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Abstract—This paper is concerned with the recursive secure
filtering problem for a class of discrete-time systems subject to
unreliable communication due to the security vulnerability of
sensor networks. The unreliable communication, caused probably
by denial-of-service cyber-attacks, is described by the well-known
Gilbert-Elliott model. The addressed nonlinearities are applicable
for some of the most investigated stochastic nonlinear models,
including the well-known state-dependent multiplicativenoises as
special cases. The aim of this paper is to design a novel distributed
filter that uses the information not only from the individual node
itself but also from its neighboring nodes according to the given
topology. In order to improve the security of designed filter, a
χ
2 detector is utilized to detect abnormal innovations. By means

of the failure and recovery rates of the Gilbert-Elliott channels,
sufficient conditions are established to ensure the existence of
an upper bound on the estimation error covariance, and then
the desired filter parameters are designed by minimizing the
trace of such an upper bound. The asymptotic boundedness
of the estimation error covariance is subsequently investigated.
Finally, a simulation example on the target tracking problem
is employed to verify the effectiveness and the security of the
proposed filtering scheme.

Index Terms—Secure filtering; sensor networks; distributed
filtering; Gilbert-Elliott channels; χ

2 test.

I. I NTRODUCTION

A typical sensor network (SN) consists of a large number
of smart sensors spatially deployed in some predetermined
areas of interest. Powered by batteries, sensor nodes are
usually linked together according to a given topology to
carry out the tasks of information collection and processing
in a collaborative way [5], [10], [11], [18], [24]. Benefiting
from the configuration convenience and deployment flexibility
[12], [32], SNs have been regarded as a kind of fashionable
information sensing/processing platform with promising ap-
plication prospect, thereby attracting ever-increasing research
attention from various engineering areas [25], [28], [31].In
SNs, it is quite common that collected information needs to
be exchanged among neighboring nodes and/or transmitted
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to a fusion center for target state estimation. Due to the
resource limitation on both energy usage and communication
bandwidth, thecentralizeddata processing at the fusion center
could be infeasible or inefficient especially for large scale SNs.
As such, in parallel with the quiet evolution of centralized
fusion techniques, the distributed filtering algorithms have
received considerable research interest in the past few years.
It should be pointed out that the main idea of the distributed
filtering algorithms is to decentralize the function of fusion
center to each intelligent sensor [14].

For distributed filtering algorithms over SNs, there are two
critical issues deserving intensive investigations: 1) how to
fuse the measurements or predicted states from the individual
node itself and its neighboring nodes in order to improve the
filtering performance [7], and 2) how to design numerically
appealing filtering algorithms with desiredscalability towards
real-time implementation. According to the way of utilizing
the obtained information, existing recursive distributedfilter-
ing strategies can be generally divided into four categories.
The first category consists of the Kalman-consensus filtering
algorithms with a typical two-stage form [1], in which an
L-step calculation needs to be implemented at each instant
to achieve the consensus performance. The second category
is composed of the diffusion Kalman filtering algorithms [2]
which actually replace the consensus strategies in the firstcate-
gory by diffusion strategies after the measurement update.The
third category comprises the weighted innovation-sum-based
algorithms [8] whose innovation terms involve the weighted
sum of errors of the measurements from its neighboring nodes
and the predicted measurement from the individual node itself.
The last category is made of the so-called prediction-error-
based algorithms [23] which replace the innovation in the third
category by the weighted sum of errors of predicted states from
its neighboring nodes and the individual node itself. Obviously,
for all the four categories, the scalability requirement becomes
particularly important with the introduced weighted sum.

In practical engineering, it is not uncommon that the
communication-based measurements suffer from the security
vulnerability of SNs and therefore become unreliable. On the
one hand, adversaries can jam the shared network channel
to prevent designed filters from communicating with their
neighboring filters within a distributed architecture. This kind
of phenomenon can be regarded as denial-of-service attacksor
successive packet dropouts from different engineering points
of view [34]. In this case, the channel states are temporally
correlated and cannot be exactly described via the conventional
Bernoulli distributed white sequence. Fortunately, a time-
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homogeneous binary Markov process can be employed to
describe the transformation characteristics of the channel states
[29], for which the corresponding model is referred to as the
Gilbert-Elliott channel [14], [25]. On the other hand, if not
protected by hardware/software strategies, smart sensor nodes
could be vulnerable to malware damages and the stored data
on sensor nodes might be corrupted, which leads to significant
deviation from its real measurements [8]. In this scenario,the
filtering performance would be unavoidably deteriorated ifthe
corrupted data are utilized to estimate the system states [20].
Accordingly, it is of great importance to propose a suitable
filter structure capable of cyber defense in order to facilitate
the target monitoring in a secure manner.

When cyber security is a major concern, much progress
has been made on the general filtering problems so far, see
e.g. [21], [26], [27] for resilient filtering problems, [33]for
the attack scheduling problems, and [19], [22] for the attack
detection problems. To be more specific, when the addressed
linear system is2s-sparse observable, two state reconstruction
algorithms have been proposed in [26] via a batch of sensor
measurements subject to sparse malicious attacks. Some op-
timal schemes of attack scheduling with energy constraints
have been designed in [33] to decide whether to jam the
channel. Up to now, to the best of the authors’ knowledge, the
filtering problem with a defense strategy over sensor networks
has not been adequately addressed yet, which still remains as
a challenging research topic. Obviously, the main challenges
stem from the rather stringent security requirements, which
are identified as follows: 1) the designed defense strategies
should be realizable from the engineering point of view; 2) it
is essentially difficult to estimate the inspection probability of
corrupted data for distributed filters with designed defense s-
trategies; and 3) it is nontrivial to design the desired filter gains
due to the complicated calculation of the error covariances.
Note that the single-sensor-based centralized filtering schemes
without defense strategies have been thoroughly examined
by constructing a sequence of stopping times, see e.g. [29].
Unfortunately, such an approach is no longer applicable to
the distributed secure filter design problems to be addressed
in this paper because the estimation error covariance cannot
be accurately calculated at two adjacent moments of stopping
times.

Summarizing the above discussions, in this paper, we focus
our attention on the distributed secure filtering problem with
a defense strategy over the Gilbert-Elliott channels. The main
contributions are highlighted as follows:1) a novel distributed
filter is designed by embedding aχ2 detector to identify
unreliable measurements due to malicious attacks or outliers;
2) the gains of the designed distributed filters are dependent
on the solution to a Riccati-like difference equation, and the
computational complexity is therefore unrelated to the scale
of underlying SNs; and 3) rigorous analysis is carried out on
the failure and recovery rates of channels in order to ensure
the boundedness of designed secure filtering algorithm.

The rest of this paper is organized as follows. Section II
briefly introduces the problem under consideration. In Section
III, the evolutions of both the one-step prediction error covari-
ance and the estimation error covariance are derived. Then,the

filter gains are designed to ensure the existence of an locally
optimized upper bound on the estimation error covariance at
each sampling instant. For the designed filters, a boundedness
condition on the estimation error covariance is proposed in
Section IV. An illustrative example is provided in Section V
to show the effectiveness of the proposed method. Finally, the
paper is concluded in Section VI.

Notation The notation used here is fairly standard except
where otherwise stated.Rn andRn×m denote, respectively, the
n dimensional Euclidean space and the set of alln×m real
matrices.Nm means the positive integer set{1, 2, · · · ,m}.
I denotes the identity matrix of compatible dimension.[A]i
means a row vector whose elements come from theith row of
matrixA. N (0, 1) denotes the Gaussian distribution with mean
0 and variance1, andχ2

m stands for the chi-square (i.e.χ2)
distribution withm freedom degrees.

II. PROBLEM FORMULATION AND PRELIMINARIES

The triple G = (V , E ,H) in this paper is employed to
describe the underlying SNs. For this triple,V = Nm and
E ∈ Nm × Nm stand for, respectively, the sets of nodes
and edges, andH = [hij ]m×m with nonnegative adjacency
elementhij represents the weighted adjacency matrix. An
edge ofG is usually denoted by the ordered pair(i, j), and
the adjacency elements associated with the edges is positive,
i.e., hij > 0 ⇐⇒ (i, j) ∈ E , which means that sensori
can receive information from sensorj. The set of neighbors
of node i is denoted byNi = {j ∈ V : (i, j) ∈ E },
and ⌊Ni⌋ is the number of neighbors of nodei. In addition,
the Laplacian matrix of this graph is defined asG = H −
diag

{
∑m

j=1
h1j,

∑m

j=2
h2j , · · · ,

∑m

j=1
hmj

}

. For the purpose
of convenience, we further assume that the topology graph of
SNs is a strongly connected directed graph and the row sum
of weighted adjacency matrixH is equal to one. Under this
assumption, we always have

∑m

j=1
h2
ij ≤ 1.

We consider the following discrete-time system:

xk+1 = Axk +Bwk (1)

with measurements

yi,k = Cixk +Dνi,k, i ∈ Nm (2)

wherexk ∈ R
nx is the state of target plant that cannot be

observed directly,yi,k ∈ R
ny is the measurement output from

sensori, and {wk}k≥0 and {νi,k}k≥0 are independent and
identically distributed (i.i.d) sequences obeying the Gaussian
distribution N (0, I). All stochastic variables and the initial
statex0 are mutually independent.A, B, Ci (i ∈ Nm), andD
are known matrices with compatible dimensions.

Assumption 1:The pairs(A,
√
BBT ) and((I−κH)⊗A,C)

are, respectively, stabilizable and observable, whereC =
diag{C1, C2, · · · , Cm}.

In this paper, the signal is transmitted over shared Gilbert-
Elliott channels, under which the packet loss process is mod-
eled by a time-homogeneous two-state Markov chain with the
state space{0, 1}. To be precise, this Markov sequence is
denoted as{δk}k≥0 and its transition probability matrix is as
follows

P =

[

1− q q
p 1− p

]
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wherep = P{δk+1 = 0|δk = 1} andq = P{δk+1 = 1|δk = 0}
are called the failure rate and the recovery rate, respectively.
For presentation convenience, we denote the received infor-
mation x̂r+

i,k by neighbors of filteri as

x̂r+
i,k =

{

x̂+

i,k, δk = 1;

0, δk = 0,
(3)

where the second case in (3) means thatx̂r+
i,k is set as zero

when no information from filteri is received. Introduce the
following indicator function:

δri,k =

{

1,
∑

j∈Ni
‖x̂r+

j,k‖ > 0;

0,
∑

j∈Ni
‖x̂r+

j,k‖ = 0,
(4)

which can be utilized to detect the channel stateδk. In light
of the probability theory, one hasP{∑j∈Ni

‖x̂r+
j,k‖ = 0|δk =

1} = 0 (or P{δri,k = δk} = 1 a.s.) becausexk and yi,k are
driven by Gaussian white noises with continuous probability
density functions. Therefore, variablesδri,k and δk have the
same statistical characteristics. Furthermore, one has

P{δri,k+1 = 0|δri,k = 1}
= P{δri,k+1 = 0, δk+1 = 0|δri,k = 1}

+ P{δri,k+1 = 0, δk+1 = 1|δri,k = 1}
= P{δk+1 = 0|δri,k = 1, δk = 1}

+ P{δk+1 = 0|δri,k = 1, δk = 0}
= P{δk+1 = 0|δk = 1}

and

P{δri,k+1 = 1|δri,k = 0} = P{δk+1 = 1|δk = 0}.

Denotex̂−
i,k andx̂+

i,k as the one-step prediction and estimate
of the target statexk at instantk, respectively. Furthermore,
define the corresponding prediction and estimation error co-
variance as follows:

P−
i,k = E{(xk − x̂−

i,k)(xk − x̂−
i,k)

T },
P+

i,k = E{(xk − x̂+

i,k)(xk − x̂+

i,k)
T }.

In what follows, according to the famous Kalman filtering
theory, the innovation, denoted asηi,k = yi,k −Cix̂

−
i,k, obeys

the Gaussian distribution with variancePη,i,k = CiP
−
i,kC

T
i +

DDT . As such, the square of the Mahalanobis distance of the
above innovation isχ2 distributed, that is

Mi,k = ηTi,kP
−1

η,i,kηi,k ∼ χ2
ny (5)

with the freedom degreeny. In light of the hypothesis test,
for a given levelσ, one has

P(Mi,k < χ2
ny,σ) = 1− σ

whereχ2
ny,σ is usually called as theσ-quantile [3].

Due to the vulnerability of communication networks, the
adversary may overhear and modify the information in the
transmitted data packets in order to yield a larger estimation
error, which will produce some negative impacts on the
operation of systems. In this paper, we only consider the case
that attackers do not have knowledge of full network topology

and system parameters. In other words, they cannot carry out
stealth attack. In this paper, the attack model is model by

yi,k = Cixk +Dνi,k + ni,k, i ∈ Nm

where ni,k is any unknown data injected by attackers. For
this kind of scenario, (5) is adopted to detect abnormal
measurements or sensor attacks. In order to describe this
inspection mechanism in filters, we introduce the following
indicator function:

ϑi,k =

{

1, Mi,k < χ2
ny,σ,

0, otherwise.
(6)

By means of (6), we construct the following distributed
secure filter on sensori:















ξ̂+i,k =
∑

j∈Ni

hij

(

x̂r+
j,k − δri,kx̂

+

i,k

)

,

x̂−
i,k+1

= Ax̂+

i,k + κAξ̂+i,k,

x̂+

i,k+1
= x̂−

i,k+1
+ ϑi,k+1Ki,k+1ηi,k+1

(7)

whereκ ∈ (0, 1) is a predetermined coupling strength and
Ki,k+1 is the filter gain to be determined. This kind of filters is
also named as distributed secure filters due to the utilization of
secure detectors of abnormal measurements or sensor attacks.

Remark 1: In comparison with some existing schemes,
the constructed distributed filter (7) exhibits distinct novelty
in that the innovation inspection is introduced to remove
the abnormal data or outliers that might result from false
data-injection attacks or abnormal interferences of sensors.
Specifically, in case the innovation is abnormal, we have that
ϑi,k = 0 and therefore the negative impact from the data
abnormality is minimized. Furthermore, the model of Gilbert-
Elliott channels are capable of describing the phenomenon
of denial of service (DoS) attacks implemented by jamming
the shared network medium, where the real-time state of the
communication channel,δk, is commonly detectable under the
designed scheme.

Remark 2:In practical engineering, the inspection threshold
χ2
ny,σ can be predetermined according to a given detection

probabilityσ and the degree of freedomny. Furthermore, such
a threshold (essentially aσ-quantile) can be found from theχ2

distribution table. It follows from (6) that the implementation
of attack detection mainly depends on the square of the
Mahalanobis distanceMi,k and therefore the detection real-
time is high benefiting from its low calculation burden. Other
detection approaches include Bayesian detection approaches
with binary hypothesis, weighted least square approaches,
artificial-intelligence-based detection strategies, andso forth.

Remark 3:In comparison with the fusion-aware consensus
mechanism in [17], the role of the added consensus term in
the employed filter (7) in this paper is just to reduce the
disagreement potential, and the corresponding filtering error
dynamic is, essentially, a large-scale system, see a similar
structure in Assumption 3 in [31]. When omitting the behavior
of the attack inspection (6) as well as the packet loss, the
boundedness of error dynamic is definitely dependent on
Assumption 1, which is similar to the collective observability
in [17]. As such, there is no doubt that the main challenges for
the addressed filtering issues are how to realize the distributed
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design of filter gains and how to disclose the impact on the
boundedness from the failure and recovery rates of channels.

Denote the known information asIi,k = {δri,k, ϑi,k+1} on
filter i. The aim of this paper is highlighted as twofold:

R1) Design a Kalman-type distributed secure filter with
the form (7) and the known informationIi,k such that an
upper bound of estimation error covariance is guaranteed in
the presence of abnormal measurements or sensor attacks, that
is, there exists a sequence of positive-definite matricesΠ+

i,k|k
satisfying

P+

i,k ≤ Π+

i,k, ∀k > 0 (8)

whereMi,k in the innovation inspection (6) is taken asMi,k =
ηTi,kΓ

−1

η,i,kηi,k with Γη,i,k being a positive-definite matrix to be
designed. Furthermore, the sequence of upper boundsΠ+

i,k is
minimized via the designed filter parametersKi,k;

R2) For the designed filter parametersKi,k, find a condition
on the failure ratep and the recovery rateq, under which
the sequenceΠ+

i,k is asymptotically bounded as time tends to
infinity.

III. D ISTRIBUTED FILTER DESIGN

In this section, we first deal with the unbiasedness, and
then discuss the lower/upper bounds on both prediction and
estimation error covariance of the proposed distributed secure
filter. Furthermore, by optimizing the upper bound of the
trace of the estimation error covariance, we aim to develop
a new design scheme for the desired filter gain in terms of the
solution to a Riccati-like difference equation.

Before proceeding further, we introduce the following math-
ematical operation. Specially, for two positive-definite matri-
cesX andY , we define the operations:

min{X,Y } =







X, X ≤ Y
Y, Y < X

λXY
minI, otherwise

max{X,Y } =







Y, X ≤ Y
X, Y < X

λXY
maxI, otherwise

whereλXY
max and λXY

min stand for, respectively, the maximum
eigenvalue and minimum eigenvalue in all eigenvalues ofX
andY .

In what follows, for the discrete-time system (1), ifx̂+
0 =

E{x0} for any i ∈ Nm, one has

E{xk+1 − x̂−
i,k+1

}
= E{A(xk − x̂+

i,k) +Bwk − κAξ̂+i,k}
= − κA

∑

j∈Ni

hijE{δri,k}E
{(

x̂+

j,k − xk

)

+
(

xk − x̂+

i,k

)}

− κA
∑

j∈Ni

hijE{δk − δri,k}x̂+

j,k

= 0, (9)

and

E{xk+1 − x̂+

i,k+1
}

= E{xk+1 − x̂−
i,k+1

}

− E{ϑi,k+1Ki,k+1(Ci(xk+1 − x̂−
i,k+1

) +Dνi,k)}
= 0, (10)

which implies that the proposed filter is unbiased, that is,
E{xk − x̂+

i,k} = 0.
Lemma 1: For the distributed secure filter (7) with the

known informationIi,k, the covarianceP−
i,k+1

of one-step
prediction errors and the covarianceP+

i,k+1
of estimation errors

satisfy

P−
i,k+1

≤ (1 + κδri,k)AP
+

i,kA
T +Qi,k, (11)

P+

i,k+1
= P−

i,k+1
− ϑi,k+1Ki,k+1CiP

−
i,k+1

− ϑi,k+1P
−
i,k+1

CT
i K

T
i,k+1

+ ϑi,k+1Ki,k+1Pη,i,k+1K
T
i,k+1 (12)

where

Ξ+

i,k =
∑

j∈Ni∪{i}

2P+

j,k,

Qi,k = BBT + δri,kκ(1 + κ)AΞ+

i,kA
T .

Proof: Definee+i,k = xk − x̂+

i,k and its derivative vector

e+k = [ e+T
1,k e+T

2,k · · · e+T
m,k ]T .

Then, the conditional expectation of̂ξ+i,k(ξ̂
+

i,k)
T is calculated

as

E
{

ξ̂+i,k(ξ̂
+

i,k)
T
∣

∣δri,k
}

= δri,kE
{

([G]i ⊗ I)e+k e
+T
k ([G]Ti ⊗ I)

}

+ E{(δk − δri,k)
2
∣

∣δri,k}
(

∑

s∈Ni

hij x̂
+

j,k

)(

∑

s∈Ni

hij x̂
+

j,k

)T

= δri,kE
{

P+

i,k − e+i,k

(

∑

j∈Ni

hije
+

j,k

)T

−
∑

j∈Ni

hije
+

j,k(e
+

i,k)
T

+
∑

j∈Ni

∑

s∈Ni

hijhise
+

j,k(e
+

s,k)
T
}

≤ δri,k

(

P+

i,k +
∑

j∈Ni

h2
ijP

+

i,k

+
∑

j∈Ni

P+

j,k +
∑

j∈Ni

∑

s∈Ni

h2
isP

+

j,k

)

≤ 2δri,k
∑

j∈Ni∪{i}
P+

j,k. (13)

In what follows, noting thatδri,k takes a value in{0, 1}, we
calculate that

E
{(

xk − x̂+

i,k

)

(ξ̂+i,k)
T
∣

∣Ii,k
}

= E
{

δri,k
(

xk − x̂+

i,k

)

(ξ̂+i,k)
T
∣

∣Ii,k
}

≤ 1

2
(δri,kP

+

i,k + E
{

ξ̂+i,k(ξ̂
+

i,k)
T
∣

∣Ii,k
}

)

≤
δri,k
2

(P+

i,k + Ξ+

i,k). (14)

Then, it follows from (14) that

P−
i,k+1

= E{(xk+1 − x̂−
i,k+1

)(xk+1 − x̂−
i,k+1

)T }
= E

{(

A(xk − x̂+

i,k) +Bwk − κAξ̂+i,k
)

×
(

A(xk − x̂+

i,k) +Bwk − κAξ̂+i,k
)T |Ii,k

}
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≤ (1 + κδri,k)AP
+

i,kA
T +BBT

+ κ(1 + κ)AE
{

ξ̂+i,k(ξ̂
+

i,k)
T |Ii,k

}

AT , (15)

which yields the relationship (11). Furthermore, according to
the unbiasedness we have that

P+

i,k+1

= E{(xk+1 − x̂+

i,k+1
)(xk+1 − x̂+

i,k+1
)T }

= E
{(

(I − ϑi,k+1Ki,k+1Ci)(xk+1 − x̂−
i,k+1

)

− ϑi,k+1Ki,k+1Dνi,k
)(

(I − ϑi,k+1Ki,k+1Ci)

× (xk+1 − x̂−
i,k+1

)− ϑi,k+1Ki,k+1Dνi,k
)T |Ii,k

}

= (I − ϑi,k+1Ki,k+1Ci)P
−
i,k+1

(I − ϑi,k+1Ki,k+1Ci)
T

+ ϑi,k+1Ki,k+1DDTKT
i,k+1, (16)

which results in (12). The proof is now complete.
Performing some necessary operations to (11) and (12), we

have the following recursive equations on the lower and upper
bounds of covariance matricesP+

i,k.
Theorem 1:Let Γ−

i,k ≤ P−
i,k, Γ+

i,k ≤ P+

i,k andP+

i,k ≤ Π+

i,k.
For the distributed secure filter (7) with the known information
Ii,k, a set of lower bounds(Γ−

i,k+1
,Γ+

i,k+1
) of the covariance

matrix pair (P−
i,k+1

, P+

i,k+1
) is calculated by

Γ−
i,k+1

=

{

Q̃1i,k +BBT , Q̃1i,k ≥ 0
BBT , otherwise

(17)

Γ+

i,k+1
= min{Γ−

i,k+1
, S̃1i,k+1} (18)

where

Ξ̃+

i,k =
∑

j∈Ni∪{i}

2Π+

j,k,

S̃1i,k = Ki,kDDTKT
i,k

+ (I −Ki,kCi)Γ
−
i,k(I −Ki,kCi)

T ,

Q̃1i,k = (1− κδri,k)AΓ
+

i,kA
T + δri,kκ(κ− 1)AΞ̃+

i,kA
T

(19)

Proof: First, it is straightforward to see that

E
{(

xk − x̂+

i,k

)

(ξ̂+i,k)
T |Ii,k

}

≥ −
δri,kP

+

i,k + E
{

ξ̂+i,k(ξ̂
+

i,k)
T
∣

∣δri,k
}

2
.

(20)

Along the same line in deriving (15), one has

P−
i,k+1

≥ (1− κδri,k)AP
+

i,kA
T +BBT

+ κ(κ− 1)AE
{

ξ̂+i,k(ξ̂
+

i,k)
T
∣

∣δri,k
}

AT

≥ (1− κδri,k)AP
+

i,kA
T

+BBT + δri,kκ(κ− 1)AΞ̃+

i,kA
T .

Next, let us denote

P̄−
i,k+1

= (1− κδri,k)AP
+

i,kA
T

+BBT + δri,kκ(κ− 1)AΞ̃+

i,kA
T .

If Q̃1i,k ≥ 0, subtracting (17) from the above equation leads
to

(1 − κδri,k)A(P+

i,k − Γ+

i,k)A
T

= P̄−
i,k+1

− Γ−
i,k+1

≤ P−
i,k+1

− Γ−
i,k+1

. (21)

Furthermore, considering that̃Q1i,k could be indefinite, one
further has

P−
i,k+1

= E
{(

A(xk − x̂+

i,k)− κAξ̂+i,k
)

×
(

A(xk − x̂+

i,k)− κAξ̂+i,k
)T |Ii,k

}

+BBT

≥ Γ−
i,k+1

. (22)

Taking (21) and (22) into consideration, we have thatΓ−
i,k+1

≤
P−
i,k+1

whenΓ+

i,k ≤ P+

i,k.
On the other hand, whenϑi,k+1 = 0, one can see from (12)

and (18) that

P+

i,k+1
= P−

i,k+1
≥ Γ−

i,k+1

≥ min{Γ−
i,k+1

, S̃1i,k} = Γ+

i,k+1
. (23)

In addition, whenϑi,k+1 = 1, we derive that

P+

i,k+1
− Γ+

i,k+1

= P−
i,k+1

−Ki,k+1CiP
−
i,k+1

− P−
i,k+1

CT
i K

T
i,k+1

+Ki,k+1Pη,i,k+1K
T
i,k+1 −min{Γ−

i,k+1
, S̃1i,k}

≥ (I −Ki,k+1Ci)Υ
−
Γ,i,k+1

(I −Ki,k+1Ci)
T

≥ 0 (24)

whereΥ−
Γ,i,k+1

= P−
i,k+1

− Γ−
i,k+1

≥ 0.
In light of (23) and (24), we conclude thatΓ+

i,k+1
≤ P+

i,k+1

whenΓ−
i,k+1

≤ P−
i,k+1

. Finally, together with (21) and (22),
one confirms that the iterative conditions (17)-(18) are true,
and this completes the proof.

Considering the practical implementation of the innovation
inspection (6), the improved inspection on innovation (2) by
resorting to this lower bound is

ϑ̃i,k =

{

1, ηTi,kΓ
−1

η,i,kηi,k < χ2
ny,σ,

0, otherwise,
(25)

whereΓη,i,k = CiΓ
−
i,kC

T
i +DDT . It should be pointed out that

the resultant modified scheme isP{ϑ̃i,k = 1} ≤ P{ϑi,k = 1}
and therefore inevitably increases the conservatism of attack
detection.

Theorem 2:Let Π−
i,k ≥ P−

i,k and Π+

i,k ≥ P+

i,k. For the
distributed secure filter (7) with the known informationIi,k, a
set of feasible upper bounds(Π−

i,k+1
,Π+

i,k+1
) of the covariance

matrix pair (P−
i,k+1

, P+

i,k+1
) is computed by

Π−
i,k+1

= (1 + κδri,k)AΠ
+

i,kA
T + Q̃2i,k, (26)

Π+

i,k+1
= ϑ̃i,k+1S̃2i,k+1

+ (1− ϑ̃i,k+1)max{Π−
i,k+1

, S̃2i,k+1} (27)

where

S̃2i,k+1 = Ki,k+1DDTKT
i,k+1

+ (I −Ki,k+1Ci)Π
−
i,k+1

(I −Ki,k+1Ci)
T ,

Q̃2i,k = BBT + δri,kκ(1 + κ)AΞ̃+

i,kA
T .

Proof: First, for analysis convenience, let us denote

P̃−
i,k+1

= (1 + κδri,k)AP
+

i,kA
T + Q̃2i,k.
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Obviously, one hasP−
i,k+1

≤ P̃−
i,k+1

. Then, subtracting the
above equation from (26) leads to

(1 + κδri,k)A(Π+

i,k − P+

i,k)A
T

= Π−
i,k+1

− P̃−
i,k+1

≤ Π−
i,k+1

− P−
i,k+1

. (28)

Therefore, we obtainP−
i,k+1

≤ Π−
i,k+1

whenP+

i,k ≤ Π+

i,k.
In what follows, we will address the relationship between

Π+

i,k+1
andP+

i,k+1
. In doing so, we first obtain

ηTi,k+1P
−1

η,i,k+1
ηi,k+1 ≤ ηTi,k+1Γ

−1

η,i,k+1
ηi,k+1.

Then, noting the definition (6) and (25), one has the following
three cases:

• Case 1): ϑi,k+1 = 0 and ϑ̃i,k+1 = 0;
• Case 2): ϑi,k+1 = 1 and ϑ̃i,k+1 = 0;
• Case 3): ϑi,k+1 = 1 and ϑ̃i,k+1 = 1.

For the purpose of simplicity, we define

Υ−
Π,i,k+1

= (I −Ki,k+1Ci)(Π
−
i,k+1

− P−
i,k+1

)(I −Ki,k+1Ci)
T .

Now, for Case 1)and Case 2), we obtain from (12) and
(27) that

Π+

i,k+1
− P+

i,k+1

= max{Π−
i,k+1

, S̃2i,k+1} − (I − ϑi,k+1Ki,k+1Ci)

× P−
i,k+1

(I − ϑi,k+1Ki,k+1Ci)
T

+ ϑi,k+1Ki,k+1DDTKT
i,k+1

≥
{

Π−
i,k+1

− P−
i,k+1

, ϑi,k+1 = 0,

Υ−
Π,i,k+1

, ϑi,k+1 = 1.
(29)

Obviously, one hasΠ+

i,k+1
− P+

i,k+1
≥ 0 when P−

i,k+1
≤

Π−
i,k+1

. Then, forCase 3), one has

Π+

i,k+1
− P+

i,k+1
≥ Υ−

Π,i,k+1
≥ 0. (30)

Obviously, we conclude that the pair(Π−
i,k+1

,Π+

i,k+1
) is a

set of feasible upper bounds, and the proof is complete.
Next, one has

∂Tr(S̃2i,k+1)

∂Ki,k+1

= − 2Π−
i,k+1

CT
i + 2Ki,k+1Πη,i,k+1 (31)

whereΠη,i,k+1 = CiΠ
−
i,k+1

CT
i +DDT . Clearly, when select-

ing

Ki,k+1 = Π−
i,k+1

CT
i Π

−1

η,i,k+1
, (32)

the trace of matrixS̃2i,k+1 is minimized, and the correspond-
ing matrix is

S∗
i,k+1 = min

Ki,k+1

{S̃2i,k+1}

= Π−
i,k+1

−Ki,k+1CiΠ
−
i,k+1

. (33)

Under this selection,Π−
i,k+1

≥ S∗
i,k+1

is always satisfied.
Recalling the objectiveR1), the updated equation in (7) will

be replaced by

x̂+

i,k+1
= x̂−

i,k+1
+ ϑ̃i,k+1Ki,k+1ηi,k+1 (34)

and, therefore, we can obtain following theorem readily.
Theorem 3: For the discrete-time system (1) with the

measurement (2) inspected by (25), let the gain matrixKi,k+1

of the distributed secure filter (7) be calculated by (32) andthe
estimate of statexk+1 be updated by (34). Then, the objective
R1) under the known informationIi,k = {δri,k, ϑ̃i,k+1} is
achieved with the locally optimized upper bounds of error
covariance given by

{

Π−
i,k+1

= (1 + κδri,k)AΠ
+

i,kA
T +Q2i,k,

Π+

i,k+1
= Π−

i,k+1
− ϑ̃i,k+1Ki,k+1CiΠ

−
i,k+1

.
(35)

Remark 4:The above theorem combing with (4) and (25)
consists of the critical core of the distributed recursive filtering
scheme. For each step of the proposed scheme, the imple-
mentation on nodei includes 2 times of the matrix inversion
operation (i.e.Γ−1

η,i,k and Π−1

η,i,k+1
) and 52 + 3⌊Ni⌋ times

of the matrix multiplication operation. With the help of the
dimensions ofxk ∈ R

nx , it is not difficult to calculate the
overall computational complexity on nodei asO(n3

x), which
is independence of the scale of whole sensor networks. Due to
the sparseness of sensor networks, such an algorithm with low
computation burden is really suitable for online application.

IV. PERFORMANCEANALYSIS

In this section, we will analyze the boundedness of esti-
mation error covariance of the proposed distributed secure
filters in the mean-square sense. To this end, the following
assumption is necessary.

Assumption 2:There exist positive real numbersᾱ, c, c̄, ⌊N̄ ⌋
andν such that the following conditions on the bounds of the
system and measurement matrices, the number of neighbors
as well as the probability of the innovation inspection are
fulfilled:

‖A‖ ≤ ᾱ, c ≤ ‖Ci‖ ≤ c̄,
1 + ⌊Ni⌋ ≤ ⌊N̄ ⌋,

∥

∥BBT
∥

∥ ≤ τ̄ ,

P{ϑ̃i,k+1 = 0, ϑi,k+1 = 1} ≤ ν.

ConsideringQ̃2i,k in (26), one has

E
{

Qi,k

∣

∣δk
}

≤ BBT + δri,kE
{

Π̃+

Ni,k
} (36)

where

Π̃+

Ni,k
= 2κ(1 + κ)

∑

j∈Ni∪{i}
AΠ+

j,kA
T .

In light of the above inequality, one has the conditional
expectation onΠ−

i,k+1
:

E{Π−
i,k+1

|δri,k = 0} ≤AE
{

Π+

i,k}AT +BBT (37)

and

E{Π−
i,k+1

|δri,k = 1}
≤ (1 + κ)AE

{

Π+

i,k}AT +BBT + E
{

Π̃+

Ni,k
}. (38)

Furthermore, taking the transition probability (describing
Gilbert-Elliott channels) into consideration, one further has
that

E{Π−
i,k+1

}
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= E{Π−
i,k+1

|δri,k = 0}P{δri,k = 0}
+ E{Π−

i,k+1
|δri,k = 1}P{δri,k = 1}

= E{Π−
i,k+1

|δri,k = 0}P{δri,k = 0|δri,k−1 = 0}P{δri,k−1 = 0}
+ E{Π−

i,k+1
|δri,k = 0}P{δri,k = 0|δri,k−1 = 1}P{δri,k−1 = 1}

+ E{Π−
i,k+1

|δri,k = 1}P{δri,k = 1|δri,k−1 = 0}P{δri,k−1 = 0}
+ E{Π−

i,k+1
|δri,k = 1}P{δri,k = 1|δri,k−1 = 1}P{δri,k−1 = 1}

≤ (1− q)(AE{Π+

i,k}AT +BBT )P{δri,k−1 = 0}
+ p(AE{Π+

i,k}AT +BBT )P{δri,k−1 = 1}
+ q((1 + κ)AE{Π+

i,k}AT +BBT

+ E{Π̃+

Ni,k
})P{δri,k−1 = 0}

+ (1− p)
(

(1 + κ)AE{Π+

i,k}AT +BBT

+ E{Π̃+

Ni,k
}
)

P{δri,k−1 = 1}. (39)

Similarly, it is straightforward to see that

E{Π+

i,k+1
}

= E{Π+

i,k+1
|ϑ̃i,k+1 = 1}P{ϑ̃i,k+1 = 1}

+ E{Π+

i,k+1
|ϑ̃i,k+1 = 0}P{ϑ̃i,k+1 = 0}

≤ E{Π+

i,k+1
|ϑ̃i,k+1 = 1}P{ϑ̃i,k+1 = 1}

+ E{Π+

i,k+1
|ϑ̃i,k+1 = 0}P{ϑ̃i,k+1 = 0}

≤ (1− σ)E{Π+

i,k+1
|ϑ̃i,k+1 = 1}

+ (σ + ν)E{Π+

i,k+1
|ϑ̃i,k+1 = 0}. (40)

Denote the known information set asIi,k =
{δri,k, ϑ̃i,k+1|i ∈ Ni}. According to the above preparation,
we are ready to present the following result.

Theorem 4: For the discrete-time system (1) with the
measurement (2) inspected by (25), let the gain matrixKi,k+1

of the distributed secure filter (7) be calculated by (32)
and the estimate of statexk+1 be updated by (34). Then,
under Assumption 2, the estimation error covariance under
the known sequences{Ii,k} is mean-square bounded, i.e.,

lim
k→∞

∑

i∈Nm

∥

∥

∥
E{Π+

i,k}
∥

∥

∥
< ∞ (41)

if the failure ratep, the recovery rateq and the coupling
strengthκ satisfy

ξq = ζᾱ2
(

1− q + q(1 + κ)(1 + κ⌊N̄ ⌋)
)

< 1, (42)

ξp = ζᾱ2
(

p+ (1− p)(1 + κ)(1 + κ⌊N̄ ⌋)
)

< 1 (43)

where

ζ =
(1 + ν)c2 + c̄2(1− σ)

c2
.

Proof: For the benefits of boundedness analysis, the prob-
ability theory is exploited to tackle the randomness from both
the communication channels and the innovation inspection.For
the simplicity, we denote

Pk,0 = P{δri,k−1 = 0}, Pk,1 = P{δri,k−1 = 1}.
Obviously, one hasPk,0 +Pk,1 = 1 and it is clear from (39)
that

E{Π−
i,k+1

}

≤
(

(1− q + q(1 + κ))AE{Π+

i,k}AT +BBT

+ qκ̃
∑

j∈Ni∪{i}
AE{Π+

j,k}AT
)

Pk,0

+
(

(p+ (1− p)(1 + κ))AE{Π+

i,k}AT +BBT

+ (1− p)κ̃
∑

j∈Ni∪{i}
AE{Π+

j,k}AT
)

Pk,1 (44)

where κ̃ = 2κ(1 + κ). By resorting to the property of
norm operation, the above inequality is further manipulated
as follows:

‖E{Π−
i,k+1

}‖
≤

(

(1− q + q(1 + κ))ᾱ2‖E{Π+

i,k}‖+ τ̄

+ qκ̃ᾱ2
∑

j∈Ni∪{i}
‖E{Π+

j,k}‖
)

Pk,0

+
(

(p+ (1− p)(1 + κ))ᾱ2‖E{Π+

i,k}‖+ τ̄

+ (1− p)κ̃ᾱ2
∑

j∈Ni∪{i}
‖E{Π+

j,k}‖
)

Pk,1. (45)

On the other hand, along the similar line used in [16], it
follows from (40) that

‖E{Π+

i,k+1
}‖

≤ ‖(σ + ν)E{Π−
i,k+1

}‖
+ ‖(1− σ)E{(I −Ki,k+1Ci)Π

−
i,k+1

}‖

≤ (1 + ν)c2 + c̄2(1 − σ)

c2
‖E{Π−

i,k+1
}‖. (46)

Next, taking (45) and (46) into consideration, one has that
∑

i∈Nm

∥

∥E{Π+

i,k+1
}
∥

∥

≤
(

(1 − q + q(1 + κ))ζᾱ2
∑

i∈Nm

‖E{Π+

i,k}‖+mζτ̄

+ qζκ̃ᾱ2
∑

i∈Nm

∑

j∈Ni∪{i}
‖E{Π+

j,k}‖
)

Pk,0

+
(

(p+ (1 − p)(1 + κ))ζᾱ2
∑

i∈Nm

‖E{Π+

i,k}‖+mζτ̄

+ (1− p)ζκ̃ᾱ2
∑

i∈Nm

∑

j∈Ni∪{i}
‖E{Π+

j,k}‖
)

Pk,1

≤ ξqPk,0

∑

i∈Nm

‖E{Π+

i,k}‖

+ ξpPk,1

∑

i∈Nm

‖E{Π+

i,k}‖+mζτ̄

≤ max{ξq, ξp}
∑

i∈Nm

‖E{Π+

i,k}‖+mζτ̄

<
∑

i∈Nm

∥

∥E{Π+

i,k}
∥

∥+mζτ̄ , (47)

which means that the sequence
∑

i∈Nm
‖E{Π+

i,k}‖ is conver-
gent. Because of the fact thatΠ+

i,k ≥ P+

i,k, we conclude that
the estimation error covariance is mean-square bounded, which
ends the proof.

Remark 5:So far, a distributed recursive secure filtering
algorithm is developed for a class of discrete-time stochastic
nonlinear systems subject to unreliable communication due
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Fig. 1. The communication topology of sensor network

probably to security vulnerability of sensor networks. Suf-
ficient conditions are characterized in terms of the failure
and recovery rates of the Gilbert-Elliott channels so as to
guarantee the existence of an upper bound on the estimation
error covariance, and then the desired filter parameters are
designed by minimizing the trace of such an upper bound. The
asymptotic boundedness of the estimation error covarianceis
also investigated. It should be pointed out that, in the mainre-
sults in Theorems 3 and 4, all the system information has been
reflected including the system parameters, the statistics of the
nonlinear functions and the noises, the innovation inspection
function, the topology information and the failure/recovery
rates of the Gilbert-Elliott channels.

Remark 6: Our main results distinguish from some ex-
isting ones in that: 1) the proposed distributed secure filter
is equipped with a novelχ2 detector so as to exclude the
unreliable measurements due possibly to malicious attacksor
outliers; 2) the proposed filter design algorithm exhibits the
desired scalability and the computational burden is unrelated
to the dimension of the underlying SNs; and 3) quantitative
results are established by means of the failure/recovery rates
of Gilbert-Elliott channels in order to ensure the asymptotic
boundedness of designed secure filtering algorithm.

V. SIMULATION EXAMPLES

In this section, a simulation example is presented to illus-
trate the effectiveness of the proposed filtering scheme.

The adopted SN consists of20 nodes, which are randomly
deployed in an area and the topology utilized in this paper is
shown in Fig. 1. Furthermore, the adjacency elementhij is set
as1/⌊Ni⌋ if node i and nodej are connected.

Consider a maneuvering target with state

xk = [ x1,k x2,k x3,k ]T

0 20 40 60 80 100 120 140
−0.2

0

0.2

0.4

0.6

0.8

1

Time (k)

δ
k

Fig. 2. The stateδk of Gilbert-Elliott channels

and system parameters

A =





1 T T 2/2
0 1 T
0 0 1



 , B = 0.2I, D = 0.05

Ci =

{

[ 4.5 −0.8 −0.5 ], i < 8,
[ 4.0 −0.8 1.0 ], i ≥ 8.

Here, the elementsx1,k, x2,k andx3,k stand for, respectively,
the position, the velocity and the acceleration of the target,
and the sampling period is selected asT = 0.05s. According
to the security requirement, theσ-quantileχ2

ny,σ is 25.
For the addressed distributed filter, the failure ratep, the

recovery rateq, and the coupled strengthκ are, respectively,
selected as0.1, 0.92 and0.004. For the given parameters, a se-
quence of channel states{δk} over time-horizonk ∈ [0, 150]
are generated via Matlab software and further plotted in Fig. 2.
In addition, we randomly produce both the initial state and the
initial estimate.

Without loss of generality, we only analyze the filtering
results on Sensors4, 12 and20 under two cases:

• Case A): all sensors are normal;
• Case B): Sensor4 and Sensor12 are subject to attacks.

Specially, we assume that the attack strength is15, and
the attack instants are involved in the intervals[90, 95]
and [50, 55] for Sensor4 and Sensor12, respectively. The
attacked measurements are shown in Fig. 3 and the curves
of normal measurements can be obtained by subtracting15
from corresponding ones at attack instants. The position ofthe
tracked target and its estimation on Sensors4, 12 and20 are
drawn in Fig. 4. Combining Fig. 4(a) and Fig. 4(b), we can find
that there is no obvious effect on the filtering performance with
or without attacks benefiting from the capability of designed
detection scheme. When this inspection is removed from
our designed distributed filtering scheme, the corresponding
filtering curves are plotted in Fig. 4(c). In comparison with
Fig. 4(b), we can easily find that the filtering performance
is degraded at attack instants. As such, the superiority and
reliability of the proposed distributed filtering scheme have
been clearly verified.

In what follows, a comparison with traditional filters based
on linear matrix inequalities (LMIs) is implemented to further
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Fig. 3. Measurements subject to attacks

verify the reliability of the proposed scheme. To this end,
a simplified version of results in [9], [13] can be easily
obtained over sensor networks. In this simulation, all system
parameters, channel states and various noises are the same
with ones in the above test. In order to solve the corresponding
LMIs, we further select the parametersχ1 = 0.98 andε1 = 10
(corresponding to Corollary 2 in [9]), and then obtain the filter
gains K = [ 0.4177 0.5799 0.4029 ]T for node i < 8
andK = [ 0.2883 0.6150 0.4457 ]T for other nodes. The
measurements and the implementation results are plotted in
Fig. 5 and Fig. 6, respectively. Obviously, these two schemes
have similar filtering performance according to the trajectories
of the target dynamics when there are no attacks. Furthermore,
the reliability of developed scheme is clearly verified. Finally,
different from lots of existing versions dependent on the global
information of sensor networks, the our scheme is scalable
and without the issue of computational complexity with the
increased network scale.

VI. CONCLUSIONS

In this paper, a recursive secure filtering has been investi-
gated for a class of discrete-time systems subject to unreliable
measurements and communication coming from the inherent
security vulnerability of SNs. For the constructed filter with a
χ2 detector, the information adopted to update the predicted
state has been made up of the innovation from the individual
node itself and the weighted sum of predicted state errors
among its neighboring nodes. In addition, the desired filter
gains have been obtained by means of the solution to a Riccati-
like difference equation. Furthermore, a sufficient condition on
the failure and recovery rates of channels has been established
to guarantee the boundedness of the sequence of the estimation
error covariance. An illustrative example with target tracking
background has been provided to show the effectiveness of the
proposed method. Further research topics would include the
extension of the main results in this paper to more complicated
systems with various network-induced phenomena or dynamic
topologies [4], [6], [15], [30], [35]–[38].
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Fig. 4. Positionx1,k and its estimation
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Fig. 5. Measurements subject to attacks
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