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Federated Tobit Kalman Filtering Fusion with
Dead-Zone-Like Censoring and Dynamical Bias

under the Round-Robin Protocol
Hang Geng, Zidong Wang, Fuad E. Alsaadi, Khalid H. Alharbi and Yuhua Cheng

Abstract—This paper is concerned with the multi-sensor filter-
ing fusion problem subject to stochastic uncertainties under the
Round-Robin protocol (RRP). The uncertainties originate from
three sources, namely, censored observations, dynamical biases
and additive white noises. To reflect the dead-zone-like censoring
phenomenon, the measurement observation is described by the
Tobit model where the censored region is constrained by pre-
scribed left- and right-censoring thresholds. The bias is modeled
as a dynamical stochastic process driven by a white noise in order
to reflect the random behavior of possible ambient disturbances.
The RRP is employed to decide the transmission sequence of
sensors so as to alleviate undesirable data collisions. Thefiltering
fusion is conducted via two stages: 1) the sensor observations
arriving at its corresponding estimator are first leveraged to
generate a local estimate, and 2) the local estimates are then
gathered together at the fusion center in order to form the fused
estimate. The local estimator implements a Tobit Kalman filtering
algorithm on the basis of an enhanced Tobit regression model,
whilst the fusion center realizes a filtering fusion algorithm in
accordance with the well-known federated fusion principle. The
validity of the fusion approach is finally shown via a simulation
example.

Index Terms—Tobit Kalman filter, censored observations, dy-
namical bias, federated fusion, Round-Robin protocol.

I. I NTRODUCTION

Multi-sensor data fusion is the process of combining ob-
servations from multiple sources to provide a robust and
complete description of the interested environment or process
[24]. With the rapid advancement of technologies for data
sensing, acquisition and analysis, the last few decades have
seen an unprecedented prosperity of the multi-sensor data
fusion in a great variety of fields including control, filtering,
image identification and signal processing. In the context
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of filtering, the multi-sensor data fusion aims at integrating
information from all available sensors in order to reconstruct
the interested system state. Accordingly, the multi-sensor data
fusion problem is also known as the multi-sensor filtering
fusion (MSFF) problem and is, in fact, a state estimation
problem based on multiple sensor information. Due to its
diverse data sources and strong fault-tolerance, the MSFF is
capable of providing better filtering performance as compared
with its single sensor counterpart, and has been extensively
applied in areas such as fault diagnosis, signal processing,
target localization, and sensor networks, see e.g. [16], [24],
[46]. Hitherto, a great deal of research effort has been devoted
to the investigation on MSFF problems, where the main
techniques can be categorized into the centralized filtering
fusion and the distributed filtering fusion approaches.

The centralized filtering fusion utilizes a fusion center
to gather together all available sensor observations for the
purpose of generating the optimal filtering result, whilst the
distributed filtering fusion exploits the fusion center to incor-
porate available estimates from local estimators with a view
to producing the optimal/suboptimal filtering result. Owing to
its scalable computation overheads, bearable communication
costs and strong fault-tolerance capability, the distributed
filtering fusion is more favored in engineering practice than
its centralized counterpart, where a critical step towardsthe
distributed filtering fusion is the selection of a proper fusion
rule from many available ones such as the weighted fusion
rule [28], covariance intersection fusion rule [37], federated
fusion rule [6], [45], and sequential fusion rule [47], [48].

It has been broadly acknowledged that the MSFF requires
not only sensor observations but also mathematical model-
s describing the dynamics of system behavior along with
observation models relating sensor outputs to system states.
Roughly speaking, the dynamic model is an approximation
of the evolution process in relation to the system state that
usually cannot be observed directly. In other words, internal
disturbance signals and model perturbations are not uncom-
mon in the MSFF, and the resultant dynamical uncertainties
would severely restrict the application scope of the MSFF (see
[13], [15], [34]). To be more specific, the inherent charac-
teristics of dynamical uncertainties, if inadequately handled,
could seriously degrade the system performance, and this has
then triggered ever-lasting research enthusiasm towards the
analysis and synthesis of uncertainty-corrupted dynamic state
estimation, see [26]. Note that most of the forgoing studies
have been dedicated to the worst-case scenarios through using
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the upper bound of the uncertainty, which is in addition to an
already crude approximation of uncertainty bounds resulting
from the often poor prior knowledge. As a result, the final state
estimate might be excessively conservative, thereby limits its
application scope to a large extent.

Apart from the worst-case investigation, another way of
handling the dynamical uncertainty is to carry out the simul-
taneous state and uncertainty estimation with hope to jointly
estimate the state together with the dynamical uncertainty,
see e.g. [12], [19], [23]. Stochastic bias, as a specific class
of dynamical uncertainty, is often induced by unmodeled
dynamics, neglected model nonlinearities, parameter variations
and cyber attacks [18], [20], [23]. Stochastic bias is typically
described as a dynamical stochastic process (driven by certain
white noises) and can be mathematically dealt with by the
state augmentation [9], [42] and the dual Kalman filter (KF)
approaches [20], [33].

To handle the stochastic bias, the augmentation approach
lifts the system state to contain the bias and applies a KF
to the resultant system for later state estimation, whilst the
dual KF approach employs two KFs to estimate the state
and bias simultaneously and update each other’s estimates
mutually. Very recently, the joint estimation problem of state
and dynamical bias has been investigated in [42] for two-
dimensional systems with shift-varying parameters, where
the augmentation technique has been adopted to tackle the
stochastic bias and the prescribed filtering performance has
been ensured by minimizing the upper bound of the acquired
error covariance in the sense of matrix-trace.

Due to the utilization of massive low-cost commercial off-
the-shelf sensors, the MSFF might be prone to a peculiar
sort of measurement nonlinearity, i.e. censored observations,
see [5], [14]. Censored/saturated observations result primar-
ily from intrinsic physical constraints (on system dynamic-
s) and/or disturbances from neighboring systems. The phe-
nomenon of censored observations, if inadequately handled,
are likely to impair the system performance, causing un-
desirable oscillation or even leading to instability [3], [6].
Mathematically, the censored observation can be describedas
a piecewise-linear transformation of the output variable with
a zero slope in the censored region. Based on this description,
the relevant filtering problem has been a subject of extensive
investigation by using fairly mature estimation techniques. A-
mong various filters proposed so far, we highlight the iterative
KF [38], particle filter [49] and Tobit Kalman filter (TKF) [1],
[2] that have proven to be rather popular.

In the context of censoring-oriented filtering, the so-called
TKF stands out as a competitive approach with practical
significance. A remarkable feature of the TKF is that, at
a moderate computational burden, it offers a completely
recursive estimation paradigm identical to the standard KF
[1].Since its initialization, the TKF problem has stirred much
research enthusiasm and a number of excellent results have
been acquired with successful applications in a great variety
of fields such as target tracking [26], unmanned aerial vehicle
positioning [11] and fault detection problems [22]. More
recently, a distributed TKF has been devised in [14] under
the federated fusion rule with its performance assessed from

a probabilistic viewpoint. It is worth pointing out that most
aforementioned literature has been concerned with the setting
of one-side censoring, whereas the two-side censoring (i.e. the
dead-zone-like censoring) setting has been largely overlooked
despite its pervasive existence in a great variety of physical
reality suffering from sensor saturations, detection limitations,
and image frame effects, see e.g. [2], [22], [41].

In the past few decades, the networked systems have become
more and more popular as a response to the increasing
demands from engineering practice including communication,
patient monitoring and target localization [8], [21], [25], [28],
[29], [48], [51], [52]. In an ideal situation,all system compo-
nents (e.g. actuators, controllers, filters and sensors) have equal
privileges for information propagation via shared medium.
This supposition is, however, often impractical as limited-
bandwidth-induced data collisions are likely to happen when
information exchanges take place simultaneously by more than
one component. To handle the network-induced challenges, an
effective measure is to leverage communication protocols so
as to regulate the data transmission, and some widely deployed
protocols include the Round-Robin protocol (RRP), try-once-
discard protocol, and random access protocols protocol (see
e.g. [37], [39], [40], [50]), where the RRP is particularly
welcomed in industry because of its succinct execution in
allocating network resources. Under the RRP, the information
propagation among system components is implemented in a
fixed circular order [7], [53]. Nevertheless, very few results
have been acquired so far on the protocol-based Tobit Kalman
filtering fusion problem, not to mention the case where the
dynamical biases and the dead-zone-like censoring are both
involved.

Following the discussions made thus far, we conclude that
there is a lack of systematic investigation on bias-corrupted
multi-sensor Tobit Kalman filtering fusion problems subject
to dead-zone-like censoring under the RRP. As such, the
primary objective of this paper is to fill in such a gap
by designing a protocol-based federated Tobit Kalman filter
(FTKF) that is insensitive to dynamical biases and censored
observations. This topic, though theoretically importantand
practically significant, is quite challenging for three reasons
given below.

• For the dynamical bias, its correlation with the state
as well as the sensor observations renders substantial
complexities to the analysis of the multi-sensor model,
and it remains challenging to resolve such a correlation.

• For the RRP, the transmission of the sensor information is
executed in afixed circular sequence and, consequently,
dedicated effort needs to be made on the establishment
of a modified Tobit regression model that accommodates
such a fixed circular sequence along with the dynamical
bias.

• In view of the concurrence of dead-zone-like censoring,
dynamical bias and RRP, their impacts on the perfor-
mance of the desired filter should be examined in a
rigorous way.

In response to the identified challenges, the primary contri-
butions we deliver in this paper are outlined in threefold as
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Fig. 1: Schematic diagram for the concerned Tobit Kalman
filtering problem.

follows.

• To our knowledge, one of the first few attempts is made
in this paper to look into the Tobit Kalman filtering fusion
problems with the dead-zone-like censoring and RRP
fashion under the federated fusion rule, where the system
model is both holistic and comprehensive in catering for
general practices.

• Compared with the conventional TKF in [2], our newly
devised filter produces both state and bias estimates in
the multi-sensor scenario with the help of the augmenta-
tion technique, and a suite of new terms (including the
augmented state, the product of the measurement update
matrix and augmented state together with the associate
error covariances) arise, which is seen as an envisioned
reflection of the addressed dead-zone-like censoring, dy-
namical biases and RRP.

• The proposed algorithm is of a recursive manner and is
therefore favorable for online applications.

The rest of this paper is highlighted as follows. In Section
II, the problem under consideration is formulated. In Section
III, an ameliorated Tobit regression model is built, based on
which a protocol-based FTKF is designed. In Section IV, a
numerical example is provided to show the usefulness of the
filter, and some conclusions are drawn in Section V.

Notation The notation used here is fairly standard except
where otherwise stated.Rn denotes then-dimensional Eu-
clidean space. “I”and “0” respectively, represent identity and
zero matrices with compatible dimensions. Superscripts “-1”
and “T ” represent inverse and transpose operations, respective-
ly. E{x} andE{x|y} will, respectively, mean the expectation
of x and the expectation ofx conditional ony. diag{Xm}
(m = 1, 2, . . . , p) stands for a block-diagonal matrix with ma-
tricesXm on the diagonal. vec{xm} ,

[

x1 x2 · · · xp

]T
.

var{x} denotes the variance ofx. δ(·) ∈ {0, 1} is the Dirac
delta function.

II. PROBLEM FORMULATION

Consider the Tobit Kalman filtering problem for a net-
worked system as shown in Fig. 1. In this framework, the
sensor is susceptible to dynamical biases, the signal transmis-
sion between the sensor and the local filter is implemented
through a communication network under the RRP, and the
measurement arriving at the filter is inclined to dead-zone-
like censoring. State estimates collected from local filters are
later sent to the fusion center for further process so as to
achieve the integrated filtering result. In what follows, let us

introduce the plant, dynamical bias, communication network,
and dead-zone-like censoring in a mathematical way.

Consider a multi-sensor system corrupted by dynamical
biases [20], [42]:

xk+1 = Akxk +Bkbk + ωk, (1)

zm,k = Cm,kxk + υm,k,m = 1, 2, . . . , p, (2)

where xk ∈ R
nx is the state vector,zm,k ∈ R is the

uncensored observation of themth (m = 1, 2, . . . , p) sensor
and p is the total number of sensors.Ak, Bk and Cm,k

are known matrices with eligible dimensions.ωk ∈ R
nx

and υm,k ∈ R are zero-mean white Gaussian noises with
covariancesQk and Rm,k, respectively. Here,bk ∈ R

nb is
the stochastic bias driven by the following dynamic equation:

bk = Hk−1bk−1 + εk−1, (3)

whereHk is the known bias transition matrix, andεk is the
white Gaussian noise with zero mean and covarianceΞk.

In maneuvering target tracking, the target manoeuver is
usually modeled as an unknown acceleration bias to the
constant velocity model as shown in (1), wherexk consists
of the target position and velocity andbk is the acceleration
bias [44]. By closely observing the target manoeuver, one is
capable of deciding whether the dynamics of the unknown
acceleration bias given by (3) should be characterized by a
constant acceleration model or a variable acceleration model.
In the event that (3) is a constant acceleration model, one
certainly hasHk = I for all k ≥ 1. This example explicitly
tells us that, the bias transition matrixHk can be determined
beforehand according to the concerned engineering scenario.
As such,Hk is assumed to be known a priori in this paper.

Note that the observationszm,k ∈ R (m = 1, 2, . . . , p)
are transmitted to the remote estimator via a shared commu-
nication network. Due to limited communication bandwidth,
the communication protocol is often deployed with which
only one single sensor is granted to propagate its output,
at each communication time, through the shared network.
As discussed in the introduction, in this paper, the RRP is
employed to orchestrate the transmission order of the sensors
for the purpose of circumventing data collisions.

Denote mod(k−m, p) as the unique non-negative remainder
on division ofk−m by p, and~k ∈ {1, 2, . . . , p} as the sensor
that has access to the network at timek. Let

Γ~k
, diag{Γm,~k

}, m = 1, 2, . . . , p

be the observation update coefficient where

Γm,~k
, δ(~k −m).

Abiding by the RRP and the zero-order holder strategy,
for the mth sensor, the actual measurementȳm,k arriving at
the remote estimator after network transmission is updatedas
follows (see [53]):

ȳm,k =

{

zm,k, if mod(k −m, p) = 0,

ȳm,k−1, otherwise.
(4)
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Taking advantage of the update coefficientΓ~k
, (4) can be

rearranged into

ȳm,k =

p−1
∑

l=0

Γm,~k−l
zm,k−l, (5)

where~k−l , l andzm,k−l , zm,0 for k − l ≤ 0.
Let the input terminal of the remote estimator be equipped

with an additional detection device whose function is to check
whether ȳm,k is censored or not. In this sense, the Tobit
observation model with dead-zone-like censoring is given as
follows (see [2]):

ym,k =











τ lm, ȳm,k ≤ τ lm,

ȳm,k, τ lm < ȳm,k < τrm,

τrm, ȳm,k ≥ τrm,

(6)

whereym,k is the censored observation, andτ lm and τrm are,
respectively, the left- and right-censoring thresholds.

According to whether̄ym,k is left-censored, right-censored
or uncensored, the observation model (6) is rewritten as

ym,k = (1− αm,k − βm,k)ȳm,k + αm,kτ
l
m + βm,kτ

r
m, (7)

where αm,k and βm,k are, respectively, Bernoulli random
variables governing the left- and right-censoring phenomena
of ȳm,k with following probability distributions:



















Prob{αm,k = 1} =ᾱm,k,

Prob{βm,k = 1} =β̄m,k,

Prob{αm,k = 0} =1− ᾱm,k,

Prob{βm,k = 0} =1− β̄m,k.

(8)

Here, ᾱm,k and β̄m,k are non-negative constants that are
known a priori, and αm,k and βm,k are uncorrelated with
ωk andεk.

Let

ym,1:k ,{ym,0, ym,1, . . . , ym,k},
x̂−
m,k ,E{xk|ym,1:k−1},
ŷ−m,k ,E{ym,k|ym,1:k−1},
x̂m,k ,E{xk|ym,1:k},
x̃−
m,k ,xk − x̂−

m,k,

x̃m,k ,xk − x̂m,k,

Px̃m,k
,E{x̃m,kx̃

T
m,k},

Px̃
−

m,k
,E

{

x̃−
m,k

(

x̃−
m,k

)T
}

.

Assumption 1:1) The initial statex0 and the biasb0 have
meansx̄0 and b̄0, and covariancesPx̃0

andPb̃0
, respectively.

2) The random variablesx0, b0, ωk, εk andυm,k are mutually
independent.

Remark 1: In system modeling, ambient disturbances pro-
voked by environmental variations are often regarded as pro-
cess noises taking the form of Gaussian white sequences.
Such a treatment ignores the case where the disturbance might
exhibit itself as a dynamically varying process, namely, the s-
tochastic bias. As a matter of fact, stochastic biases (stemming

from random frictions, wind resistance and/or electromagnetic
interferences) might behave according to a dynamical manner
similar to the evolution of the target system. Spurred by this
fact, the random variablebk is introduced in this paper to
characterize the stochastic bias with its evolution kinetics
being governed by (3).

Remark 2:Under the scheduling of the RRP, equal priority
is assigned to each sensor and the observation from individual
sensor is admitted to enter the network in afixed circularman-
ner. In comparison with other communication protocols (e.g.
the try-once-discard protocol and random access protocol), the
RRP predefines a periodic transmission rule which makes the
scheduling easy-to-implement. Therefore, the RRP is adopted
in this paper as the desired communication protocol for data
transmission.

In the case that sensorm has no access to the network, two
strategies (i.e. the zero-input and zero-order holder strategies)
are often leveraged to establish the actual observationȳm,k

that is received by the remote estimator. As suggested by their
names, the null and previous measurements are, respectively,
employed as compensatory inputs to the remote estimator
in the two strategies in case of transmission failures. The
selection between the two strategies rides on the actual net-
work condition and the performance requirements. Here, the
zero-order holder strategy is utilized to generateȳm,k for the
purpose of offsettinḡym,k. Accordingly, at timek − l, only
the observation̄y~k−l,k−l is adopted for later filter update,
whilst the rest sensor observationsȳm,k−l (m = 1, 2, . . . , p,
m 6= ~k−l) remain the same as their counterparts inȳk−l−1.
Obeying thefixed circularorder for information propagation,
ȳm,k (m = 1, 2, . . . , p) can be represented by the sum of
Γm,~k−l

zm,k−l (l = 0, 1, . . . , p− 1) as shown in (5).
In practice there exist two typical communication channels

in multi-sensor fusion application scenarios, i.e. the sensor-to-
estimator and estimator-to-fusion-center communicationchan-
nels. Frankly speaking, the sensor-to-estimator channel is long
as the estimator is normally located far away from the sensor
in order to obtain a reliable environment for the implemen-
tation of the estimation algorithm, whilst the estimator-to-
fusion-center channel is short as local estimators are placed
close to the fusion center to guarantee that local estimates
are perfectly transmitted for final fusion. Accordingly, the
sensor-to-estimator channel is easily susceptible to noises
and disturbances, while the estimator-to-fusion-center channel
normally appears to be noise-free and perfect. In this regard,
comparing with the estimator-to-fusion-center channel , the
sensor-to-estimator channel is more likely to be subject to
bandwidth limitations. As such, the Round-Robin protocol is
implemented in the sensor-to-estimator channel with a view
point to regulating the data transmission and mitigating the
data collision.

Remark 3:The dead-zone-like censoring modeled by (6)
is widely encountered in systems equipped with low-cost
commercial off-the-shelf sensors. The distinctive feature of
such censoring lies in its censored Gaussian (rather than pure
Gaussian) noise distribution at/near the censored region,and
this circumvents the direct employment of the conventional
KF. The necessity of formulating a censoring-oriented KF
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gives birth to the celebrated TKF. By bringing in Bernoulli
random variables to regulate the censoring phenomenon, the
TKF perfectly handles the non-Gaussianity of the observation
noise via developing a so-called Tobit regression model, based
at which an explicit paradigm of the observation expectation
and variance is provided. When the target plant is prone
to dynamical biases, the standard TKF fails to take effect
accounting for the bias-induced variations that enter into
the system dynamics, the regression model as well as the
filter equations. Moreover, the adoption of the RRP would
ineluctably pose significant impacts on the structure of the
regression model, censoring probability together with other
observation related terms. As such, a holistic multi-sensor
Tobit Kalman filtering fusion framework is constructed in this
article to solve the aforementioned problems.

It is observed from (7) that, random variablesαm,k and
βm,k are exploited to describe the censoring phenomena of
ȳm,k. In accordance with (7), if no censoring occurs for
ȳm,k, i.e. αm,k = 0 and βm,k = 0, the measurement
becomesym,k = ȳm,k, which means that the observation is
equivalent to the latent one. If the left-censoring occurs for
ȳm,k, i.e.αm,k = 1 andβm,k = 0, the measurement becomes
ym,k = τ lm, which means that the left-censoring threshold is
allocated to the observation. If the right-censoring occurs for
ȳm,k, i.e.αm,k = 0 andβm,k = 1, the measurement becomes
ym,k = τrm, which means that the right-censoring threshold is
allocated to the observation. Here, we suppose that censoring
probabilities ᾱm,k and β̄m,k are knowna priori via some
statistical experiments. Alternatively, drawing inspiration from
[1], [2], ᾱm,k and β̄m,k can also be approximated by























ᾱm,k ≈ Φ

(

τ lm − ζ̂−m,k
√

Rm,k

)

,

β̄m,k ≈ Φ

(

ζ̂−m,k − τrm
√

Rm,k

)

,

(9)

where

Rm,k ,

p−1
∑

l=0

Γ2
m,~k−l

Rm,k−l,

ζ̂−m,k ,Γm,~k
Cm,kx̂

−
k +

p−1
∑

l=1

Γm,~k−l
Cm,k−lx̂k−l,

andΦ(·) is the cumulative distribution function (CDF) of the
random variable “·” that obeys the standard normal distribu-
tion.

The objectives of this paper is to design a protocol-based
FTKF for system (1)–(8) subject to dead-zone-like censoring
and dynamical biases under the RRP.

III. T HE MAIN RESULTS

In this section, we are devoted to formalize a federated Tobit
Kalman filtering fusion framework to overcome the identified
multi-faceted challenges caused by the concurrence of dead-
zone-like censoring, dynamical bias and RRP. Such a frame-
work displays its distinctive characters from two viewpoints:
1) an elaborately designed local Tobit Kalman filters (LTKFs)

built on an enhanced regression model that gives holistic
consideration of the impacts incurred by the dead-zone-like
censoring, dynamical bias and RRP, where additional endeavor
is demanded to compute the observation prediction, filter gain
as well as associate error covariances; 2) elegantly opted fusion
rule which productively integrates available estimates from
LTKFs, where the global optimality of the fused estimate is
ensured.

Denoting

ξk ,
[

xT
k bTk

]T
,

wk ,
[

ωT
k εTk

]T
,

system (1)–(8) is augmented as

ξk+1 =Akξk + Bkwk, (10)

zm,k =Cm,kξk + υm,k, (11)

where

Ak =

[

Ak Bk

0 Hk

]

,Bk =

[

I 0
0 I

]

, Cm,k =
[

Cm,k 0
]

.

Let

ȳm,k ,ζm,k + νm,k,

ζm,k ,

p−1
∑

l=0

Γm,~k−l
Cm,k−lξk−l,

νm,k ,

p−1
∑

l=0

Γm,~k−l
υm,k−l,

ϑl
m,k ,

τ lm − ζm,k

Rm,k

,

ϑr
m,k ,

τrm − ζm,k

Rm,k

.

On the basis of the augmented model (10)–(11), an en-
hanced Tobit regression is formulated as follows to accommo-
date the dead-zone-like censoring, dynamical bias and RRP
influences.

Lemma 1:The expectation and variance ofym,k (m =
1, 2, . . . , p) are, respectively,

E {ym,k|xk,Rm,k} =Φ
(

ϑl
m,k

)

τ lm +
(

1− Φ
(

ϑr
m,k

))

τrm

+
[

Φ
(

ϑr
m,k

)

− Φ
(

ϑl
m,k

)]

×
[

ζm,k −
√

Rm,kλ
(

ϑr
m,k, ϑ

l
m,k

)

]

,

(12)

var{ym,k|xk,Rm,k} =Rm,k

[

1 + ϕ
(

ϑr
m,k, ϑ

l
m,k

)]

, (13)

where

λ
(

ϑr
m,k, ϑ

l
m,k

)

=
φ
(

ϑr
m,k

)

− φ
(

ϑl
m,k

)

Φ
(

ϑr
m,k

)

− Φ
(

ϑl
m,k

) , (14)

ϕ
(

ϑr
m,k, ϑ

l
m,k

)

=
ϑl
m,kφ

(

ϑl
m,k

)

− ϑr
m,kφ

(

ϑr
m,k

)

Φ
(

ϑr
m,k

)

− Φ
(

ϑl
m,k

)

− λ2
(

ϑr
m,k, ϑ

l
m,k

)

. (15)
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Here,φ (·) andΦ (·) are, respectively, the probability density
function (PDF) and CDF of the Gaussian random variable
ϑm,k ∈ {ϑr

m,k, ϑ
l
m,k} with following forms:

φ (ϑm,k) =
1√
2π

e
−
(τm−ζm,k)

2

2Rm,k , (16)

Φ (ϑm,k) =

∫ τm

−∞

1
√

2πRm,k

e
−
(ym,k−ζm,k)

2

2Rm,k dym,k
, (17)

whereτm ∈ {τrm, τ lm}.
Proof: See Appendix–A.

Remark 4:The enhanced regression model in Lemma 1
explicitly supplies us with the specific expressions of the
observation mean and variance in case of dead-zone-like
censoring, dynamical bias and RRP. In contrast with its
single sensor counterpart in [2], it is evidently seen that,a
suite of terms (E {ym,k|xk,Rm,k} and var{ym,k|xk,Rm,k})
appear here that carry the multi-sensor information. In ad-
dition, due to the concurrence of the RRP and dynamical
bias, the termCkxk is substituted by an augmented and
delayed stateζm,k ,

∑p−1
l=0 Γm,~k−l

Cm,k−lξk−l, and the
noise covarianceRm,k is replaced by an equivalent covariance
Rm,k ,

∑p−1
l=0 Γ2

m,~k−l
Rm,k−l. Note that the presence of

these new terms will inevitably result in 1) the development
of a bank of LTKFs; 2) the substitution ofCkxk andRm,k,
respectively, byζm,k and Rm,k throughout all observation
related terms; and 3) the emergence of several new terms in
regard toζm,k and Rm,k that further sophisticates the later
filter design.

Let

ξ̂−m,k ,E{xk|ym,1:k−1},
ξ̂m,k ,E{ξk|ym,1:k},
ξ̃−m,k ,ξk − ξ̂−m,k,

ŷ−m,k ,E{ym,k|ym,1:k−1},
ỹ−m,k ,ym,k − ŷ−m,k,

ξ̃m,k ,ξk − ξ̂m,k,

P
ξ̃
−

m,k

,E{ξ̃−m,k(ξ̃
−
m,k)

T },

Pξ̃
m,k

,E{ξ̃m,k ξ̃
T
m,k},

Pξ̃
−

m,k
ỹ
−

m,k
,E{ξ̃−m,k(ỹ

−
m,k)

T },

ϑ̄l
m,k ,

τ lm − ζ̂−m,k

Rm,k

,

ϑ̄r
m,k ,

τrm − ζ̂−m,k

Rm,k

,

ζ̂−m,k ,

p−1
∑

l=1

Γm,~k−l
Cm,k−lξ̂k−l + Γm,~k

Cm,kξ̂
−
k .

Before proceeding further, we first introduce the following
federated information distribution and fusion principle.

Lemma 2: [6] Suppose that̂xm,k (m = 1, 2, . . . , p) and
Pm.k are, respectively, the estimate and covariance of a
stochasticnx-dimension vectorxk obtained by themth local
estimator, x̂k and Pk are, respectively, the global optimal

estimate and covariance obtained by the fusion estimator under
the federated Kalman fusion rule, andQk is the covariance
of the process noise. Then, the information sharing process
among the local estimators and the fusion estimator is as
follows:











Qi,k−1 = ǫ−1
m Qk−1,

Pm,k−1 = ǫ−1
m P f

k−1,

x̂m,k−1 = x̂k−1,

where ǫm are the information sharing coefficients satisfying
∑p

m=1 ǫm = 1. Moreover, the fused estimate and covariance
of xk are given as



























Pk =

(

p
∑

m=1

P−1
m,k

)−1

,

x̂k = Pk

(

p
∑

m=1

P−1
m,kx̂m,k

)

.

In line with Lemmas 1–2, the customized LTKF (susceptible
to dead-zone-like censoring, dynamical bias and RRP) is
presented as follows.

Theorem 1:The LTKF for system (10)–(11) is of the fol-
lowing structure:

ξ̂−m,k =Ak−1ξ̂m,k−1, (18)

P
ξ̃
−

m,k

=Ak−1P
T

ξ̃
m,k−1

AT
k−1 + Bk−1Qm,k−1BT

k−1, (19)

ξ̂m,k =ξ̂−m,k +Km,k(ym,k − ŷ−m,k), (20)

Pξ̃
m,k

=P
ξ̃
−

m,k

−Km,kP
T

ξ̃
−

m,k
ỹ
−

m,k

. (21)

The local filtering gain matrixKm,k and one-step measure-
ment prediction are

Km,k =P
ξ̃
−

m,k
ỹ
−

m,k

P−1

ỹ
−

m,k

, (22)

ŷ−m,k =ᾱm,kτ
l
m + β̄m,kτ

r
m + (1− ᾱm,k − β̄m,k)

×
[

ζ̂−m,k +
√

Rm,kλ
(

ϑ̄r
m,k − ϑ̄l

m,k

)

]

, (23)

where

Pξ̃
−

m,k
ỹ
−

m,k

=(1− ᾱm,k − β̄m,k)Pξ̃
−

k
(Γm,~k

Cm,k)
T
, (24)

Pỹ
−

m,k

=(1− ᾱm,k − β̄m,k)
2Γm,~k

Cm,kPξ̃
−

k
CT

m,kΓm,~k

+ (1− ᾱm,k − β̄m,k)
2

p−1
∑

l=1

Γm,~k−l
Cm,k−lPξ̃k−l

× CT
m,k−lΓm,~k−l

+Rm,k

[

1 + ϕ
(

ϑ̄r
m,k, ϑ̄

l
m,k

)]

. (25)

Proof: See Appendix–B.
Remark 5:When making comparison between the pro-

posed LTKF in Theorem 1 and the conventional TKF in
[2], we observe three major differences. The first difference
is the replacement of theCkx̂

−
k (which is the product of

the original observation coefficientCk and state prediction
x̂−
k ) by ζ̂−m,k ,

∑p−1
l=0 Γm,~k−l

Cm,k−lξ̂
−
k−l (which is the sum

of p products in regard to the update coefficientΓm,~k−l
,

observation coefficientCm,k−l and augmented stateξk−l)
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in all observation related terms. The second difference is
the substitution of the original observation noise covariance
Rm,k by Rm,k ,

∑p−1
l=0 Γ2

m,~k−l
Rm,k−l (which is the

sum of p delayed noise covariances) in all terms relevant
to the observation prediction, filter gain as well as error
covariances. The last difference is the presence of several
new terms including the augmentation-induced termsξ̂−m,k,

ξ̂m,k, P
ξ̃
−

m,k

, P
ξ̃m,k

, Pξ̃
−

m,k
ỹ
−

m,k
and the protocol-induced terms

γ̄m,k

∑p−1
l=1 Cm,k−lPξ̃

m,k−l
CT
m,k−lγ̄m,k. These differences ob-

viously reflect the influences from the dynamical bias and the
RRP on the development of the filtering fusion algorithm.

Theorem 2:Suppose that̂ξm,k (m = 1, 2, . . . , p) andPξ̃
m,k

are, respectively, the state estimate and the error covariance
produced by themth LTKF. Let ξ̂k andPξ̃

k
be, respectively,

the global optimal estimate and covariance obtained at the
fusion center under the federated fusion rule. Then, the FTKF
for system (10)–(11) is expressed as



























Pξ̃
k
=

(

p
∑

m=1

P−1

ξ̃
m,k

)−1

,

ξ̂k = Pξ̃
k

(

p
∑

i=1

P−1

ξ̃
m,k

ξ̂m,k

)

.

(26)

where










Qm,k−1 = ǫ−1
m Qk−1,

Pξ̃
m,k−1

= ǫ−1
m Pξ̃k−1

,

ξ̂m,k−1 = ξ̂k−1.

(27)

Denoting

Γ1 ,
[

I 0
]

,

Γ2 ,
[

0 I
]

,

the next theorem presents the FTKF for system (1)–(8).
Theorem 3:Given system (1)–(8), its FTKF is as follows:























x̂k =Γ1ξ̂k,

b̂k =Γ2ξ̂k,

Px̃k
=Γ1Pξ̃k

ΓT
1 ,

Pb̃k
=Γ2Pξ̃k

ΓT
2 .

(28)

Proof: Theorem 3 follows readily from Theorem 1 by
noting the correlation between system (1)–(8) and system
(10)–(11).

Theorems 1–2, together with Lemma 1, constitute the FTKF
algorithm with its pseudocode outlined in Table I.

Remark 6: In accordance with Lemma 1 and Theorems 1–
3, a protocol-based FTKF mechanism is formalized to settle
the federated filtering fusion problem in the presence of the
dead-zone-like censoring, dynamical bias and RRP. The inves-
tigated model (1)–(8) is generic for its inclusion of not only
the multi-sensor sampling nature, but also the modeling and
observation uncertainties ( i.e. the dynamical bias and dead-
zone-like censoring) which are universally confronted in engi-
neering ranges such as image processing, target tracking, fault
diagnosis, etc. These uncertainties are propitiously tackled in a
holistic yet efficient framework under the RRP. It is noteworthy

TABLE I: FTKF Pseudocode

Algorithm: FTKF
Input: x̄0, b̄0, Px̃0

,P
b̃0

, ym,1:k

Output: x̂k, b̂k, Px̃
k

.

1: let ξ̂0 =
[

x̄T
0

b̄T
0

]T , ξ̂m,0 = ξ̄0, P
ξ̃m,0

= ǫ−1
m P

ξ̃0
,

Qm,0 = ǫ−1
m Q0, P

ξ̃0
= diag{Px̃0

, P
b̃0
}.

2: for k = 1 : N do
3: calculate the local predicted estimateξ̂−

m,k
and

covarianceP
ξ̃
−

m,k

by (18)–(19);,

4: calculate the local gain matrixKm,k by (22);
5: calculate the local updated estimateξ̂m,k and

covarianceP
ξ̃m,k

by (20)–(21);

6: calculate the optimal fused estimateξ̂k and
covarianceP

ξ̃k
by (26);

7 calculate the optimal fused estimatesx̂k and b̂k
and associate covariancesPx̃k

andP
b̃k

by (28)

8: reallocateξ̂m,k, Pξ̃m,k
andQm,k by (27);

9: end for

that the desired FTKF is, in essence, a distributed extension
of the conventional TKF. In the event that the dynamical bias
and the RRP are disregarded (i.e.Bk = 0 and ȳm,k = zm,k),
the LTKF in Theorem 1 will degrade to the standard TKF in
[2]. Consequently, the FTKF in Theorem 2 will degenerate to
the distributed generalization of the conventional TKF.

Next, we move forward to assess the performance of
the designed FTKF. Due to the time-varying nature of the
protocol-induced measurement update coefficientΓm,~k

, the
convergence of the developed federated Tobit Kalman filtering
algorithm cannot be guaranteed in general. Thus, we turn to
pursue the boundedness of the developed algorithm where the
upper and lower bounds of the estimation error covariance are
explored. The pursuit of such bounds can be carried out based
on three principles: 1) the optimality of the developed LTKF
motivates us to construct a set of suboptimal filters whose
estimation error covariances are envisioned to be the upper
bounds onPξ̃

−

m,k
; 2) the semi-positive definiteness ofPξ̃

−

m,k
,

Qk and Rm,k paves the way for us to envisage the lower
bound onPξ̃

−

m,k
via some subtle matrix manipulations; and

3) the federated fusion rule provides us with the correlation
between the bounds of the LTKF and that of the fused filter.

Recalling that the optimal protocol-based LTKF derived in
Theorem 2 has an optimal filtering gainKm,k (which depends
on both left- and right-censoring probabilitiesᾱm,k andβ̄m,k),
the following theorem is dedicated to the derivation of a self-
propagating upper bound onPξ̃

−

m,k
via constructing suboptimal

protocol-based LTKFs with suboptimal filtering gainsKu
m,k

(which depends only on the left-censoring probabilitiesᾱm,k).
As to the lower bound onPξ̃m,k

, it can be acquired by making
use of the semi-positive definiteness of matricesPξ̃

−

m,k
, Qk and

Rm,k.
Theorem 4:Let the initial conditionPu

ξ̃
−

m,0

> 0 andP l

ξ̃
−

m,0

>

0 be given. Calculate the matrix sequences

{

Pu

ξ̃
−

m,k+1

}

k≥0

and

{

P l

ξ̃
−

m,k+1

}

k≥0

according to the following difference
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equations:

Pu

ξ̃
−

m,k+1

=AkP
u

ξ̃
−

k

AT
k + BkQkBT

k −Ak(1 − ᾱm,k)
2Pξ̃

−

m,k

× (Γm,~k
Cm,k)

T
{

(1− ᾱm,k)
2Γm,~k

Cm,kPξ̃
−

m,k
CT

m,kΓ
T
m,~k

+ (1− ᾱm,k)
2

p−1
∑

l=1

Γm,~k−l
Cm,k−lPξ̃

−

m,k−l
CT

m,k−lΓ
T
m,~k−l

+Rm,k

[

1 + ϕ(ϑ̄l
m,k)

]

}−1

Γm,~k
Cm,kPξ̃

−

m,k
AT

k ,

P l

ξ̃
−

m,k+1

=
(

1− (1 − ᾱm,k − β̄m,k)
2
)

AkP
l

ξ̃
−

m,k

AT
k + BkQkBT

k .

Then, the calculated matricesPu

ξ̃−
m,k+1

andP l

ξ̃−
m,k+1

satisfy

P l

ξ̃
−

m,k+1

≤ Pξ̃
−

m,k+1

≤ Pu

ξ̃
−

m,k+1

,

i.e.Pu

ξ̃
−

m,k+1

andP l

ξ̃
−

m,k+1

are, respectively, the self-propagating

upper and lower bounds onPξ̃
−

m,k+1

, where ϕ(ϑ̄l
m,k) =

λ(ϑ̄l
m,k)[λ(ϑ̄

l
m,k) − ϑ̄l

m,k] and λ(ϑ̄l
m,k) = φ(ϑ̄l

m,k)/[1 −
Φ(ϑ̄l

m,k)].
Proof: See Appendix–C.

Theorem 5:Letting the initial conditionPu

ξ̃
−

m,0

> 0 and

P l

ξ̃−
m,0

> 0 be given, we have

P l

x̃
−

k+1

≤ Px̃
−

k+1

≤ Pu

ξ̃
−

k+1

,

i.e. Pu

x̃
−

k+1

and P l

x̃
−

k+1

are, respectively, the self-propagating

upper and lower bounds onPx̃
−

k+1

, where

Pu

x̃
−

k+1

=Γ1

[

p
∑

m=1

(

Pu

ξ̃m,k

)−1
]−1

ΓT
1 ,

P l

x̃
−

k+1

=Γ1

[

p
∑

m=1

(

P l

ξ̃m,k

)−1
]−1

ΓT
1 .

Proof: Theorem 5 follows directly from Theorems 2–4.

Remark 7: It should be noted that although the main results
in this paper are obtained based on scalar sensor observation
models for simplicity, they can be directly generalized to the
case of multi-dimensional observation models. This general-
ization would brings in changes that include 1) the transfor-
mation of the update coefficient fromΓm,~k

, δ(~k − m)
(which is a scalar) toΓm,~k

, δ(~k − m)I (which is now
a matrix); and 2) the introduction of a few more Bernoulli
random variablesαi

m,k (i = 1, 2, . . . , nzm) and βi
m,k that

are adopted to regulate the left- and right-censoring ofyim,k

(which is theith entry of ym,k). Fortunately, the observation
model can still be written in a form similar to (8), and this
makes it possible for us to easily extend our main results in this
paper to the case of multi-dimensional sensor observations.
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Fig. 2: ȳ1,k, ȳ2,k (uncensored), andy1,k andy2,k (censored).

IV. I LLUSTRATIVE EXAMPLE

In this section, the oscillator example (modified from [1],
[2])and distributed target tracking example are leveragedto
elucidate the usefulness of the presented filter design approach
and associated filtering performance. Denote the first and
second dimensions ofxk, respectively, asx1,k andx2,k, and
the root mean-squared errors (RMSEs) and average root mean-
squared errors (ARMSEs) ofx1,k, x2,k andbk as

RMSE1,

√

√

√

√

1

M

M
∑

i=1

(

x
(i)
1,k − x̂

(i)
1,k

)2

,

RMSE2,

√

√

√

√

1

M

M
∑

i=1

(

x
(i)
2,k − x̂

(i)
2,k

)2

,

RMSE3,

√

√

√

√

1

M

M
∑

i=1

(

b
(i)
k − b̂

(i)
k

)2

,

ARMSE1,
1

N

N
∑

k=1

√

√

√

√

1

M

M
∑

i=1

(

x
(i)
1,k − x̂

(i)
1,k

)2

,

ARMSE2,
1

N

N
∑

k=1

√

√

√

√

1

M

M
∑

i=1

(

x
(i)
2,k − x̂

(i)
2,k

)2

,

ARMSE3,
1

N

N
∑

k=1

√

√

√

√

1

M

M
∑

i=1

(

b
(i)
k − b̂

(i)
k

)2

,

whereM is the number of Monte Carlo trials andN is the
number of time steps in each trial.

A. Oscillator Example

Let system (1)-(8) have following parameters

Ak =

[

cos(ω) − sin(ω)
sin(ω) cos(ω)

]

, Bk =

[

0.1
0.15

]

,

Ξk =0.25, C1,k =
[

1 0
]

, C2,k =
[

0 1
]

,

Qk =diag{0.0025, 0.0025}, R1,k = R2,k = 0.6,

Hk =1, ω = 0.052π, τ l1 = τ l2 = −5, τr1 = τr2 = 5,

Px̃0
=0.1I2, x̄0 =

[

5 0
]T

, b̄0 = 0, Pb̃0
= 0.1.
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Fig. 3: States and Estimates.
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Fig. 4: The Bias and its estimate.

Note that the dynamic model is corrupted by ambient
disturbances entering the system via the process noiseωk

and dynamical biasbk. The magnetometer sampling is subject
to the dead-zone-like censoring, and the data transmission
is scheduled by the RRP. In the sequel, in order to testify
the effectiveness of our filtering approach in appropriately
addressing the dynamical bias issue, we first make a compar-
ison between the proposed FTKF (which is barely capable of
addressing the multi-sensor dead-zone-like censored observa-
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Fig. 5: Comparison in RMSE1 and RMSE2 between the FTKF
and FTKF-DB.
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Fig. 6: RMSE3 produced by FTKF-DB.
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Fig. 7: Comparison in RMSE1 and RMSE2 between the local
and fused filters.

tions in case of the RRP) and the FTKF with dynamical bias
(FTKF-DB) (which is capable of simultaneously addressing
the bias-corrupted dynamic model and the multi-sensor dead-
zone-like censored observations in case of the RRP). From the
following demonstrated figures, one can apparently observe
the superiority of our FTKF-DB over the FTKF in accurately
estimating the target state.

For Sensor 1 (S1) and Sensor 2 (S2), Fig. 2 sketches the
corresponding uncensored observations (ȳ1,k and ȳ2,k) and
censored observations (y1,k andy2,k). Fig. 3 depicts the true
state values and their estimates provided by the FTKF and
FTKF-DB, and Fig. 4 illustrates the bias estimates produced
by our FTKF-DB. It is seen from Figs. 3–4 that, our FTKF-DB
manages to track the state and bias values precisely, whilstthe
FTKF has considerable deviations from true state values, and
moreover, is unable to track the bias. Figs. 5–6 plot the RMSE
curves of the FTKF and FTKF-DB after 1000 independent
Mote Carlo trials. It is spotted from Figs. 5–6 that, the RMSE1
and RMSE2 curves of our FTKF-DB always reside lower than
that of the FTKF, whilst the RMSE3 curve of our FTKF-DB
is within a satisfactory range. This is because that both state
and bias estimation issues are well settled in our FTKF-DB,
whereas the bias estimation problem is not disposed of in the
FTKF.

Besides, to further elaborate the superiority of our FTKF-
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Fig. 8: Comparison in̂bk between the local and fused filters.

0 10 20 30 40 50 60 70 80 90 100

Time (k)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
M

S
E

 o
f b

k

LTKF-DB-S1
LTKF-DB-S2
FTKF-DB

Fig. 9: Comparison in RMSE3 between the local and fused
filters.

DB over its local counterparts, the performance comparisonis
made among these filters, where the LTKFs based on S1 and
S2 observations are, respectively, named as LTKF-DB-S1 and
LTKF-DB-S2. After 1000 times of Monte Carlo trials, Fig. 7
draws the RMSE curves in regard to the state tracking, whilst
Figs. 8–9 demonstrate both estimation and RMSE curves
with respect to the bias tracking. It is evidently seen from
Figs. 7–9 that, the performance of our FTKF-DB outperforms
that of the LTKF-DB-S1 and LTKF-DB-S2 in both state and
bias tracking. This is because that our FTKF-DB properly
integrates all available sensor information in accomplishing
the task of target state and bias tracking, whilst both LTKF-
DB-S1 and LTKF-DB-S2 produce their tracking results based
at partial sensor observations.

TABLE II: Comparison among ARMSEs for different censor-
ing regions[τ lm, τrm].

[τ lm, τrm] ARMSE1 ARMSE2 ARMSE3
[-5, 5] 0.2329 0.4768 0.2515
[-1, 1] 4.4252 4.1257 3.6580
[-0.5, 0.5] 7.1406 6.7888 5.7826

At last, we show the influences from the censoring threshold
and noise covariance on the filtering algorithm of our FTKF-

TABLE III: Comparison among ARMSEs for different noise
covariancesRm,k.

Rm,k ARMSE1 ARMSE2 ARMSE3
0.6 0.2329 0.4768 0.2515
0.1 0.0948 0.3707 0.2082
0.06 0.0742 0.2924 0.1601

DB. For different censoring regions[τ lm, τrm] and noise co-
variancesRm,k, the associated ARMSEs of our developed
filtering fusion algorithm based on1000 Monte Carlo trials
(with each trial comprised of100 time steps) are demonstrated
in Tables II–III. Looking at the two tables, we can draw the
following conclusions: 1) as the censoring region[τ lm, τrm]
narrows, the filtering accuracy with respect to the system state
and dynamical bias deteriorates; and 2) as the covarianceRm,k

decreases, the filtering accuracy in regard to the system state
and dynamical bias improves.

B. Distributed Target Tracking Example

Consider an example of distributive target tracking with two
sensors. According to Newton’s force principle, the movement
of the target can be modeled as a constant-velocity nominal
system and the target manoeuver is modeled as an unknown
acceleration bias to the constant velocity. Meanwhile, the
nominal system is corrupted by ambient disturbances entering
the system via process noises. The two sensors sample the
target position (range) and velocity (Doppler), respectively,
with the same sampling periodT = 0.1s. The measurement
sampling is subject to the dead-zone-like censoring, and the
data transmission is scheduled by the RRP. This situation can
be modeled by (1)–(8) with following parameters.

Ak =

[

1 T
0 1

]

, Bk =

[

0.5T 2

T

]

, x̄0 =
[

10 0
]T

, b̄0 = 0,

Ξk =0.25, C1,k =
[

1 0
]

, C2,k =
[

0 1
]

, Px̃0
= I2,

Hk =1, τ l1 = −1000, τ l2 = −200, τr1 = 1000, τr2 = 200,

Qk =10−4diag{25, 25}, R1,k = 0.1, R2,k = 0.3, Pb̃0
= 0.1.

Figs. 10–11 plot the RMSE curves of the FTKF and FTKF-
DB after 1000 independent Mote Carlo trials. It is spotted
from Figs. 10–11 that, the RMSE curves with respect to
the target position and velocity produced by our FTKF-DB
always locate lower than that produced by the FTKF, whilst the
RMSE curve in regard to the dynamical bias generated by our
FTKF-DB is within a satisfactory range. These demonstration
results obviously showcase the effectiveness and applicability
of the proposed FTKF-DB in addressing the distributive target
tracking problem subject to the dead-zone-like censoring,
dynamical biases and RRP.

V. CONCLUSION

In this paper, we have dealt with the filtering fusion problem
for a class of multi-sensor systems with the concurrence of
dead-zone-like censoring and dynamical biases under the RRP.
The censoring phenomenon is depicted by the two-side Tobit



FINAL VERSION 11

0 10 20 30 40 50 60 70 80 90 100
Time (k)

0

200

400

600
R

M
S

E
 o

f p
os

iti
on

FTKF FTKF-DB

0 10 20 30 40 50 60 70 80 90 100

Time (k)

0

50

100

150

R
M

S
E

 o
f v

el
oc

ity FTKF FTKF-DB

Fig. 10: Comparison in RMSEs of target position and velocity
between the FTKF and FTKF-DB.
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Fig. 11: RMSE of dynamical bias produced by FTKF-DB.

observation model to manifest the dead-zone-like feature of
the observation. The bias takes the form of a dynamic model
driven by Gaussian white noises with known means and vari-
ances. For each sensor, taking into consideration of the effects
incurred by the censored observations, dynamic bias as well
as RRP, an enhanced regression model has been constructed,
based on which a unified filtering fusion framework has been
formulated via the proposed LTKF. Thanks to the federated
fusion rule, local estimates generated by all the LTKFs have
been well incorporated to establish the desired FTKF. Finally,
the applicability of the presented FTKF has been validated and
its superiority over the local counterpart has also been certified
by simulation experiments.

Further research topics would include the extension of our
results to the more general systems with more complicated
network-induced phenomena [10], [17], [27], [30]–[32], [35],
[36], [43]. For instance,

• The multi-sensor Tobit Kalman filtering fusion prob-
lems with complicated network-induced phenomena, e.g.
signal quantization, sensor saturation, and mixed time-
delays.

• The multi-sensor Tobit Kalman filtering fusion problems
for more general systems, e.g. sensor networks, complex
networks and neural networks.

APPENDIX

A. Proof of Lemma 1

Proof: It is follows evidently from definitions

ȳm,k ,ζm,k + νm,k,

ζm,k ,

p−1
∑

l=0

Γm,~k−l
Cm,k−lξk−l,

νm,k ,

p−1
∑

l=0

Γm,~k−l
υm,k−l

that νm,k is a zero mean Gaussian noise with covariance

Rm,k ,

p−1
∑

l=0

Γ2
m,~k−l

Rm,k−l.

Accordingly, the PDF ofym,k has the following expression:

f(ym,k|xk,Rm,k)

=
1

√

Rm,k

φ

(

ym,k − ξm,k
√

Rm,k

)

u(ym,k − τ lm)

× u(τrm − ym,k)

+ δ(ym,k − τ lm)Φ(ϑl
m,k) + δ(ym,k − τrm)

×
(

1− Φ(ϑr
m,k

)

), (29)

whereu(ym,k−τ lm) andu(τrm−ym,k) are unit step functions,

andφ

(

ym,k−ξm,k√
Rm,k

)

andΦ(ϑm,k) are calculated by (16)–(17).

In the light of (29), the mean ofym,k is

E{ym,k|xk,Rm,k
}

=Prob{τ lm < ym,k < τrm|xk}
× E{ym,k|τ lm < ym,k < τrm, xk}
+ Prob{ym,k = τ lm|xk}E{ym,k|ym,k = τ lm, xk}
+ Prob{ym,k = τrm|xk}E{ym,k|ym,k = τrm, xk} (30)

To computeE{ym,k|xk,Rm,k}, the probabilities and expec-
tations on the right-hand side of (30) must be provided.

Prob{τ lm < ym,k < τrm|xk}
=Prob{τ lm < ȳm,k < τrm|xk}
=Prob{τ lm − ζm,k < νm,k < τrm − ζm,k|xk}
=Φ

(

ϑr
m,k

)

− Φ
(

ϑl
m,k

)

. (31)

In line with (29), we have

E{ym,k|τ lm < ym,k < τrm, xk}

=
1

√

Rm,k

∫ τr
m

τ l
m

ym,k

φ

(

ym,k−ξm,k√
Rm,k

)

Φ
(

ϑr
m,k

)

− Φ
(

ϑl
m,k

)dym,k

=ξm,k −
√

Rm,kλ
(

ϑr
m,k, ϑ

l
m,k

)

, (32)

whereλ
(

ϑr
m,k, ϑ

l
m,k

)

is computed by (14).
Parallel to (31)-(32), we attain

Prob{ym,k = τ lm|xk} = Φ
(

ϑl
m,k

)

, (33)

Prob{ym,k = τrm|xk} = 1− Φ
(

ϑr
m,k

)

, (34)
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E{ym,k|ym,k = τ lm, xk} = τ lm, (35)

E{ym,k|ym,k = τrm, xk} = τrm. (36)

Inserting (31)-(36) into (30) yields

E {ym,k|xk,Rm,k}
=Φ

(

ϑl
m,k

)

τ lm +
(

1− Φ
(

ϑr
m,k

))

τrm

+
[

Φ
(

ϑr
m,k

)

− Φ
(

ϑl
m,k

)]

×
[

ζm,k −
√

Rm,kλ
(

ϑr
m,k, ϑ

l
m,k

)

]

,

which is precisely the same as (12).
Referring to (29), (32), (35) and (36) produces

var{ym,k|ym,k = τ lm, xk}
=var{ym,k|ym,k = τrm, xk}
=0,

and therefore

var{ym,k|xk}
=var{ym,k|τ lm < ym,k < τrm, xk}
=E{y2m,k|τ lm < ym,k < τrm, xk}
−
(

E{y2m,k|τ lm < ym,k < τrm, xk}
)2

. (37)

The notice of (29) along with (32) tells

E{y2m,k|τ lm < ym,k < τrm, xk}

=
1

√

Rm,k

∫ τr
m

τ l
m

y2m,k

φ

(

ym,k−ξm,k√
Rm,k

)

Φ
(

ϑr
m,k

)

− Φ
(

ϑl
m,k

)dym,k

=ξ2m,k +Rm,k −
√

Rm,kξm,kλ
(

ϑr
m,k, ϑ

l
m,k

)

+
√

Rm,k

(

τ lmφ
(

ϑl
m,k

)

− τrmφ
(

ϑr
m,k

))

Φ
(

ϑr
m,k

)

− Φ
(

ϑl
m,k

) . (38)

Inserting (32) and (38) into (37) gives

var{ym,k|xk,Rm,k} = Rm,k

[

1 + ϕ
(

ϑr
m,k, ϑ

l
m,k

)]

,

which is precisely the same as (13), whereϕ
(

ϑr
m,k, ϑ

l
m,k

)

is
provided by (15).

B. Proof of Theorem 1

Proof: For the sake of derivation brevity, denote

Pξ
m,k

ξ
m,k−l

, E{ξm,kξ
T
m,k−l},m = 0, 1 . . . , p− 1,

and suppose

Pξ̃−
k
ξ̃−t

=0 for k 6= t, k, t = 1, 2, . . . ,

cov{ym,k, ys,k} =0 for m 6= s,m, s = 1, 2, . . . , p.

The extension to the setting where

Pξ̃
−

k
ξ̃
−

t
6=0 for k 6= t, k, t = 1, 2, . . . ,

cov{ym,k, ys,k} 6=0 for m 6= s,m, s = 1, 2, . . . , p.

is straightforward but rotationally cumbersome.

The orthogonality projection principle [4] tells us that, for
system (10), its linear minimum variance estimate (based on
the measurements from sensorm) is given by

ξ̂m,k =E{ξk|ym,1:k}
=E{ξk|ym,1:k−1}+ P

ξ̃
−

m,k
ỹ
−

m,k

P−1

ỹ
−

m,k

× (ym,k − E{ym,k|ym,1:k−1})
=ξ̂−m,k +Km,k(ym,k − ŷ−m,k),

which is exactly the same as (20), whereKm,k has the
structure of (22). Meanwhile, we have

ξ̂−m,k =E{ξk|ym,1:k−1}
=E{Ak−1ξk−1 + Bk−1wk−1|ym,1:k−1}
=E{Ak−1ξk−1|ym,1:k−1}
=Ak−1ξ̂m,k−1,

which is exactly the same as (18), where the third equality
holds fromE{wk−1} = 0.

Subtracting (18) from (10) brings

ξ̃−m,k = Ak−1ξ̃
−
m,k−1 + Bk−1wk−1.

Inserting the expression of̃ξ−m,k into

Pξ̃
−

m,k
, E

{

ξ̃−m,k

(

ξ̃−m,k

)T
}

gives

Pξ̃
−

m,k
=E

{(

Ak−1ξ̃
−
m,k−1 + Bk−1wk−1

)

×
(

Ak−1ξ̃
−
m,k−1 + Bk−1wk−1

)T }

=Ak−1Pξ̃
−

m,k−1

AT
k−1 + Bk−1Qk−1BT

k−1,

which is precisely the same as (19).
By resorting to Lemma 1, we have

ŷ−m,k =Φ
(

ϑ̄l
m,k

)

τ lm +
(

1− Φ
(

ϑ̄r
m,k

))

τrm

+
(

Φ
(

ϑ̄r
m,k

)

− Φ
(

ϑ̄l
m,k

))

×
[

ζ̂−m,k +
√

Rm,kλ
(

ϑ̄r
m,k − ϑ̄l

m,k

)

]

=ᾱm,kτ
l
m + β̄m,kτ

r
m + (1− ᾱm,k − β̄m,k)

×
[

ζ̂−m,k +
√

Rm,kλ
(

ϑ̄r
m,k − ϑ̄l

m,k

)

]

,

which is precisely the same as (22).
Subtracting (22) from

ȳm,k , ζm,k + νm,k

leads to

ỹ−m,k =(1− αm,k − βm,k)ȳm,k + αm,kτ
l
m

+ βm,kτ
r
m−ŷ−m,k. (39)

Bearing (39) in mind, we have

Pξ̃−
m,k

ỹ−

m,k

=E

{(

ξk − ξ̂−k

)

((1 − αm,k − βm,k)ȳm,k

+ αm,kτ
l
m + βm,kτ

r
m−ŷ−m,k)

T
}
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=E
{

(ξk(ζm,k + νm,k)
T (1− αm,k − βm,k)

}

− E

{

ξ̂−k (ζm,k + νm,k)
T (1− αm,k − βm,k)

}

=E

{

ξk

(

p−1
∑

l=0

Γm,~k−l
Cm,k−lξk−l

)T

× (1− αm,k − βm,k)

}

− E

{

ξ̂−k

(

p−1
∑

l=0

Γm,~k−l
Cm,k−lξk−l

)T

× (1− αm,k − βm,k)

}

=(1− ᾱm,k − β̄m,k)

p−1
∑

l=0

Pξm,kξm,k−l

×
(

Γm,~k−l
Cm,k−l

)T − (1 − ᾱm,k − β̄m,k)ξ̂
−
k

×
p−1
∑

l=0

ξ̂k−l

(

Γm,~k−l
Cm,k−l

)T
. (40)

Paying attention to the relationships amongξm,k, ξ̂m,k and
ξ̃m,k, we have

Pξm,kξm,k−l
=E

{

(

ξ̃−m,k + ξ̂−m,k

)(

ξ̃−m,k−l + ξ̂−m,k−l

)T
}

=Pξ̃
−

m,k
ξ̃
−

m,k−l
+ ξ̂−m,k

(

ξ̂−m,k−l

)T

, (41)

where the second equality holds from

E

{

ξ̃−k

(

ξ̂−k−l

)T
}

=0,

E

{

ξ̂−k

(

ξ̃−k−l

)T
}

=0,

Substituting (41) into (40) produces

Pξ̃
−

m,k
ỹ
−

m,k
=(1− ᾱm,k − β̄m,k)

p−1
∑

l=0

Pξ̃
−

k
ξ̃
−

k−l

×
(

Γm,~k−l
Cm,k−l

)T

=(1− ᾱm,k − β̄m,k)Pξ̃
−

k
(Γm,~k

Cm,k)
T
, (42)

where the last equality holds from

Pξ̃
−

k
ξ̃
−

t
6= 0 for k 6= t, k, t = 0, 1, 2, . . . .

(42) is precisely the same as (22).
Retrospecting the expressions ofζm,k, ζ̂−m,k and ζ̃−m,k leads

to

ζ̃−m,k =

p−1
∑

l=0

Γm,~k−l
Cm,k−lξk−l

− Γm,~k
Cm,k ξ̂

−
k −

p−1
∑

l=1

Γm,~k−l
Cm,k−lξ̂k−l

=Γm,~k
Cm,k ξ̃

−
k +

p−1
∑

l=1

Γm,~k−l
Cm,k−lξ̃k−l,

which indicates

E

{

ζ̃−m,k

(

ζ̃−m,k

)T
}

=Γm,~k
Cm,kPξ̃

−

k
CT

m,kΓm,~k

+

p−1
∑

l=1

Γm,~k−l
Cm,k−lPξ̃k−l

CT
m,k−lΓm,~k−l

. (43)

Akin to the derivation ofPξ̃
−

m,k
ỹ
−

m,k
, one has

Pỹ
−

m,k
=E

{

ỹ−m,k

(

ỹ−m,k

)T
}

=(1 − ᾱm,k − β̄m,k)
2
E

{

ζ̃−m,k

(

ζ̃−m,k

)T
}

+ E

{

(1− αm,k − βm,k)ν̃m,kν̃
T
m,k

× (1− αm,k − βm,k)
}

, (44)

where

ν̃m,k , νm,k −
√

Rm,kλ
(

ϑ̄r
m,k − ϑ̄l

m,k

)

.

Accordingly, we have

E

{

(1 − αm,k − βm,k)ν̃m,kν̃
T
m,k(1 − αm,k − βm,k)

}

=var{ym,k|xk,Rm,k, ym,1:k−1}
=Rm,k

[

1 + ϕ
(

ϑ̄r
m,k, ϑ̄

l
m,k

)]

. (45)

Inserting (43) and (45) into (44) results in

Pỹ
−

m,k

=E

{

ỹ−m,k

(

ỹ−m,k

)T
}

=(1− ᾱm,k − β̄m,k)
2Γm,~k

Cm,kPξ̃−
k
CT

m,kΓm,~k

+ (1− ᾱm,k − β̄m,k)
2

p−1
∑

l=1

Γm,~k−l
Cm,k−lPξ̃k−l

× CT
m,k−lΓm,~k−l

+Rm,k

[

1 + ϕ
(

ϑ̄r
m,k, ϑ̄

l
m,k

)]

.l

which is precisely the same as (23).

C. Proof of Theorem 4

Proof: First, let us concentrate on designing a suboptimal
protocol-based LTKF whose gain matrixKu

m,k only hinges
on the left-censoring probabilitȳαm,k. Recalling the LTKF
designed in Theorem 2, its error covariancePξ̃

−

m,k+1

in (19) is
rearranged into

Pξ̃
−

m,k+1

=AkPξ̃
−

m,k
AT

k + BkQkBT
k − (1 − ᾱm,k − β̄m,k)

2AkPξ̃
−

m,k

× (Γm,~k
Cm,k)

T
{

(1− ᾱm,k − β̄m,k)
2Γm,~k

Cm,kPξ̃
−

m,k

× CT
m,kΓ

T
m,~k

+ (1− ᾱm,k − β̄m,k)
2

p−1
∑

l=1

Γm,~k−l
Cm,k−l

× Pξ̃
−

m,k−l
CT

m,k−lΓ
T
m,~k−l
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+Rm,k

[

1 + ϕ(ϑ̄r
m,k, ϑ̄

l
m,k)

]

}−1

Γm,~k
Cm,kPξ̃

−

m,k
AT

k .

(46)

Accordingly, the error covariancePu

ξ̃
−

m,k+1

with regard to

the suboptimal LTKF can be easily obtained as the one in
Theorem 4

For k = 0, by settingPu

ξ̃
−

m,0

= Pξ̃
−

m,0
> 0, we easily

have Pξ̃
−

m,0
≤ Pu

ξ̃
−

m,0

. For k > 0, since the performance

of the optimal protocol-based LTKF must be no less than
any of its suboptimal counterparts, it can be concluded that
Pξ̃

−

m,k
≤ Pu

ξ̃
−

m,k

. As such,Pu

ξ̃
−

m,k

in Theorem 4 is an upper

bound onPξ̃
−

m,k
for all k ≥ 0.

Next, we move forward to seek a lower bound onPξ̃
−

m,k
.

DenotingAm,k , Ak + (1 − ᾱm,k − β̄m,k)
2Km,kΓm,~k

Cm,k

andKm,k , −Am,kKm,k, we have

Am,kPξ̃−
m,k

(Γm,~k
Cm,k)

T + Km,k

{

(1− ᾱm,k − β̄m,k)
2

×
p−1
∑

l=1

Γm,~k−l
Cm,k−lPξ̃

−

m,k−l
CT

m,k−lΓ
T
m,~k−l

+Rm,k

[

1 + ϕ(ϑ̄r
m,k, ϑ̄

l
m,k)

]

}

=
(

Ak + (1− ᾱm,k − β̄m,k)
2
Km,kΓm,~k

Cm,k

)

Pξ̃
−

m,k

× (Γm,~k
Cm,k)

T
+ Km,k

{

(1 − ᾱm,k − β̄m,k)
2

×
p−1
∑

l=1

Γm,~k−l
Cm,k−lPξ̃

−

m,k−l
CT

m,k−lΓ
T
m,~k−l

+Rm,k

[

1 + ϕ(ϑ̄r
m,k, ϑ̄

l
m,k)

]

}

=AkPξ̃
−

m,k
(Γm,~k

Cm,k)
T
+ Km,kPỹ−

m,k

=0. (47)

It follows from (46) that

Pξ̃
−

m,k+1

=
(

1− (1 − ᾱm,k − β̄m,k)
2
)

(

AkPξ̃
−

m,k
AT

k + BkQkBT
k

)

+ (1− ᾱm,k − β̄m,k)
2(AkPξ̃

−

m,k
AT

k + BkQkBT
k )

− (1− ᾱm,k − β̄m,k)
2AkPξ̃

−

k
(Γm,~k

Cm,k)
T

× P−1
ỹ−

m,k

Γm,~k
Cm,kPξ̃

−

k
AT

k

=
(

1− (1 − ᾱm,k − β̄m,k)
2
)

(

AkPξ̃
−

m,k
AT

k + BkQkBT
k

)

+ (1− ᾱm,k − β̄m,k)
2(AkPξ̃

−

m,k
AT

k + BkQkBT
k )

+ (1− ᾱm,k − β̄m,k)
2
Km,kΓm,~k

Cm,kPξ̃
−

m,k
AT

k

=
(

1− (1 − ᾱm,k − β̄m,k)
2
)

(

AkPξ̃
−

m,k
AT

k + BkQkBT
k

)

+ (1− ᾱm,k − β̄m,k)
2
(

Am,kPξ̃−
m,k

AT
k + BkQkBT

k

)

.

(48)

Inserting (47) into (48) generates

Pξ̃
−

m,k+1

=
(

1− (1 − ᾱm,k − β̄m,k)
2
)

(

AkPξ̃
−

m,k
AT

k + BkQkBT
k

)

+ (1− ᾱm,k − β̄m,k)
2
(

Am,kPξ̃−
m,k

A
T
k + BkQkBT

k

)

+ (1− ᾱm,k − β̄m,k)
2
Km,kPỹ

−

m,k
K
T
m,k

≥
(

1− (1− ᾱm,k − β̄m,k)
2
)

AkPξ̃
−

m,k
AT

k

+ (1− ᾱm,k − β̄m,k)
2BkQkBT

k . (49)

Inspired by (49), let us define

P l

ξ̃
−

m,k+1

,
(

1− (1− ᾱm,k − β̄m,k)
2
)

AkP
l

ξ̃
−

m,k

AT
k

+ (1− ᾱm,k − β̄m,k)
2BkQkBT

k ,

which is initialized atP l

ξ̃
−

m,0

= 0. Now, let us proveP l

ξ̃
−

m,k+1

≤
Pξ̃

−

m,k+1

via mathematical induction. Noticeably, at the initial

time k = 0, we haveP l

ξ̃
−

m,0

= 0 ≤ Pξ̃
−

m,0
. Supposing that

P l

ξ̃
−

m,k

≤ Pξ̃
−

m,k
holds at timek, we have

P l

ξ̃
−

m,k+1

=
(

1− (1− ᾱm,k − β̄m,k)
2
)

AkP
l

ξ̃
−

m,k

AT
k

+ (1− ᾱm,k − β̄m,k)
2BkQkBT

k

≤
(

1− (1− ᾱm,k − β̄m,k)
2
)

AkPξ̃
−

m,k
AT

k

+ (1− ᾱm,k − β̄m,k)
2BkQkBT

k

≤Pξ̃
−

m,k+1

,

where the last inequality holds from (49). As a result, it can
be concluded that,P l

ξ̃
−

m,k+1

≤ Pξ̃
−

m,k+1

holds for allk ≥ 0, i.e.

P l

ξ̃
−

m,k+1

given by (30) is a lower bound onPξ̃
−

m,k+1

. As such,

we haveP l

ξ̃
−

m,k+1

≤ Pξ̃
−

m,k+1

≤ Pu

ξ̃
−

m,k+1

for all k ≥ 0. This

completes the proof.
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