmic mean values of the fitness functions are shown in Figs. 5-8, in which the variation
of the logarithmic mean fitness with the increasing of iteration has been clearly demonstrated by using

diverse mark and line styles. Meanwhile, the statistics of the optimization solutions have also been listed

in TABLE II to further compare the performance of the PSO algorithms, including the achievable optima,
the mean values and standard deviations of the optima as wellas the success rates of the PSO algorithms

for every benchmark functions.

From Figs. 5-8, it can be clearly observed that the improved PSO outperforms all other standard and
modified PSOs. For instance, the Sphere function is a typicalunimodal benchmark function to test the rate

of convergence of the intelligent optimization algorithms. Obviously, the mean fitness of the improved

PSO algorithm converges much faster than the algorithms of PSO-LDIW and FOPSO as shown in Fig. 5,
though the latter ones can achieve slightly better final optimization results. For the Rosenbrock function,
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which is usually treated as a multimodal benchmark functionhard to achieve an optimum, the improved
PSO algorithm performs perfectly comparing with other PSO algorithms on both the convergence rate

and the optimum result. For the Penalized I function, several PSO algorithms, i.e. PSO-TVAC, MDPSO,

FOPSO and the improved PSO, have similar performance on the achievable optimization results. However,
the convergence rate of the improved PSO is faster than MDPSOand FOPSO and a bit slower than its

ancestor PSO-TVAC. This performance is benefited from the linearly and adaptively regulated fractional-

order velocity, which can not only maintain the convergencerate of standard PSO algorithm but also
make the exploitation and exploration of the searching space more thoroughly. The above-mentioned

performance of the improved PSO can also be verified by the optimization results of the Schwefel 2.21

function, where the improved PSO outperforms all the other PSO algorithms on both the convergence

rate and the achievable optimum result.
The superior performance of the improved PSO can also be confirmed by the statistics of the opti-

mization results in TABLE II. For example, the improved PSO can obtain an optimum much better than
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the other PSOs except PSO-LDIW. For the Rosenbrock function, the improved PSO is the winner on the

items of the achievable optimum, the mean value and standarddeviation of the optimization results, and
the success rate. The similar statistics results on the Penalized I function can also affirm the relationship

between the improved PSO and the other ones. Actually, the improved PSO is not only the descendant of

PSO-TVAC and FOPSO but also similar to the other PSOs on the updating scheme. Moreover, it is clear
that the superiority of the improved PSO can also be demonstrated based on the statistics results on the

Schwefel 2.21 function. Thus, the improved PSO can outperform the other PSOs in TABLE II from the

view of comprehensive evaluation on the statistic results.Additionally, it is worth pointing out that both

of the improved PSO and MDPSO have a better success rate than the other PSOs. But, the improved PSO
requires less memory space comparing with the MDPSO, which will randomly select thepbest andgbest
of the previous iterations in the process of optimization.

TABLE II: Statistics of the optimization results

PSO-LDIW PSO-TVAC SDPSO MDPSO FOPSO Improved PSO

f1(x) Optimum 3.40× 10−202 5.23× 10−138 1.31× 10−4 4.98× 10−105 1.69× 10−193 1.74× 10−201

Mean 1.67× 10−188 9.49× 10−74 3.29× 10−9 2.52× 10−66 1.27× 10−178 9.01× 10−141

Std. Dev. 0.00 6.70× 10−73 9.97× 10−9 1.44× 10−65 0.00 6.37× 10−140

Rate 100% 100% 100% 100% 100% 100%

f2(x) Optimum 1.32× 10−4 1.97× 10−2 1.00× 10−1 3.46× 10−4 1.22× 10−3 3.86× 10−11

Mean 1.10× 104 1.87× 103 1.46× 102 6.97× 101 1.09× 104 1.69× 101

Std. Dev. 2.94× 104 1.27× 104 5.95× 102 4.26× 102 2.94× 104 7.88× 101

Rate 76% 94% 94% 98% 80% 98%

f3(x) Optimum 2.35× 10−32 2.35× 10−32 1.34× 10−14 2.35× 10−32 2.35× 10−32 2.35× 10−32

Mean 3.11× 10−3 2.35× 10−32 6.31× 10−9 2.35× 10−32 2.36× 10−32 2.36× 10−32

Std. Dev. 2.19× 10−2 8.29× 10−48 2.02× 10−8 8.29× 10−48 3.83× 10−34 3.83× 10−34

Rate 98% 100% 100% 100% 100% 100%

f4(x) Optimum 9.52× 10−16 2.12× 10−12 1.15× 10−2 1.74× 10−14 2.68× 10−14 3.63× 10−23

Mean 4.33× 10−13 1.93× 10−8 7.42× 10−2 2.74× 10−11 2.05× 10−12 1.07× 10−17

Std. Dev. 9.17× 10−13 4.56× 10−8 5.29× 10−2 4.97× 10−11 3.60× 10−12 4.86× 10−17

Rate 100% 100% 0% 100% 100% 100%

IV. SIMULATION RESULTS

The new strategy combining the continuous high-degree Bezier curve with the improved PSO algorithm

has been employed in this section to handle the issue of planning smooth path for the mobile robot in

the workspace of Fig. 3. The parameters for the simulation experiments are depicted by: the number of
control points is taken as 7 for the continuous high-degree Bezier curve, the size of population is set as 50

for the particle swarm, the maximum value is set as 100 for theiteration, the ratio of penalty is taken as

30 for the path points violating the obstacle-free constraint, and the weighting coefficientswi (i = 1, 2, 3)
are empirically taken as 1, 10000 and 1000 in this paper, respectively.

To demonstrate the advantages of the new strategy, several simulation experiments have been imple-

mented to produce an optimal smooth robot path in the workspace of Fig. 3, and two of the experiment
results have been illustrated in Fig. 9 and 10. In the two cases of the simulation experiments, the starts

and destinations are set, respectively, from Grid 0 to Grid 255 and Grid 15 to Grid 240. The specific
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coordinate values of the grids are taken as (5, 5) for Grid 0, (155, 155) for Grid 255, (155, 5) for Grid

15, and (5, 155) for Grid 240. In Fig. 9 and 10, the Bezier curve’s control points are denoted by the blue
hollow circles; the convex hull of the high-degree continuous Bezier curve is composed of the blue solid

lines; and the devised optimal smooth path is indicated by the red solid curve. In order to contrast the

performance of the generated smooth paths, the counterpartresults of the strategy combining the MDPSO
with the cubic Bezier curve segments [26] have been illustrated in Fig. 11 and 12. Though the smooth

paths seem to be similar with each other in Fig. 9 (respectively, Fig. 10) and Fig. 11 (respectively, Fig. 12),

there are essential differences on the these smooth paths. Take Fig. 9 and its counterpart Fig. 11 for an

example. The smooth path in Fig. 9 is a continuous high-orderBezier curve, while the smooth path in
Fig. 11 is composed of several cubic Bezier curve segments. The smooth path consisted of curve segments

can be included in the convex hull composed of a feasible linear path, which itself is a feasible path from

the start to the destination. Nevertheless, it can be observed clearly from Fig. 9 that the convex hull of
the continuous high-degree Bezier curve is no longer a feasible linear path, i.e. it can not be segmented

and then smoothed by the curves like cubic Bezier curves. It is no doubt that the optimization problem is

more difficult for the smooth path planning using continuoushigh-order Bezier curve. But, the continuous
curve has more advantages on the continuity of the smooth path than the segment curves.
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Fig. 9: Smooth path I (Continuous high-degree
Bezier curve + Improved PSO)
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Fig. 10: Smooth path II (Continuous high-degree
Bezier curve + Improved PSO)

Meanwhile, the corresponding curvature curves of these smooth paths have been depicted in Fig. 13

and 14, respectively. Obviously, the curvature of the smooth paths produced via the strategy of this paper

is continuous, which ensures the continuous movement of themobile robot and makes the tracking of
the smooth path much easier. However, there are several curvature steps at some of the joints of the

counterpart smooth path segments, which will inevitably lead to several frequent switches of the motion

state of mobile robot. This will undoubtedly result in discontinuous velocity and acceleration of the mobile
robot, which can cause the slippage and over actuation in thehigh-speed moving cases. Besides, it is really

a complicated task to achieve the smooth connection of the path segments, especially for the high-order

continuity of the smooth robot path. In contrast, the continuous high-order Bezier curve can guarantee
the high-order continuity of the path naturally avoiding the complicated work to connect the smooth
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Fig. 11: Smooth path I (Cubic Bezier curve

segments + MDPSO)
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Fig. 12: Smooth path II (Cubic Bezier curve

segments + MDPSO)
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Fig. 13: Curvature of smooth path I
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Fig. 14: Curvature of smooth path II

path segments, not to mention the criteria on high-order continuity can be linked directly to the smooth

path optimization problem. The aforementioned observations can be further confirmed by the curvature

derivatives of the smooth paths as shown in Figs. 15 and 16. Apparently, the smooth curvature derivatives
imply the continuous curvatures of the smooth paths generated using the proposed strategy. Meanwhile,

the steps on the curvature derivatives of the counterpart smooth path segments would lead to discontinuous

curvatures,thereby causing the adverse motion of the mobile robot.
Remark 3:It is worth noting that the planning of smooth path in this paper is essentially a challenging

optimization problem for the optimizer to seek an optimum smooth path for the WMR in the cases of

Fig. 9 and 10. It is very difficult and complex to accomplish this task because of the following reasons at

least. Firstly, a feasible optimum smooth robot path has to lie in a narrow valley full of obstacles nearby,
thus it is very likely to be trapped into a local optimum solution that actually is not a feasible smooth

path. Secondly, the convex hull of the continuous high-degree Bezier curve usually will be no longer a
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Fig. 15: Curvature derivative of smooth path I
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Fig. 16: Curvature derivative of smooth path II

feasible linear path in contrast with the cubic Bezier curvesegments of Fig. 11 and 12, which will make

the strategy of smoothing the linear path not be workable. Thirdly, the criteria of minimum curvature and

curvature derivative is linked to the optimization of the smooth path, which makes the issue of planning
smooth path a multimodal optimization problem that is proneto trap into the local optimum solution.

Fortunately, the challenging task of this paper can be successfully accomplished by using the strategy

combining the continuous high-degree Bezier curve with theimproved PSO algorithm proposed in this
paper, which can achieve advanced performance in comparison with the approaches presented in previous

papers [25], [26].

V. CONCLUSIONS

A new strategy combining the continuous high-degree Beziercurve with an improved PSO algorithm

has been proposed in this paper for the planning of the smoothrobot path. In comparison with the smooth

path planning approaches in the literature, the proposed new strategy can improve the smooth path planning
of mobile robot from the following aspects at least. On the one hand, the smooth paths produced via the

continuous high-degree Bezier curve are more “smoother” than those composed of several low-degree

Bezier curve segments. That is because the high-order continuity (e.g. continuous curvature derivative)
can be naturally satisfied along the smooth path made up of continuous high-degree Bezier curve. On the

other hand, the objective function in Eq. (10) can be calculated accurately with a low computation cost,

since its elements (e.g. curvature derivative of the path) can be expressed in analytic form. Moreover, an
optimal smooth path can be obtained based on the new strategy, because the requirements of continuity

are linked directly to the optimization criteria rather than connecting several smooth curve segments as

done in the literature. Hence, the proposed new strategy will undoubtedly benefit the motion control of

mobile robot.
To deal with the hard optimization problem of the continuoushigh-degree Bezier curve, an improved

PSO is proposed to overcome the frequently encountered problems of local trapping and premature

convergence. By introducing an adaptive fractional-ordervelocity into the velocity updating function
according to the state of the particle swarm evolution, some“disturbances” will be brought to the particle
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swarm. As such, some “power” will make it more likely to jump out of the local minima, so as to explore

and exploit the searching space more thoroughly. Thus, the problems of local trapping and premature
convergence can be greatly improved. The superiority of theimproved PSO algorithm can be verified by

comparing with several standard and modified PSO algorithmson several well-known standard benchmark

functions. Furthermore, the advantage of the new strategy upon the criteria of the formulated optimization
problem has also been confirmed by the simulation results of smooth path planning.

In future research, we will focus on some interesting topicsincluding 1) the determination of the

weight coefficients of the fractional-order velocities in aparameter domain that could guarantee the

convergence of the algorithm, as well as the combination of some new strategies that can further promote
the performance of the improved PSO, e.g. the switching delay [37], the randomly distributed delay

[38], the sigmoid-function-based adaptive weight [39], and the Markovian state jumping [40]; 2) the

combination of multiobjective optimization algorithms with the developed approaches to further improve
the performance, see e.g. [41], [42] for novel intelligent algorithms capable of finding the global optimum

of high-dimensional problem efficiently; and 3) the application of the developed approaches to some more

complicate situations such as state estimation [43]–[45],path planning of multi-robot [46], [47], dynamic
motion planning [48], [49], and three-dimensional trajectory generation [50]–[52], etc.
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