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Abstract: In this paper, novel variants for the Ensemble Particle Swarm Optimizer (EPSO) are
proposed where ten chaos maps are merged to enhance the EPSO’s performance by adaptively
tuning its main parameters. The proposed Chaotic Ensemble Particle Swarm Optimizer variants
(C.EPSO) are examined with complex nonlinear systems concerning equal order and variable-order
fractional models of Permanent Magnet Synchronous Motor (PMSM). The proposed variants’ results
are compared to that of its original version to recommend the most suitable variant for this non-linear
optimization problem. A comparison between the introduced variants and the previously published
algorithms proves the developed technique’s efficiency for further validation. The results emerge
that the Chaotic Ensemble Particle Swarm variants with the Gauss/mouse map is the most proper
variant for estimating the parameters of equal order and variable-order fractional PMSM models, as it
achieves better accuracy, higher consistency, and faster convergence speed, it may lead to controlling
the motor’s unwanted chaotic performance and protect it from ravage.

Keywords: chaos maps; Ensemble Particle Swarm Optimizer; Permanent Magnet Synchronous Motor

1. Introduction

Permanent Magnet Synchronous Motor (PMSM) is one of the preferable motors due
to its high efficiency, low cost, and simple structure [1]. However, PMSM performance may
be disturbed considerably due to its chaotic behavior due to the disturbance of load, or the
system parameters change [2,3]. This behavior is an important problem in the operation of
PMSM because of torque inconstancy, low-frequency fluctuations in current, and speed
oscillations, which may lead, in turn, to motor collapse. The whole system stability,
safety as well as the economic operation of the industrial process may be influenced by
this unwanted behavior [4]. Therefore, there is a persistent need for efficient and accurate
modeling of the motor’s dynamic behavior to improve the chaotic performance control
and prevent the ravage of the motor [2,3]. Moreover, it is crucial to introduce an accurate
and simple optimization technique to efficiently extract the parameters of these models
with minimum execution time to restore the system’s normal operation as soon as possible
and prevent its damage [5].

Recently, fractional modeling becomes a new avenue in dynamic modeling.
The fractional-order models provide a proper emulation of the system’s physical response
by adding new degrees of freedom for the mathematical model of the systems [6–8].
Two types of the fractional modeling of PMSM defined as an equal order and variable-
order fractional models are currently published and validated to introduce more flexible
and accurate modeling over the integer one [2,9]. Therefore, they are selected to be tested
in this work.

In literature, two approaches are introduced to define the parameters of PMSM ir-
regular behavior. The first one is the numerical methods that have been proposed for
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determining the PMSM model’s parameters at a specific operating condition [2,9]. The nu-
merical techniques employed some simplifications and assumptions while handling such a
nonlinear problem. Thus, the second approach has been proposed to identify the models’
parameters using the meta-heuristic optimization techniques [10,11]. Yousri et al. [12]
proposed two novel meta-heuristic optimization algorithms named Chaotic Grasshopper
Optimizer (CGOA) and Chaotic Grey wolf optimizer (CGWO) in addition to their basic
versions (GWO and GOA) for parameters estimation of both equal and variable-order
fractional models. Nevertheless, seeking better accuracy and lower time consumption,
which are significant factors in predicting and controlling the motor’s unpredictable per-
formance as fast as possible, reliable developed algorithms should be proposed for optimal
parameters estimation.

The Particle Swarm Optimization Algorithm (PSO) is considered as the simplest one
to be implemented and it has performed well on several fields [13]. While, there are some
disadvantages in the PSO technique such as trapping in the local minimum where its
searchability is insufficient and its convergence speed is slow because each particle is
learned from both of the personal best as well as the global best [14]. To minimize these
drawbacks, several variants of PSO have been reported in the literature to compromise
between the exploration and exploitation processes. One of these variants is the Self-
organizing Hierarchical PSO (HPSO-TVAC) that has been developed to reinforce the global
exploration in addition to the local exploitation and thereby avoiding earlier convergence
as well as reaching the global optimum during the latter stages of the search [15]. another
variant known as Comprehensive Learning PSO (CLPSO) has been proposed where each
particle learns from the best experiences of the other particles over various dimensions [16].
Additionally, a variant named Fitness Distance Ratio based PSO (FDR-PSO) has been
introduced to enhance the capability of the local search [17]. Moreover, the variant named
Distance-based locally informed PSO (LIPS) has been employed to enhance searching for
multiple local optima in multi-modal problems [18]. Lately, Ensemble Particle Swarm Opti-
mizer EPSO [19] has been proposed to combine all features of PSO, CLPSO, HPSO-TVAC,
and LIPS variants in only one variant to offer robust performance in various optimization
problems with different features. It is worth mentioning that the EPSO variant has an effec-
tive performance in nonlinear complicated systems. While the free lunch theorem (NFL)
states that no optimizer is perfect to be employed as the best method for any optimization
problem at hand [20]. Hence, any algorithm may fail to converge and provide unexpected
performance as a result of the impact of some control parameters on the exploration as well
as the exploitation phases. Accordingly, the behavior of the algorithm may be changed
according to the variations of these parameters. Therefore, several attempts are still per-
formed aiming to achieve a compromise between the diversification and intensification
during the search process of the algorithm to provide an appropriate behavior especially in
the case of non-linear optimization problem [21–25].

Lately, merging the dynamic behavior of the chaos maps and the met-heuristic algo-
rithms has affirmed its efficiency in improving the consistency and accuracy of the standard
algorithms [26,27]. In that approach, the uniform or Gaussian distributions are replaced by
chaos maps in the original algorithm to use their statistical and dynamical properties in ad-
justing control parameters of the basic versions of the algorithms. The Chaotic Grasshopper
Optimizer [12,28], Chaotic Flower pollination algorithm (CFPA) in [29], Chaotic Differential
Evolutionary algorithm [30], Chaotic Whale Optimization Algorithm (CWOA) [31] and
Chaotic Salp Optimizer [26] are some examples for that approach. The proposed chaotic
variants of the GOA, FPA, GWO, and SSA algorithms have shown their efficiency in various
optimization problems.

Therefore, In this manuscript, ten chaos maps are merged with EPSO to propose
novel variants named chaotic Ensemble Particle Swarm optimizer (C.EPSO) to boost the
EPSO performance while solving the non-linear optimization problem of PMSM modeling.
Firstly, to validate the results of C.EPSO variants, they are compared with the results of the
original EPSO intensively using different statistical analysis. Furthermore, an excessive
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comparison is established between the results of the novel variants and that of the previous
techniques listed in literature. The comparison clarifies that C.EPSO proves its superiority
in accuracy, consistency, higher convergence rate and lower execution time. The final
recommendation is C.EPSO with Gauss/mouse map is the proper variant to estimate the
parameters of equal and variable order fractional models.

The manuscript is arranged as follows: Section 2 shows the fractional models of
the PMSM motor. The optimization problem is mathematically modeled in Section 3.
Section 4 presents the main equations of basic EPSO algorithm, the chaos maps functions
and the proposed chaotic variants of EPSO. Simulation and results are emerged in Section 5.
Section 6 summaries the conclusion.

2. Fractional PMSM Model

PMSM model has been mathematically formulated as a system of non linear differ-
ential equations. The fractional calculus is a new trend that is used to provide a better
emulation of the motor physical performance and to increase the model flexibility. Thereby,
the PMSM can be modeled mathematically as fractional differential equations with deriva-
tive orders lower or greater than 1 [2,9]. In this work, two fractional PMSM models are
introduced. The first one is the variable order fractional model [2], while the other one is
the equal order factional model [9]. The general system of differential equations of PMSM
is described as in a system of equations (Equation (1)) [2].

dq1 id
dt

= −id + ωiq + ud,

dq2 iq

dt
= −id −ωiq + γω + uq,

dq3 ω

dt
= σ(iq −ω)− TL

(1)

where qi (i = 1,2,3) are the fractional derivatives, the iq and id and ω are the state variables,
which represent currents and motor angular frequency. The uq and ud are the quadrature
and direct-axis stator voltage component [9,32]. The γ and σ are the system dimensionless
operating parameters. The load torque is TL.

When the inputs of the system are 0 where TL = ud = uq = 0, the equations of the
system in 1 is reformulated as follows in the system of equations (Equation (2)) [2].

dq1 id
dt

= −id + ωiq,

dq2 iq

dt
= −id −ωiq + γω,

dq3 ω

dt
= σ(iq −ω)

(2)

The PMSM behaves chaotically when the equal order fractional model parameters γ and σ
have values equal to 100, 10 respectively and q1 = q2 = q3 q = 0.95 as reported in Ref. [9].
While, for the variable order fractional model, the parameters γ, σ, q1, q2 and q3 is equal to
50, 4, 0.99, 1 and 0.98, respectively as in Ref. [2]. The initial conditions at the chaotic region
for equal and variable order fractional models are [id, iq, ω] = [2.5, 3, 1].

3. Problem Formulation

Practically, the parameters of equal and variable order fractional models are un-
known. Accurate estimation of these parameters is a problem of optimization which targets
minimization of the gap between the original system and the estimated one. Therefore,
developing new optimization variants to estimate the global unknown parameters opti-
mally is a very crucial issue.
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The general fractional derivative differential equation of the PMSM are described as
follows (3).

Dq
t X(t) = f (Xt, X0, θ) (3)

where Dt = d
dt is the time derivative operator t, the original system state vector is

X = (id, iq, ω)T ∈ Rn while its initial state vector is X0 and θ = (θ1, θ2, ..., θd)
T = (σ, γ)T is

the original parameters and q = (q1, q2, q3......qn)T ∈ Rn is fractional order derivatives.
While, fractional derivative differential equation with identified parameters is (4)

Dq̂
t X̂(t) = f (X̂t, X0, θ̂) (4)

where X̂ = (îd, îq, ω̂)T is the estimation of the state vector, θ̂ = (σ̂, γ̂)T the vector of the ex-
tracted parameters and q̂ = (q̂1, q̂2, q̂3......q̂n)T is the estimated non-integer derivative orders.

The objective function named Mean Square Error (MSE) is employed between original
and identified state vectors as in Equation (5). The block diagram describing the process of
the fractional model parameters estimation is emerged in Figure 1.

MSE =
1
k

k

∑
i=1
|X(i)− X̂(i)|2 (5)

where samples number is indicated by k.

𝐷𝑡
𝑞
𝑋 𝑡 = 𝑓(𝑋𝑡 , 𝑋0, 𝜃)

𝐷𝑡
ො𝑞 𝑋 𝑡 = 𝑓( 𝑋𝑡, 𝑋0, መ𝜃)

Algorithm

𝑋0

𝑖𝑑, 𝑖𝑞, ω

Ƹ𝑖𝑑 , Ƹ𝑖𝑞, ෝω

Determine 𝜃, ො𝑞

Figure 1. The block diagram for estimating the parameters of PMSM fractional models.

The core problem associated with the conventional optimization algorithms that
may prevent them to converge to the global optimal parameters is occurred due to the
local optima. Therefore, there is a persistent need to develop and test novel optimization
techniques in this work to handle such these intricate non linear problems.

4. Chaotic Ensemble Particle Swarm Optimizer (C.EPSO)

In this section, the details of the proposed algorithm for PMSM models parameters
estimation process are presented.

4.1. Ensemble Particle Swarm Optimizer (EPSO)

EPSO is the most recent variant of PSO that combine different variants of PSO such as
CLPSO, inertia weight PSO, LIPS, HPSO-TVAC and FDR-PSO variants to create more robust
algorithm that is able to solve various optimization problems of different applications [19].
The population size in EPSO is consisting of two groups of subpopulations, a small group
and a large one. The small group utilizes CLPSO algorithm while the large one uses the
other predetermined variants. In the large group, for updating a particle, one of PSO
strategies is adaptively selected depending on the ratio of success of every methodology in
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the latest iterations [19]. Mathematical control equation of PSO variants that employed in
EPSO are listed as follows:

Control equations of inertia weight PSO

basic PSO is combined with a control parameter named inertia weight w to compro-
mise between the local as well as the global searches. w has value deceased linearly with
time. The velocity of a particle is computed as follows

Vd
i = w ∗Vd

i + c1 ∗ rand1d
i ∗ (pbestd

i − Zd
i )+

c2 ∗ rand2d
i ∗ (gbestd − Zd

i )
(6)

where i indicates the agents (i = 1, 2, . . . , N) while d indicates the dimension (d = 1, 2, . . . , D).
Zd

i is the location of ith particle and Vd
i is the agent velocity in the population. pbestd

i is
the best location of the particle i at d dimension. The gbestd is the best location found by
population of the swarm so far. The w is decreasing linearly in range of 0.9–0.2 during the
run time [19] to enhance the balance between the global and local search. c1 and c2 are the
acceleration coefficients varied with time, where c1 = 2 and c2 = 2 . rand1d

i and rand2d
i are

random numbers in range of [0, 1] .

Control equations of modified CLPSO

CLPSO has been proposed for tackling the problem of trapping the original PSO in
the local minimum and far from the global one for multi-model optimization problem [16].
In CLPSO, each particle has been learned from pbests of other particles at different dimen-
sions. The new velocity employed in EPSO variant is as follows [16]:

Vd
i = w ∗Vd

i + c1 ∗ rand1d
i ∗ (pbestd

fi(d)
− Zd

i ) + c2 ∗ rand2d
i ∗

(gbestd − Zd
i )

(7)

where pbestd
fi(d)

is the best place of a particle i, fi(d) = [ f i(1), f i(2), ..., f i(D)] shows that

ith particle moves to its own or to the other’s pbestd
i for each dimension d. c1 and c2 are

time varying acceleration coefficients, c1 is used in the range of 2.5–0.5 while c2 is used
in the range of 0.5–2.5. rand1d

i and rand2d
i are randomly generated numbers in the range

of [0, 1].

Control equations of FDR-PSO

FDR-PSO has been introduced to addressed the convergence propblem in PSO. In FDR-
PSO, each particle learns from the neighboring particle’s experience (nbest) that have
a better fitness than itself. Consequently, the ith particle’s velocity component in dth

dimension is upgraded through the following equation [17]:

Vd
i = w ∗Vd

i + c1 ∗ rand1d
i ∗ (pbestd

i − Zd
i ) + c2 ∗ rand2d

i ∗
(gbestd − Zd

i ) + c3 ∗ (nbestd
j − Zd

i )
(8)

where c1, c2 and c3 are time varying acceleration coefficients, they equaled to 1, 1 and 2,
respectively. nbest is the experience of neighboring particle.

Control equations of HPSO-TVAC

HPSO-TVAC has been introduced to avoid premature convergence in the early stages
and enhance the convergence to the global optimum solution [15]. In HPSO-TVAC tech-
nique, the particle’s velocity is updated as follows [15]:

Vd
i = c1 ∗ rand1d

i ∗ (pbestd
i − Zd

i ) + c2 ∗ rand2d
i ∗ (gbestd − Zd

i ) (9)

where c1 and c2 are time varying acceleration coefficients, c1 is used in the range of 2.5–0.5
while c2 is used in the range of 0.5–2.5 .

Control equations of LIPS
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In LIPS, neighboring particles’ best experiences is utilized for particles’ guidance
instead of the best experience of the swarm. The velocity of the particle is as follows:

Vd
i = χ ∗

(
Vd

i + ϕ
(

Pd
i − Zd

i

))
,

where

Pd
i =

∑nsize
j=1

(
ϕj ∗ nbestj

)
/nsize

ϕ
,

ϕj ∼ U
(

0,
4.1

nsize

)
, ϕ =

nsize

∑
j=1

ϕj

(10)

where, nbestj is defined as the nearest neighborhood of jth particle to pbest of i particle. nsize
is the neighborhood size that is dynamically increased n range of [2, 5]. The constriction
coefficient χ is equal to 0.7298. The ϕj is a positive number drawn randomly from a uniform
distribution in range of [0, 4.1/nize]. The acceleration weight ϕ is equal the summation of ϕj.

4.2. Chaotic Maps

The randomization process in all the natural inspired optimization techniques is per-
formed using Gaussian distribution. lately, a novel avenue has been created to improve
this process by replacing Gaussian distribution by chaotic maps to avail from their ran-
domization properties. In this approach, merging the features of chaos maps with the
original algorithms achieves rapid convergence to the optimal solution with better accuracy
especially in case of difficult problems such as multi-modal functions [33]. In this work,
ten different one-dimensional chaos maps are utilized to adjust some control parameters of
the basic version of EPSO algorithm and subsequently achieving a better convergence rate
and more accurate results. The novel chaotic variants are named Chaotic Ensemble Particle
Swarm Optimizer (C-EPSO). The utilized chaos maps are listed in Table 1. The distribution
values is equal to the maximum number of iterations and the initial value is equal to 0.7.

Table 1. Chaotic maps formulas [33].

Number Function Name Chaotic Map

1 Chebyshev xi+1 = cos
(
i cos−1(xi)

)
2 Circle xi+1 = mod(xi + b− ( a

2π ) sin(2πxk, 1)),
a = 0.5 and b = 0.2

3 Gauss/mouse xi+1 =

{
1 xi = 0

1
mod(xi ,1)

Otherwise

4 Iterative xi+1 = sin
(

aπ
xi

)
, a = 0.7

5 Logistic xi+1 = axi(1− xi), a = 4

6 Piecewise

xi+1 =
xi
P 0 <= xi < P
xi−P
0.5−P P <= xi < 0.5
1−P−xi
0.5−P 0.5 <= xi < 1− P

1−xi
P 1− P <= xi < 1

, P = 0.4

7 Sine xi+1 = a
4 sin(πxi), a = 4

8 Singer
xi+1 = µ(7.86xi − 23.31x2

i + 28.75x3
i −

13.302875x4
i ),

µ = 1.07

9 Sinusoidal xi+1 = ax2
i sin(πxi), a = 2.3

10 Tent xi+1 =

{
xi
0.7 xi < 0.7
10
3 (1− xi) xi >= 0.7

where (xi+1) refers to the map distributions over the number of iterations i.
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4.3. Chaotic Ensemble Particle Swarm Optimizer (C.EPSO)

In Equations (6)–(9) in the standared version of EPSO, there are different controlled
variables selected randomly and they are dominant factors that affect the performance of
the EPSO algorithm. In Equations (6)–(8), the key factor is w that has large impact on EPSO
convergence and its value is varied in range of [0.99, 0.2]. Moreover, c1 and c2 coefficients
are essential factors that are used in the range of 2.5–0.5 and 0.5–2.5, respectively as in
Equations (7) and (9). In this paper, these variables can be adaptively tuned chaotically in
the same interval as described as follows:

In C.EPSO, w is deceased chaotically beginning from 0.99 until reaching to 0.2 propor-
tional to the iterations based on Equation (11). In addition, c1, c2 time varying acceleration
coefficients are fluctuated chaotically in range of [2.5, 0.5] and [0.5, 2.5] respectively de-
pending on Equations (12) and (13), respectively.

(C− w)k =

(
wI − t × (wF − wI)

T

)
+ NormChaosk; (11)

(C− c1)k =

(
c1I − t × (c1F − c1I)

T

)
+ NormChaosk; (12)

(C− c2)k =

(
c2I − t × (c2F − c2I)

T

)
+ NormChaosk; (13)

where

NormChaosk =
(Chaosk −min(Chaosk))× (b− a)
(max(Chaosk)−min(Chaosk))

+ a (14)

where (C− w)i is the chaotic inertia weight at k indexed chaos map. wI , wF are the initial
value of the inertia weight as well as its final value. wI andwF are tuned as 0.99 and
0.2 respectively. (C − c1)k and (C − c2)k are the coefficients of Chaotic acceleration at k
indexed chaos map, respectively. The initial and final ranges of c1 and c2 are in ranges
of [2.5, 0.5] and [0.5, 2.5] respectively. NormChaosk is k indexed normalization of chaos
map. The [min(Chaosk), max(Chaosk)] are minimum and maximum intervals of the
distribution. Chaosk is k indexed chosen chaos map where k = 1, 2, 3, ..., 10. while a, b are
the normalization initial range and the normalization final range, respectively. The current
iteration is t while the maximum number of iterations is T.

5. Simulation and Results

In this part, the proposed algorithms EPSO and C.EPSO are employed for estimation
of fractional PMSM models’ parameters. An excessive comparisons among the chaotic
variants of these algorithms and the basic ones is held based on different statistical anal-
ysis. For more validation for the performance of the algorithms, another comparison is
accomplished among the novel variants and the state-of-the-art algorithms.

5.1. Equal Order-Fractional PMSM Model

The data of equal order fractional PMSM Model is obtained from [9] where the PMSM
system 2 behaves chaotically at parameters values σ, γ of 10, 100 respectively and the equal
order fractional parameters q1 = q2 = q3 of value 0.95 as well as the initial values of [id, iq, ω]
are [2.5, 3, 1]. The number of samples in the sampling vector are 100 with a step of 0.001 s.

The introduced algorithms EPSO and C.EPSO are employed to identify the parameters
at which the motor behaves chaotically at 200 iteration and population size of 20. While the
minimum and maximum limits of variables are within range of [5, 15] for σ, [80, 120] for γ
and [0.9, 1] for all q.

The obtained results by C.EPSO and EPSO variants are listed in Table 2. The table
data shows that the effect of adding chaos maps into EPSO is significant on both of
their accuracy and consistency. Where, EPSO provides mean ± STD of MSE equaled
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to 1.963× 10−16 ± 4.601× 10−16 While C.EPSO offers values in range of 10−26 ± 10−28

magnitude of orders especially with Gauss/mouse and tent maps.

Table 2. mean± STD of the extracted parameters for commensurate fractional order PMSM Model amd corresponding
fitness function by proposed algorithms.

Algorithms σ mean±STD γ mean±STD q mean±STD MSEbest,mean±STD

EPSO 10.00± 1.317× 10−9 100.00± 9.621× 10−9 0.950± 5.968× 10−12 3.859× 10−20, 1.963× 10−16 ± 5.242× 10−16

C
.E

PS
O

C.EPSO1
C.EPSO2
C.EPSO3
C.EPSO4
C.EPSO5
C.EPSO6
C.EPSO7
C.EPSO8
C.EPSO9
C.EPSO10

10.00± 2.777× 10−15

10.00± 1.872× 10−15

10.00± 1.776× 10−15

10.00± 2.512× 10−15

10.00± 3.077× 10−15

10.00± 2.512× 10−15

10.00± 3.077× 10−15

10.00± 2.512× 10−15

10.00± 2.777× 10−15

10.00± 1.776× 10−15

100.00± 1.498× 10−14

100.00± 9.474× 10−15

100.00± 9.474× 10−15

100.00± 1.340× 10−14

100.00± 1.641× 10−14

100.00± 1.340× 10−14

100.00± 1.641× 10−14

100.00± 1.340× 10−14

100.00± 1.641× 10−14

100.00± 9.474× 10−15

0.950± 0.00
0.950± 0.00
0.950± 0.00
0.950± 0.00
0.950± 0.00
0.950± 0.00
0.950± 0.00
0.950± 0.00
0.950± 0.00
0.950± 0.00

4.416× 10−26, 4.511× 10−26 ± 8.140× 10−28

4.416× 10−26, 4.436× 10−26 ± 5.016× 10−28

4.416× 10−26, 4.432× 10−26 ± 4.985× 10−28

4.416× 10−26, 4.448× 10−26 ± 6.646× 10−28

4.416× 10−26, 4.464× 10−26 ± 7.614× 10−28

4.416× 10−26, 4.448× 10−26 ± 6.646× 10−28

4.416× 10−26, 4.464× 10−26 ± 7.614× 10−28

4.416× 10−26, 4.448× 10−26 ± 6.646× 10−28

4.416× 10−26, 4.468× 10−26 ± 7.438× 10−28

4.416× 10−26, 4.432× 10−26 ± 4.985× 10−28

As the time factor and the algorithm convergence speed are essential factors, the mean
convergence curves are plotted in Figure 2 to emerge the swiftness of convergence rate
of the C.EPSO over the basic version. Where C.EPSO variants reach to lower MSE values
compared to EPSO at 80 iteration however EPSO required more iterations trying to reach
for closer values to that of C.EPSO as shown in the zoomed figure on Figure 2. Regarding
for the execution time of the proposed algorithms are 4.951118 and 5.5194925 s for the
C.EPSO and EPSO algorithms, respectively.
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Figure 2. Average convergence curves by C.EPSO variants versus the standard EPSO for the com-
mensurate fractional order PMSM model of ten chaos maps.

Based on the previous results, it’s obvious that merging chaos maps especially the
Gauss/mouse and tent maps with the EPSO improves its accuracy, consistency of the
results and convergence speed considerably. As C.EPSO with Gauss/mouse and tent
maps provide mean± STD values of MSE equal to 4.432× 10−26 and 4.985× 10−28, respec-
tively. Furthermore, the convergence curves indicate that the C.EPSO variants reach to the
minimum values of MSE with lower number of iterations and execution time.

5.2. Variable Order Fractional PMSM Model

In this section, EPSO and novel C.EPSO variants are utilized to estimate parameters
of variable order fractional model using data in [2]. Where the PMSM system 2 behaves
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chaotically at values of parameters γ, σ, q1, q2 and q3 equal to 50, 4, 0.99, 1 and 0.98
respectively as well as initial values of [id, iq, ω] equal to [2.5, 3, 1]. The number of samples
is 100 in the sampling vector with a step equal to 0.001 s.

The number of iterations is 500, the number of seach agents are 50 while the minimum
and maximum limits of variables are in range of [2, 8] for σ, [40, 60] for γ and [0.9, 1] for all
qs. A comparison is accomplished among the results of all variants over 20 independent
runs to determine the most efficient one.

The identified parameters’ Mean values and STD as well as the cost function’s value
are tabulated in Table 3. Table 3 indicates that consolidating chaotic maps with the basic
algorithms has a sensible impact on the accuracy as well as the homogeneity of the results.
Where, the mean± STD of MSE resulted by EPSO have been improved in the range of
10−10 ± 10−12 when C.EPSO version is used especially with Sine map.

The mean convergence curves over 20 independent runs in Figure 3 illustrate that
the convergence speed of EPSO has been improved as a result of the combination of
chaos maps with the basic technique. Where, the C.EPSO decaying rate of convergence is
faster than EPSO especially with Gauss/mouse map additionally C.EPSO variants started
to converge nearly at 140 iteration while EPSO consumes larger number of iterations.
For execution time of the C.EPSO and EPSO, the total run time are equaled to 56.9135 and
58.2056 ,respectively.

0 100 200 300 400 500
Number of iterations

0

20

40

60

80

100
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Figure 3. Average convergence curves by the C.EPSO and standard algorithms EPSO for the incom-
mensurate fractional order PMSM model of ten chaos maps.

To summarize the overall result, it is obvious that chaos maps have a preferable effect
on the performance of EPSO from the points of accuracy, consistency and convergence
speed to the optimal solutions. C.EPSO offers more consistent results especially C.EPSO7.
From the convergence curves, C.EPSO outperforms EPSO with shorter execution time
especially C.EPSO3.
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Table 3. mean ± STD of the extracted parameters for incommensurate fractional order PMSM Model and corresponding fitness function by proposed algorithms.

Algorithms σ mean±STD γ mean±STD q1 mean±STD q2 mean±STD q3 mean±STD MSE best,mean±STD

EPSO 4.00± 1.023× 10−9 50.00± 3.730× 10−9 0.990± 1.429× 10−10 1.00± 2.872× 10−10 0.980± 3.080× 10−10 6.466× 10−20, 2.473× 10−16 ± 9.326× 10−16

C
.E

PS
O

C.EPSO1
C.EPSO2
C.EPSO3
C.EPSO4
C.EPSO5
C.EPSO6
C.EPSO7
C.EPSO8
C.EPSO9
C.EPSO10

4.00± 7.593× 10−15

4.00± 5.563× 10−15

4.00± 6.153× 10−15

4.00± 6.016× 10−15

4.00± 3.583× 10−15

4.00± 4.245× 10−15

4.00± 5.357× 10−15

4.00± 5.657× 10−15

4.00± 6.471× 10−15

4.00± 4.080× 10−15

50.00± 4.890× 10−15

50.00± 5.877× 10−15

50.00± 3.993× 10−15

50.00± 5.877× 10−15

50.00± 3.993× 10−15

50.00± 3.260× 10−15

50.00± 7.290× 10−15

50.00± 6.313× 10−15

50.00± 5.155× 10−15

50.00± 2.823× 10−15

0.990± 6.753× 10−16

0.990± 6.223× 10−16

0.990± 5.758× 10−16

0.990± 6.929× 10−16

0.990± 5.913× 10−16

0.990± 4.899× 10−16

0.990± 6.108× 10−16

0.990± 5.962× 10−16

0.990± 5.990× 10−16

0.990± 5.516× 10−16

1.00± 5.919× 10−16

1.00± 3.350× 10−16

1.00± 4.549× 10−16

1.00± 3.761× 10−16

1.00± 2.483× 10−16

1.00± 2.671× 10−16

1.00 ± 9.865× 10−17

1.00± 1.709× 10−16

1.00± 5.201× 10−16

1.00± 3.311× 10−16

0.980± 7.751× 10−16

0.980± 5.842× 10−16

0.980± 6.739× 10−16

0.980± 6.656× 10−16

0.980± 3.752× 10−16

0.980± 4.945× 10−16

0.980± 3.483× 10−16

0.980± 3.812× 10−16

0.980± 6.428× 10−16

0.980± 5.288× 10−16

1.385× 10−27, 3.916× 10−27 ± 5.076× 10−27

1.385× 10−27, 2.383× 10−27 ± 1.508× 10−27

1.385× 10−27, 2.847× 10−27 ± 2.630× 10−27

1.385× 10−27, 2.965× 10−27 ± 1.995× 10−27

1.385× 10−27, 2.259× 10−27 ± 7.593× 10−28

1.385× 10−27, 2.186× 10−27 ± 1.354× 10−27

1.385× 10−27, 2.120× 10−27 ± 5.423× 10−28

1.385× 10−27, 2.103× 10−27 ± 7.127× 10−28

1.385× 10−27, 2.912× 10−27 ± 3.123× 10−27

1.385× 10−27, 2.537× 10−27 ± 1.609× 10−27
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5.3. Comparison with the Latest Published Algorithms in Literature

GOA, GWO algorithms and their chaos variants are the only published meta-heuristic
optimization algorithms for estimating equal and variable order fractional PMSM models
as in [12]. The authors in [12] modified GOA and GWO for improving both of the accuracy
and the rapidity of convergence of the basic algorithms. In this subsection, an exces-
sive comparison is accomplished among the results of the novel variants and that of the
literature algorithms GOA, GWO and their chaotic variants.

Based on the results in [12], the best variants in CGWO and CGOA in case of equal
order fractional model are CGWO1 and CGOA5. These variants achieved 2.7590 × 10−7,
±8.7827 × 10−6 and 1.7935 × 10−14,±8.5292 × 10−6, respectively. While, C.EPSO,
the C.EPSO3 and C.EPSO10 offer best,±STD values of MSE equal to 4.432 × 10−26 ±
4.985× 10−28, respectively. These results prove that the newly developed variants provide
more authenticity and consistency of the results than CGOW and CGOA best variants
which subsequently affects on the veracity of identifying the corresponded parameters for
the chaotic behavior in motor.

In case of variable order fractional model, C.EPSO3 and C.EPSO7 exhibits best val-
ues of MSE equal to 1.385× 10−27 with STD values are 2.630× 10−27 and 5.423× 10−28,
respectively. However, the best variants of CGWO and CGOA are CGWO7 and CGOA2
have achieved 3.9396× 10−6,±1.6357× 10−4 and 2.4653× 10−10,±6.7161× 10−2, respec-
tively. By this way, the current work introduces more efficient technique than that in
literature as C.EPSO variants achieve more veracity and uniformity of results.

Additionally, the convergence curves of the best variants of the proposed algorithm
(C.EPSO) and that of the previously published ones (CGWO and CGOA) are plotted in
Figure 4 for the two fractional models. Figure 4a is indicating the case of equal order
fractional model where C.EPSO3 and C.EPSO10 show the lower mean values of MSE with
faster convergence speed compared with CGWO1 and CGOA10. Likewise, for variable
order fractional model as in Figure 4b, C.EPSO3 and C.EPSO7 exhibit the lower mean
values of MSE with faster speed of convergence. Accordingly, the (C.EPSO3, C.EPSO10)
and (C.EPSO3, C.EPSO7) achieve the most optimal and consistent solutions with the fastest
convergence speed for both of equal and variable order fractional models compared to the
other algorithms.

The main outcome is that by introducing the C.EPSO, the optimal parameters at
which the motor behaves chaotically are identified accurately and that will affect in turn
on improving of the accuracy of the control process of the motor chaos and ensure the
protection of motor from ravage as well.
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Figure 4. Average convergence curves by the best chaotic variants of the proposed algorithms
(C.EPSO, EPSO) and comparable ones (CGWOA, CGOA) for (a) C-FO-M, and (b) InC-FO-M .



Appl. Sci. 2021, 11, 1325 12 of 13

6. Conclusions

Equal order and variable-order fractional PMSM models have currently introduced to
increase the motor modeling’s accuracy and flexibility. These models have enhanced the
motor’s physical depiction despite their complexity in parameter identification. Therefore,
this work’s main target is achieving a proper parameters estimation for these complicated
fractional models to control motor behavior in the chaotic region. Lately, meta-heuristic
algorithms are considered a powerful tool for identifying these intricate problems. Improv-
ing such algorithms using novel avenues as chaos maps to modify their characteristics
has been regarded as a recent trend. The latest PSO variant named EPSO is proposed and
developed by combining ten chaos maps to improve its accuracy and efficiency. As a result,
the Chaotic Ensemble Particle Swarm Optimizer variants (C.EPSO) have been proposed.
The novel variants’ results were compared to that of the standard version of EPSO and that
of the published algorithms using an intensive statistical analysis. The results have shown
that the C.EPSO with Gauss/mouse map is the most recommended variant for identifying
the parameters of equal order and variable-order fractional PMSM models, respectively.
It has given less error, high convergence speed, and short execution time. This variant has
achieved an accurate and rapid prediction of the parameters at which the motor chaos
behavior. Subsequently, this may lead to a quick control of the motor and better protection
from ravage.
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