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Abstract—This paper is concerned with the recursive secure to a fusion center for target state estimation. Due to the

filtering problem for a class of discrete-time systems subjd to
unreliable communication due to the security vulnerability of
sensor networks. The unreliable communication, caused plably
by denial-of-service cyber-attacks, is described by the viieknown
Gilbert-Elliott model. The addressed nonlinearities are gplicable
for some of the most investigated stochastic nonlinear motie
including the well-known state-dependent multiplicativenoises as
special cases. The aim of this paper is to design a novel digtuted
filter that uses the information not only from the individual node
itself but also from its neighboring nodes according to the iyen
topology. In order to improve the security of designed filter a
x? detector is utilized to detect abnormal innovations. By meas
of the failure and recovery rates of the Gilbert-Elliott channels,
sufficient conditions are established to ensure the existea of
an upper bound on the estimation error covariance, and then
the desired filter parameters are designed by minimizing the

resource limitation on both energy usage and communication
bandwidth, thecentralizeddata processing at the fusion center
could be infeasible or inefficient especially for large scaNs.

As such, in parallel with the quiet evolution of centralized
fusion techniques, the distributed filtering algorithmsvéna
received considerable research interest in the past fewsyea
It should be pointed out that the main idea of the distributed
filtering algorithms is to decentralize the function of fusi
center to each intelligent sensor [14].

For distributed filtering algorithms over SNs, there are two
critical issues deserving intensive investigations: 1jvho
fuse the measurements or predicted states from the indilvidu
node itself and its neighboring nodes in order to improve the

trace of such an upper bound. The asymptotic boundedness filtering performance [7], and 2) how to design numerically

of the estimation error covariance is subsequently invesgated.
Finally, a simulation example on the target tracking problem
is employed to verify the effectiveness and the security ofhe
proposed filtering scheme.

Index Terms—Secure filtering; sensor networks; distributed
filtering; Gilbert-Elliott channels; x? test.

|. INTRODUCTION

A typical sensor network (SN) consists of a large numb&t

appealing filtering algorithms with desiregalability towards
real-time implementation. According to the way of utilizing

the obtained information, existing recursive distribufabr-

ing strategies can be generally divided into four categorie
The first category consists of the Kalman-consensus fitjerin
algorithms with a typical two-stage form [1], in which an
L-step calculation needs to be implemented at each instant
to achieve the consensus performance. The second category
composed of the diffusion Kalman filtering algorithms [2]

of smart sensors spatially deployed in some predetermin\@fB'Ch actually replace the consensus strategies in theséitst

areas of interest. Powered by batteries, sensor nodes

usually linked together according to a given topology

carry out the tasks of information collection and processi

in a collaborative way [5], [10], [11], [18], [24]. Benefitin

from the configuration convenience and deployment flexybili

o)
lgorithms [8] whose innovation terms involve the weighted

gogy by diffusion strategies after the measurement updéte.
ird category comprises the weighted innovation-sunetias

sum of errors of the measurements from its neighboring nodes
and the predicted measurement from the individual nodH.itse

[12], [32], SNs have been regarded as a kind of fashionagif€ ast category is made of the so-called prediction-error

information sensing/processing platform with promising a

plication prospect, thereby attracting ever-increasgggarch
attention from various engineering areas [25], [28], [31].

SNs, it is quite common that collected information needs {8

based algorithms [23] which replace the innovation in thdth
category by the weighted sum of errors of predicted states fr
its neighboring nodes and the individual node itself. Ohslyg,
r all the four categories, the scalability requirementdraes

be exchanged among neighboring nodes and/or transmit&jticularly important with the introduced weighted sum.
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In practical engineering, it is not uncommon that the
communication-based measurements suffer from the sgcurit
vulnerability of SNs and therefore become unreliable. Gn th
one hand, adversaries can jam the shared network channel
to prevent designed filters from communicating with their
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of phenomenon can be regarded as denial-of-service atbacks
successive packet dropouts from different engineeringtpoi
of view [34]. In this case, the channel states are temporally
correlated and cannot be exactly described via the coroeaiti
Bernoulli distributed white sequence. Fortunately, a time
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homogeneous binary Markov process can be employedfilter gains are designed to ensure the existence of an yocall
describe the transformation characteristics of the chastaes optimized upper bound on the estimation error covariance at
[29], for which the corresponding model is referred to as theach sampling instant. For the designed filters, a boundsdne
Gilbert-Elliott channel [14], [25]. On the other hand, if tnocondition on the estimation error covariance is proposed in
protected by hardware/software strategies, smart semsl@asn Section IV. An illustrative example is provided in Section V
could be vulnerable to malware damages and the stored datahow the effectiveness of the proposed method. Finaldy, t
on sensor nodes might be corrupted, which leads to significgaper is concluded in Section VI.
deviation from its real measurements [8]. In this scenahie, = Notation The notation used here is fairly standard except
filtering performance would be unavoidably deterioratetthe@ where otherwise state®™ andR™*"™ denote, respectively, the
corrupted data are utilized to estimate the system stafi§s [2: dimensional Euclidean space and the set of.all m real
Accordingly, it is of great importance to propose a suitablmatrices.N,, means the positive integer sét,2,--- ,m}.
filter structure capable of cyber defense in order to fat#dit I denotes the identity matrix of compatible dimensiga];
the target monitoring in a secure manner. means a row vector whose elements come fromitineow of
When cyber security is a major concern, much progresstrix A. A’(0, 1) denotes the Gaussian distribution with mean
has been made on the general filtering problems so far, $eand variancel, and x2, stands for the chi-square (i.g?)
e.g. [21], [26], [27] for resilient filtering problems, [33pr distribution withm freedom degrees.
the attack scheduling problems, and [19], [22] for the &ttac
detection problems. To be more specific, when the addressed 1.
linear system iQs-sparse observable, two state reconstruction The triple ¥ = (V,&,H) in this paper is employed to
algorithms have been proposed in [26] via a batch of sengifscribe the underlying SNs. For this triplg, = N,, and
measurements subject to sparse malicious attacks. Someéps N, x N,, stand for, respectively, the sets of nodes
timal schemes of attack scheduling with energy constrair@gd edges, an@ = [h;;]x» With nonnegative adjacency
have been designed in [33] to decide whether to jam tEéementh;; represents the weighted adjacency matrix. An
channel. Up to now, to the best of the authors’ knowledge, te€ge of% is usually denoted by the ordered pairj), and
filtering problem with a defense strategy over sensor nésvorthe adjacency elements associated with the edges is @ositiv
has not been adequately addressed yet, which still remaind-@., hi; > 0 < (i,j) € &, which means that sensar
a challenging research topic. Obviously, the main chabengcan receive information from sensgr The set of neighbors
stem from the rather stringent security requirements, whi®f node i is denoted byN; = {j € V : (i,j) € &},
are identified as follows: 1) the designed defense strateg@d [V;| is the number of neighbors of nodeln addition,
should be realizable from the engineering point of view;t2) the Laplacian matrix of this graph is defined @s= H —
is essentially difficult to estimate the inspection prokigbof ~ diag{ >, h1;, >, haj, -+, 37" hym; }. For the purpose
corrupted data for distributed filters with designed degesis Of convenience, we further assume that the topology graph of
trategies; and 3) it is nontrivial to design the desiredrfijfains SNs is a strongly connected directed graph and the row sum
due to the complicated calculation of the error covarianceé¥ weighted adjacency matri¥ is equal to one. Under this
Note that the single-sensor-based centralized filterihgmes assumption, we always ha\E;”:l he; < 1.
without defense strategies have been thoroughly examinedVe consider the following discrete-time system:
by constructing a sequence of stqpping times, see e.g. [29]. Thi1 = Axy + Bwy (1)
Unfortunately, such an approach is no longer applicable to
the distributed secure filter design problems to be adddes¥4dth measurements

PROBLEM FORMULATION AND PRELIMINARIES

in this paper because the estimation error covariance tanno Yik = Cizp + Drig, i €Np, (2)
be accurately calculated at two adjacent moments of stgppin .
times y J glOpwhereack € R"= is the state of target plant that cannot be

C(&l%served directlyy, , € R™» is the measurement output from
sensori, and {wy}r>0 and {v; 1 }x>0 are independent and
identically distributed (i.i.d) sequences obeying the &&an
distribution A/(0, I). All stochastic variables and the initial
statex, are mutually independent, B, C; (i € N,,), andD

Summarizing the above discussions, in this paper, we fo
our attention on the distributed secure filtering problerthwi
a defense strategy over the Gilbert-Elliott channels. Tlagnm
contributions are highlighted as follows) a novel distributed
filter is designed by embedding @2 detector to identify

unreliable measurements due to malicious attacks or astlie arig:l?r\:]vntirg:tlr?ﬁ: V\gfrh S((j:n\}%at—ég? ;jrllrg(e(r}s_lor;:s[.)@ A,0)
2) the gains of the designed distributed filters are dependen P thep ’ ” )

on the solution to a Riccati-like difference equation, ahd t gir:é{rc?spgecnvelyb st}ab|l|zable and observable, where=
. . . 1,V2, " s Lmyg-
computational complexity is therefore unrelated to thelesca In this paper, the signal is transmitted over shared Gilbert

of underlying SNs; and 3) rigorous analysis is carried out Blliott channels, under which the packet loss process is-mod

the failure and recovery rates of channels in order to ensurg . o
: L . eled by a time-homogeneous two-state Markov chain with the
the boundedness of designed secure filtering algorithm.

The rest of this paper is organized as follows. Section Z}:r:?)tzgzcsgiof}. 1;] dbisptrrz(;llssi(:i,o;hlsrol\t/)l:gli(l(iiv r?]zctlﬁf?;z;s
briefly introduces the problem under consideration. In iBact k7k20 P y

11, the evolutions of both the one-step prediction errova follows b [ 1—g¢ q ]

ance and the estimation error covariance are derived. Then, p 1—p
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wherep = P{d,+1 = 00 = 1} andg = P{dx+1 = 1|0, = 0} and system parameters. In other words, they cannot carry out

are called the failure rate and the recovery rate, respygtiv stealth attack. In this paper, the attack model is model by

For presentation convenience, we denote the received- infor )

mation &7}, by neighbors of filteri as Vi = Cistre + DVig + ik, 1 € N

-1 where n; ;, is any unknown data injected by attackers. For

&t :{ ik Ok s (3) this kind of scenario, (5) is adopted to detect abnormal
' - measurements or sensor attacks. In order to describe this

where the second case in (3) means thf is set as zero inspection mechanism in filters, we introduce the following

when no information from filteri is received. Introduce the indicator function:

following indicator function: L, Mg <X
Vik =9 0 otherwise ©6)
Ar+4 )
kT 0, S en 127+ = o, By means of (6), we construct the following distributed
_ - e _ secure filter on sensar
which can be utilized to detect the channel stgteln light - - -
of the probability theory, one has{_, . H:E;;H = 0]dy = ik = Zj@\/i hij (xa:k N 61’=kxi7k)’
1}_ =0 (or P{&;k_ = §k}_ =1 _a.s.) b_ecause_k andy; . are N B = AdT + KAET,, (7)
driven by Gaussian white noises with continuous probabilit L 7 '
density functions. Therefore, variablég, andd, have the Tior1 = By gepr T Vi1 K o1 k1
same statistical characteristics. Furthermore, one has wherex € (0, 1) is a predetermined coupling strength and
P{67, = 0|67, =1} K; 1+1 is the filter gain to be determined. This kind of filters is
ik“ bk . also named as distributed secure filters due to the utitimaif
=P{bip11 =0,0k41 = 0[5; ), = 1} secure detectors of abnormal measurements or sensorsattack
+P{0i 41 = 0,061 = 1|6, = 1} Remark 1:In comparison with some existing schemes,
= P{6p41 = 0|67, = 1,6, = 1} the constructed distributed filter (7) exhibits distinctvaty

in that the innovation inspection is introduced to remove
the abnormal data or outliers that might result from false
= P{dk41 = 0[d = 1} data-injection attacks or abnormal interferences of ssnso
Specifically, in case the innovation is abnormal, we havé tha
¥, = 0 and therefore the negative impact from the data
P{5£k+1 = 1|5{7,C =0} = P{dk+1 = 1|6 = 0}. abnormality is minimized. Furthermore, the model of Gitber
Elliott channels are capable of describing the phenomenon
Denotei;, andz;; as the one-step prediction and estimatgf denial of service (DoS) attacks implemented by jamming
of the target stater;, at instantk, respectively. Furthermore, the shared network medium, where the real-time state of the
define the corresponding prediction and estimation errer c@mmunication channefy,, is commonly detectable under the
variance as follows: designed scheme.
P = EB{(x — &) (xr — 27,)7), Remark 2:In practical engineering, the inspection threshold
’ i i 2 be predetermined according to a given detection
i,k k ik ik probabilityc and the degree of freedon¥. Furthermore, such
In what follows, according to the famous Kalman filtering threshold (essentially@quantile) can be found from the®
theory, the innovation, denoted 8sx = yi x — Ci;,, obeys distribution table._ It folloyvs from (6) that the implemetitm
the Gaussian distribution with variandg, ; , = C;P,,.CT + of attack detection mainly depends on the square of the
DDT. As such, the square of the Mahalanobis distance of t%ahalanoms distancé/; ;, and therefore the detection real-

+ P{0k41 = 0[6;, = 1,6 = 0}

and

above innovation is¢ distributed, that is time is_ high benefiting from its low ca_lculation b_urden. Qthe
detection approaches include Bayesian detection appesach
Mg = 1{ 1 Py ik ~ X (5) with binary hypothesis, weighted least square approaches,

artificial-intelligence-based detection strategies, aadorth.
Remark 3:In comparison with the fusion-aware consensus
mechanism in [17], the role of the added consensus term in

with the freedom degree?. In light of the hypothesis test,
for a given levels, one has

P(M;y <x2,)=1-0 the employed filter (7) in this paper is just to reduce the
" e disagreement potential, and the corresponding filteringrer
Wherexfly_’g is usually called as the-quantile [3]. dynamic is, essentially, a large-scale system, see a simila

Due to the vulnerability of communication networks, thatructure in Assumption 3 in [31]. When omitting the behavio
adversary may overhear and modify the information in thaf the attack inspection (6) as well as the packet loss, the
transmitted data packets in order to yield a larger estonatiboundedness of error dynamic is definitely dependent on
error, which will produce some negative impacts on th&ssumption 1, which is similar to the collective observipil
operation of systems. In this paper, we only consider the can [17]. As such, there is no doubt that the main challenges fo
that attackers do not have knowledge of full network topgloghe addressed filtering issues are how to realize the dis#ib
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design of filter gains and how to disclose the impact on the — E{ j1 K o+1(Ci (g1 — Ty )+ Dv; i)}

boundedness from the failure and recovery rates of channels _ 0, (10)
Denote the known information &5 ; = {47, Vi k+1} ON

filter . The aim of this paper is highlighted as twofold: which implies that the proposed filter is unbiased, that is,

R1) Design a Kalman-type distributed secure filter witf{zx — 7} = 0.
the form (7) and the known informatio®; ;, such that an Lemma 1:For the distributed secure filter (7) with the
upper bound of estimation error covariance is guaranteed‘ﬁ'ﬁOWn informationZ; 5, the covariancePiij of one-step
the presence of abnormal measurements or sensor attaaks,Rrediction errors and the covariangg, , , of estimation errors
is, there exists a sequence of positive-definite matﬂtéak satisfy
satisfying _ " AT _
Pt <IN WSO @ P < (17+ K0} AP AT + Qi (12)
' 7 Pz'.,+k+1 =P K1 T Vi k1 Ki o1 Ci Py, k1

WhereM & in the innovation inspection (6) is taken &5 ;, = 9 P CTKT
T Vik 1 ke ik+1

n; an i ik with I';, ; . being a positive-definite matrix to be

designed. Furthermore, the sequence of upper boliifgsis + Vi1 K 1 P K g1 (12)
minimized via the designed filter parametéfs;; where
R2) For the designed filter parametéss ;, find a condition
on the failure ratep and the recovery rate, under which == Y. 2P,
the sequencél;, is asymptotically bounded as time tends to JEN;U{i}
infinity. ’ Qir = BB" +6],k(1 4 k) AZ], AT

Proof: Define e* =, — &, and its derivative vector
[1l. DISTRIBUTED FILTER DESIGN ik B Vik
P +T 4T .. AT 7.

In this section, we first deal with the unbiasedness, and € =1 €1k Cok Cm.k
then discuss the lower/upper bounds on both prediction
estimation error covariance of the proposed distributedirse a
filter. Furthermore, by optimizing the upper bound of the

flen, the conditional expectation of,.(£5,)7 is calculated

trace of the estimation error covariance, we aim to develop ]E{gJr 160k}
a new design scheme for the desired filter gain in terms of the o7, E + 4T ([T
®I e;e C 1
solution to a Riccati-like difference equation. ok { ) et (G @)} .
Before proceeding further, we introduce the following math ~ + E{(3), — 47, k}( Z hu ) ( Z hiji';:k)
ematical operation. Specially, for two positive-definitatni+ SEN; SEN;
cesX andY, we define the operations:
b = 551@E{P;k € k( Z hmeg k) Z hmeg k zk
{ : X, X<Y JEN; JEN;
min{X,Y} = Y, Y <X
AXYI, otherwise + D > highisely(ed)T }
JEN; seEN;
Y, X=Y + 2 p+
max{X,Y} = X, Y<X (R et D hGP,
NXY I, otherwise JEN;
2 pt
where \XY and \XY stand for, respectively, the maximum + Z kT Z Z his k)
eigenvalue and minimum eigenvalue in all eigenvaluestof JEN: JEN: -SrEN
andY. <2 TkZJeNu{} ik (13)

In what follows, for the discrete-time system (1),if =

E{z,} for anyi € N,,, one has In what follows, noting that; , takes a value if0, 1}, we

calculate that

E &
Eizk{l aizf-;lj . Aé+ } IE{( T — &} k) ‘L k}
= — . wr — K .
A I LEL (s ) + (2] _E{M(Ik_ﬁ’“) e
= —K hwE & E k—:ck + xk—:?sm
JEN; g < (5Tkpz+k+E{§ k) ‘Iiak})
— kA S hyE{s, — o7 YaT 51, _
J%\:/ s I < Qk (F)iJ,rk + ::k)' (14)
=0, (9) Then, it follows from (14) that
and P = B{(@rg1 — ) (@ = 250) T}
E{zki — &4} = E{(A(zr, — &) + Bup — KAL)

= E{Ik+1 — j;k-ﬁ—l} X (A(il?k — iZ? ) + Bwk — IiAf ) |Izk}
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< (1+ k07, APH AT + BBT <P T (21)
T
+r(l+k A]E{f )| Zi ey AT, (15)  Furthermore, considering tha;  could be indefinite, one
which yields the relationship (11). Furthermore, accogdin further has
the unbiasedness we have that P = E{(A(z), — i],) — ﬁAf;fk)
PiJ,rkJrl x (A(zy — i::rk) — /@Aé:k)T|Ii7k} + BBT
= E{(zr1 = &7 pp0) @r1 — 385407 > Ty (22)
= E{(( = Pipra Kipa O (@rsn = 2751) Taking (21) and (22) into consideration, we have that, | <
— Vi o1 K k1 Dvi i) (I — D s 1 K k1. Ci) P, whenT}, < P, ’
% (2h41 — Fpn) — Vg Kipss Do k)T|L_ o) (gnltge (r)]ther hand Wheh k+1 = 0, one can see from (12)
an that
= (I =i g1 Ki gt 1C) Py (T = Do 1 K 511 C) T (18)
+ _ —
+ 191'7]6+1K1'7k+1DD Ki,k-i—lv (16) Pi,k-i—l - Pz k+1 2 Fz k+1
St
which results in (12). The proof is now complete. [ | 2 mm{ria’fﬂ"g“*k} = Lkt (23)
Performing some necessary operations to (11) and (12), wieaddition, whend; .1 = 1, we derive that
have the following recursive equations on the lower and uppe
. P Pt -1t
bounds of covariance matricé¥’, . i k+1 T ikt
Theorem 1letT;, < P, T/, < Pl and P, <1If,. = P — Kiw1GiP oy — Py OV Kl
For the distributed secure frlter (7) with the known mformat - 5
+ Kl P, i, Kz — min{I"; ,S i,
T, , a set of lower bound&';, . ,,T'f, ) of the covariance T R {Tierr: St}
matrix pair (P, P/, ) is calculated by > (I = Kigr1Ci)Yr gy (I = Kien C)"
- . >0 (24)
r- Qrix +BBT, Q1,1 >0 (17) B
k1 BBT, otherwise whereYr i =P — T 20 N
Ufpn = min{Ty 0, St} (18) In light of (23) and (24.) we conclude th.m?,_kﬂ < Ph
' ’ ’ whenl';, ., < P, .,. Finally, together with (21) and (22),
where one confrrms that the iterative conditions (17)-(18) arestru
=+ Z o+ and this completes the proof. [
ok N gk Considering the practical implementation of the innovatio
~ ! i inspection (6), the improved inspection on innovation (£) b
Sti = KipDD™ Ky ., (19) resorting to this lower bound is
+(I—KikC‘) z_ (I—KikC') _
S T + ; T + AT ’l§ = L 77;'1:]91—‘77,17]@771}16 < X%y’g’ (25)
Quik = (1 — k6] )AL AT + 67 k(r — 1)AZ], A R 0, otherwise
Proof: First, it is straightforward to see that wherel', ; , = Cil—\i—kCiT_i_DDT. It should be pointed out that
E{ (zx — ;c:rk)( IL k} the resultant modified schemelgv); , = 1} < P{0; = 1}
- - and therefore inevitably increases the conservatism atlatt
5 P+ +]E{§ ‘6”“} (20) detection. ’
- 2 Theorem 2:Let IT;, > P, andIIf, > P, For the
Along the same line in deriving (15), one has distributed secure filter (7) with the known informatidn;, a
Py > (1— K00, APS AT + BBT settof feasrtzle uppeerkJJrour;(j.H%Hl,Hztykarlt)) of the covariance
' ’ . matrix pair (P, , , P; is computed by
+ (s — DAE{ES (61)" 107, } A7 e
) k) k) _ r T ~
> (1— ko, )APT AT g = (1+ 605 ) AILT AT + Qo g, (26)
’ ’ - + 9 S,
+ BB" + 6 k(s — 1) AZ], AT, Iy = 1917k+152jak+1 i
Next, let us denote + (= Vipsr) max{lly . Soika} - (27)
Pz‘.,_k+1 =(1- “%k)APiTkAT where
+BB” + 67 . k(k — 1) AE] AT Saikt1 = Kirp1t DDTK])

- . . + (I = Ki o1 COI; o (I = Ki 1 C3)T,
If Qi > 0, subtracting (17) from the above equation leads N ( w41Gi) Z’kfl( w1 Ci)
0 Qo = BBT + 0f pr(1+ “)AEL@AT'

(1 — kL )A(P, ij)AT Proof: First, for analysis convenience, let us denote

P;,CH Tyt Py = (14 k07 )APS AT + Qo
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Obviously, one has’;; ., < P k1. Then, subtracting the and, therefore, we can obtain following theorem readily.
above equation from (26) leads to Theorem 3:For the discrete-time system (1) with the
” " T measurement (2) inspected by (25), let the gain mdtrix
(1 + Ky, )A(Hi ko Pi,k)A of the distributed secure filter (7) be calculated by (32) toed

= — P{kﬂ estimate of state,; be updated by (34). Then, the objective
<TI0 — Pl (28) R1) under the known informatiofl; . = {07, ik+1} is

achieved with the locally optimized upper bounds of error
Therefore, we obtaiP;, , <TI, , when P/ <II,. covariance given by
In what foIIows we will address the reIatlonshlp between _ , LT
IIf,., and P, .. In doing so, we first obtain {Hz ke = (1 ”5iwk)~AHi,kA + Qai,
Hz+1c+1 Hi_k+1 - ﬁi-kJrlKi-kJrlOiHi_k—ﬁ-l'

(35)

— T —1
N1 P it Wikl < M g1 UGy ik
kL Tk Remark 4:The above theorem combing with (4) and (25)

Then, noting the definition (6) and (25), one has the foll@vinconsists of the critical core of the distributed recursiiteriing

three cases: . scheme. For each step of the proposed scheme, the imple-
« Case 1)V 1 =0 and?; p+1 = 0; mentation on node includes 2 times of the matrix inversion
« Case 2) Vi1 =1 and¥; y11 = 0; operation (i.e. Fnlk and H*Z ky1) and 52 + 3|N;| times
o Case 3)¥; ;41 =1andv; 11 = 1. of the matrix muItlpllcat|on operatlon With the help of the
For the purpose of simplicity, we define dimensions ofx;, € R"-, it is not difficult to calculate the
_ overall computational complexity on nodeas O(n3), which
T is independence of the scale of whole sensor networks. Due to
= = Kipt1C)(; oy — Py = K107, the sparseness of sensor networks, such an algorithm with lo

Now, for Case 1)and Case 2) we obtain from (12) and computation burden is really suitable for online applicati

(27) that
IV. PERFORMANCEANALYSIS
it . — Pt . . . .
bR+l gkt In this section, we will analyze the boundedness of esti-

= max{Il;; , Soikt1} — (I = Vi1 I 1+1C) mation error covariance of the proposed distributed secure

X Py (I = 0ip K 10T filters m_the_ mean-square sense. To this end, the following

assumption is necessary.
+ 9 k11 Ki k1 DDT K] . : " I
kA1 k41 i,k+1 Assumption 2There exist positive real numbeisc, ¢, | N |

- s — Pigyrs Yiks1 =0, (29) andv such that the following cor_lditions on the bounds ef the
= RSTRRARY Di kg1 = 1. system and measurement matrices, the number of neighbors

] as well as the probability of the innovation inspection are
Obviously, one hadl;, , — P/, > 0 when P, ., < {yilled:

II; ;- Then, forCase 3) one has 1Al <a c<|Cill<é

>0. (30) L+ [N < V], [[BBT|| <7,
P{Yi g1 = 0,041 =1} <.

H+

i,k+1 P

i,k+1 > Th

II,i,k+1

Obviously, we conclude that the paifl;, |, 117, ) is a R
set of feasible upper bounds, and the proof is complet® ConsideringQ,; i in (26), one has
Next, one has

¢ E{Q: |0} < BBT + 67 E{II{ ,} (36)
oTr(S. i _
OMSaiii) _ o= €7 49K, Tl (31) where
0K k41 ’
T + QT
wherell, ; 41 = Cill; w1 CE +DD™. Clearly, when select- I, o = 26(1 + %) ZjeMU{i} AL AT
ing In light of the above inequality, one has the conditional
Kippr =11, k_HC H;z Pt (32) expectation ol ;:
the trace of matrixSy;, ;1 is minimized, and the correspond-  E{T1; 167, = 0} <AE{IT}, } A" + BBT (37)
ing matrix is and
* = 1 S i — r
bRt Kmlnl{ 2iet1} E{IL 111005 = 1}
=1L — Kip1 Gl (33) < (14 8)AE{II] }A" + BB" + E{IT}; ,}. (38)
Under this selectionll;, ., > S, is always satisfied. Furthermore, taking the transition probability (desaribi
Recalling the objectivRk1l), the updated equation in (7) will Gilbert-Elliott channels) into consideration, one furtheas
be replaced by that

i:,ﬁl =Z; k1 + Vi1 Ki k17 k1 (34) E{IL; 1}
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= E{Hi_,k+1|5ir,k = O}P{éir.,k = 0}
+ E{IL; 1107 = 1}P{6; , = 1}

= E{II; 16 x = O}P{0; . = 0[0; _y = O}P{6; _, = O}
+ E{IL; ;1167 = O}P{07 ;, = 0[07 _y = 1}P{0; . = 1}
+ B{IL 4107 = 1}P{05), = 1[07 .y = O}P{6; ., = O}

1= 1P,

+ E{IL; 11107 = 1}P{0; ), = 1]0;
< (1—q)(AE{IT} }A" + BB")P{5],_, = 0}
+ p(AE{IT/ } A" + BB)P{5}, , =1}

+q((1 + k) AE{IT}, }A" + BB"
+E{H/\/ p P67 1 = 0}
+ (1= p)((1+ s)AE{IT}, }A" + BB

< ((1= g+ q(1 + R)AB{IL;, }AT + BB"
T
FORYS o AR AT )P
+ ((p + (1= p)(1 + k) AE{TT}, } AT + BB”
+ (1 _p)lizg‘e/\ﬁu{i}
where # = 2x(1 + k). By resorting to the property of

norm operation, the above inequality is further manipulate
as follows:

LI
< (1= q+q(1 + 0)a? [E{IL, ) + 7

vaiaty) B P

AE{H;k}AT) Pi1  (44)

1 =1}

+ E{ﬁj\rfi,k})P{éakfl = 1}- (39) ) N
Similarly, it is straightforward to see that * ((p +A-p)(1+r))a ”E{Hia’f}H T
E(IIY,, ) F-prat Y BT )Prs (45)
= B{IT}, 1 [ k1 = 1}P{i g1 = 1} On the other hand, along the similar line used in [16], it
+ E{H:fk+1|1§i,k+1 _ O}P{ﬁi,kﬂ =0} follows from (40) that
< E{H:k+1|1§i,k+1 = 1}]P){'l§i,k+1 =1} | E{IL, k+1}”
+ {1 [iger = OYP{Digr1 = 0} < [lo + V)E{IL o H]
< (1= o)E{IL},  |Pi k1 = 1} 1 = o) E{(I = Ki g1 C)IL 4}
’ 5 1 2+e2(1—
+ (0 + VBT i = O}, (40) U U= D ip, ) @)
Denote the known information set ad; = . B . . .
{521« 15‘1',1@+1|i € N;}. According to the above preparation, Next, taking (45) and (46) into consideration, one has that
we are ready to present the following result. Z H]E{HZ k+1}H
Theorem 4:For the discrete-time system (1) with the N,
measurement (2) inspected by (25), let the gain maiix 1 o + _
of the distributed secure filter (7) be calculated by (32) = ((1 —q+q(1+r)¢a* Y |E{II |+ mer

and the estimate of state,., be updated by (34). Then,

1E€EN,

under Assumption 2, the estimation error covariance under + q¢Ra’ Z Z JEN;U{i} ”E{HJrk}”)Pko
the known sequenced; .} is mean-square bounded, i.e., i€

: +
i 3 [sim] <

if the failure ratep, the recovery rate; and the coupling

strengthx satisfy

& = ca? (1 —qg+q(l+k)(1 —|—/£LJ\7J)) <1
& =Ca’(p+ (1 -p)(1+r)(1+r[N]) <1
where
(1+v)*+2(1-o)
c2 '

(=

Proof: For the benefits of boundedness analysis, the prob-<
ability theory is exploited to tackle the randomness frorthbo
the communication channels and the innovation inspedton.

the simplicity, we denote

Py =P{0;1 =0},

that

BT, o}

Pk71 - ]P){(S;ik_l - 1}

Obviously, one ha®; o + P, 1 =1 and it is clear from (39)

+ (<p+ ()1 + )G > AL} + me7

1€EN,,
(PG 303 vy VAT WH) P
&Pro Y |\E{Hi,k}|\

1€N,,
+ &Pt > IB{IL |+ meF
ieNW‘L
max{&, &} Y IE{I] | + m(T
1€N,,

Z |EATLS 3| + mdT,

1€N,,

(41)

IN

(42)
(43)

IN

(47)

which means that the sequenke y ||E{H;.fk}|\ is conver-
gent. Because of the fact thHt’, > P/, we conclude that
the estimation error covariance is mean-square boundedhwh
ends the proof. [ |
Remark 5:So far, a distributed recursive secure filtering
algorithm is developed for a class of discrete-time stotihas
nonlinear systems subject to unreliable communication due
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Fig. 2. The statéd, of Gilbert-Elliott channels

and system parameters

1 T T2/2
Fig. 1. The communication topology of sensor network A= 0 1 T B=02I. D=0.05
0 0 1
C — [45 —-0.8 —-051], <8,
probably to security vulnerability of sensor networks. -Suf L [40 -0.8 10], i>8.

ficient conditions are characterized in terms of the failure .

and recovery rates of the Gilbert-Elliott channels so as fere, th_g elements, i, L2,k andas,, stand for, respectively,
guarantee the existence of an upper bound on the estimaltilaﬂ position, the velo_C|ty.and the acceleration of the-iarge
error covariance, and then the desired filter parameters g the Sa”?p"”g pgrlod IS selected]é_l& ()2‘05‘9? According
designed by minimizing the trace of such an upper bound. Tmethe security requirement, thequantilex;,, , is 25.

asymptotic boundedness of the estimation error covarignce Of the addressed distributed filter, the failure ratehe
also investigated. It should be pointed out that, in the mein '€COVery ratey, and the coupled strengthare, respectively,

sults in Theorems 3 and 4, all the system information has be%q.lected a.1, 0.92 and0.004. For the given parameters, a se-

reflected including the system parameters, the statistitiseo quence of chan!'lel stat¢s,. } over time-horizork € [0, 1_50]_
nonlinear functions and the noises, the innovation inspect &'€ 9énerated via Matlab software and further plotted in Zig

function, the topology information and the failure/recue !N @ddition, we randomly produce both the initial state dmel t
rates of the Gilbert-Elliott channels. initial estimate. , o
Remark 6:Our main results distinguish from some ex- Without loss of generality, we only analyzeT the filtering
isting ones in that: 1) the proposed distributed securer ﬁltreesults on Sensork 12 and20 under two cases:
is equipped with a novek? detector so as to exclude the * Case A)all sensors are normal; _
unreliable measurements due possibly to malicious attacks * Case B) Sensord and Sensoi2 are subject to attacks.
outliers; 2) the proposed filter design algorithm exhibits t Specially, we assume that the attack strengthlis and
desired scalability and the computational burden is utedla the attack instants are involved in the interva®, 95]
to the dimension of the underlying SNs; and 3) quantitativand [50, 55] for Sensor4 and Sensof2, respectively. The
results are established by means of the failure/recoveeg raattacked measurements are shown in Fig. 3 and the curves
of Gilbert-Elliott channels in order to ensure the asymiptotof normal measurements can be obtained by subtradting
boundedness of designed secure filtering algorithm. from corresponding ones at attack instants. The positigheof
tracked target and its estimation on Sensfr$2 and 20 are
drawn in Fig. 4. Combining Fig. 4(a) and Fig. 4(b), we can find
V. SIMULATION EXAMPLES that there is no obvious effect on the filtering performanita w
or without attacks benefiting from the capability of designe
In this section, a simulation example is presented to illugtetection scheme. When this inspection is removed from
trate the effectiveness of the proposed filtering scheme.  our designed distributed filtering scheme, the correspundi
The adopted SN consists 26 nodes, which are randomlyfiltering curves are plotted in Fig. 4(c). In comparison with
deployed in an area and the topology utilized in this paperf&g. 4(b), we can easily find that the filtering performance
shown in Fig. 1. Furthermore, the adjacency elentgpis set is degraded at attack instants. As such, the superiority and
as1/|N;] if nodei and nodej are connected. reliability of the proposed distributed filtering schemevéa
Consider a maneuvering target with state been clearly verified.
In what follows, a comparison with traditional filters based
xp=[ 16 T2k T3k ]T on linear matrix inequalities (LMIs) is implemented to fuet
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Fig. 3. Measurements subject to attacks

verify the reliability of the proposed scheme. To this end
a simplified version of results in [9], [13] can be easily
obtained over sensor networks. In this simulation, all ayst
parameters, channel states and various noises are the s:
with ones in the above test. In order to solve the correspondi
LMIs, we further select the parameters = 0.98 ande; = 10
(corresponding to Corollary 2 in [9]), and then obtain theefil
gains K = [ 0.4177 0.5799 0.4029 |7 for nodei < 8
andK = [ 0.2883 0.6150 0.4457 |T for other nodes. The
measurements and the implementation results are plotted
Fig. 5 and Fig. 6, respectively. Obviously, these two schem:
have similar filtering performance according to the trajeies

of the target dynamics when there are no attacks. Furthermo
the reliability of developed scheme is clearly verified. iy
different from lots of existing versions dependent on thebgl
information of sensor networks, the our scheme is scalab
and without the issue of computational complexity with the
increased network scale.

VI. CONCLUSIONS Fig.

In this paper, a recursive secure filtering has been investi-
gated for a class of discrete-time systems subject to @inieli
measurements and communication coming from the inherent
security vulnerability of SNs. For the constructed filtetiwa (1]
x? detector, the information adopted to update the predicted
state has been made up of the innovation from the individu#?]
node itself and the weighted sum of predicted state errors
among its neighboring nodes. In addition, the desired filtef)
gains have been obtained by means of the solution to a Riccati
like difference equation. Furthermore, a sufficient caondibn (4]
the failure and recovery rates of channels has been estadlis
to guarantee the boundedness of the sequence of the estimati
error covariance. An illustrative example with target kiag %]
background has been provided to show the effectivenes®of th
proposed method. Further research topics would include the
extension of the main results in this paper to more comtat (6
systems with various network-induced phenomena or dynamic
topologies [4], [6], [15], [30], [35]-[38].
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T
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