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Abstract
This paper proposes a new modeling framework cap-
turing both the long-run and the cyclical components
of a time series. As an illustration, we apply it to four
US macro series, namely, annual and quarterly real
gross domestic product (GDP) and GDP per capita. The
results indicate that the behavior of US GDP can be cap-
tured accurately by a model incorporating both stochas-
tic trends and stochastic cycles that allows for some
degree of persistence in the data. Both appear to bemean
reverting, although the stochastic trend is nonstationary,
while the cyclical component is stationary, with cycles
repeating themselves every 6–10 years.
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1 INTRODUCTION

This paper proposes a new modeling framework capturing both the long-run and the cyclical
components of a time series. It is specified such that its spectral density function contains two
poles or singularities, one corresponding to the long run or zero frequency (i.e., to the long-run
equilibrium level of the series), the other to a nonzero frequency (which is related to a cyclical pat-
tern repeated approximately every 6–10 years). The proposed model is very general: it extends the
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classical framework based on unit roots by allowing for fractional integration, and considers both
deterministic and stochastic patterns, at the zero and cyclical frequencies, including both long-
and short-memory components. The cyclical patterns are modeled using Gegenbauer processes.
The suggested methodology is then applied to analyze the behavior of four US macro series,

namely, annual and quarterly gross domestic product (GDP) and GDP per capita. The results
indicate that the behavior of US GDP can be captured accurately by a model incorporating both
stochastic trends and stochastic cycles that allows for some degree of persistence in the dynamics
of the series. Both appear to be mean reverting, although it is found that the stochastic trend is
nonstationary while the cyclical component is stationary, with cycles repeating themselves every
6–10 years. Deterministic (linear and nonlinear) terms were also incorporated into the model but
were not found to be statistically significant in any case.
The layout of the paper is as follows. The next section briefly reviews the main approaches to

modeling GDP found in the literature. The following one presents the statistical model. The two
final ones discuss data and the empirical results and offer some concluding remarks.

2 LITERATURE REVIEW

GDP, whether nominal, real, or per capita, is typically a nonstationary variable in most developed
countries. For many years, the standard modeling approach was to use deterministic functions of
time, usually of a linear form, as in the following specification:

𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝑥𝑡, 𝑡 = 1, 2, … , (1)

where {yt, t = 1, 2, . . . , T} is the observed (GDP) series, α and β are the coefficients on an intercept
and a linear time trend, respectively, and xt is assumed to be covariance stationary, usually of the
autoregresssive moving average (ARMA) form, to capture short-run and cyclical patterns in the
data. Therefore, the process followed by xt can be represented as

𝜑(𝐿)𝑥𝑡 = 𝜃(𝐿)𝜀𝑡, 𝑡 = 1, 2, … , (2)

where 𝜑(𝐿) and 𝜃(𝐿) stand for the autoregressive (AR) and moving average components of the
series, respectively. Thismodeling frameworkwas dominant in the literature until the publication
of a very influential paper by Nelson and Plosser (1982), who examined 14 US macroeconomic
series, and by applying the tests developed by Fuller (1976) and Dickey and Fuller (1979) found
evidence of unit roots, coming to the conclusions that the behavior of these variables except one
could be better described in terms of stochastic trends, that is, as in the followingmodel including
an intercept:

𝑦𝑡 = 𝛼 + 𝑦𝑡−1 + 𝑥𝑡, 𝑡 = 1, 2, … , (3)

where xt is I(0) and can be represented as in (2).1 This model has been widely employed in the
macro literature, and in the last 20 years, many additional unit root/stationary tests have been

1 For our purposes, we define an I(0) process as a covariance stationary process, for which the infinite sum of the autoco-
variances is finite. Alternatively, in the frequency domain, it can be defined as a process with a spectral density function
that is positive and finite at all frequencies in the spectrum.
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developed (Elliot et al., 1996; Kwiatkowski et al., 1992; Ng & Perron, 2001; Phillips & Perron, 1988;
etc.). These two specifications, i.e., the deterministic trendmodel as in (1) and the stochastic trend
model as in (3), can coexist within the same framework if xt in (1) contains a unit root, the main
difference between the twomodels being the treatment of shocks, which have transitory effects in
the case of (1) but permanent ones in the case of (3). However, a processmay display nonstationary,
persistent behavior but still be mean reverting as in the I(d) models with a differencing parameter
d lying in the interval [0.5, 1). In general, in such models, xt is specified as

(1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡, 𝑡 = 1, 2, … , (4)

where L stands for the lag operator (i.e., Lxt = xt-1); d can be any real value and ut is I(0) (defined
as in footnote 1). Variants of this model have been used to analyze the behavior of GDP in var-
ious countries (see, e.g., Caporale & Skare, 2014; Dalkir, 2010; Ergemen, 2019; Mayoral, 2006;
Michelacci & Zaffaroni, 2000; Stengos et al., 2018).
Equation (4) is clearly more general than the classical stationary I(0) / nonstationary I(1)

framework because it allows for a more cases, including (i) anti-persistence (d < 0); (ii) short-
memory or I(0) processes (d = 0); (iii) long-memory stationary processes (0 < d < 0.5); non-
stationary mean-reverting processes (0.5 ≤ d < 1); (iv) unit roots (d = 1); and explosive patterns
(d > 1).
Cyclicality is another important feature of GDP series. There exists a large literature using dif-

ferent methods, such as time-varying transition probabilities Markov-switching regime models
(see, e.g., Simpson et al., 2001), band pass filters (Christiano & Fitzgerald, 1999), etc. A similar
approach to equation (4) can also be used to allow stochastic cyclical processes to be fractional as
in the following model:

(1 − 2 cos 𝑤 𝐿 + 𝐿2)𝑑𝑥𝑡 = 𝑢𝑡, 𝑡 = 1, 2, … , (5)

with μ = cos w, and

(1 − 2𝜇𝐿 + 𝐿2)−𝑑 =

∞∑
𝑗 = 0

𝐶𝑗, 𝑑(𝜇)𝐿
𝑗,

where 𝐶𝑗, 𝑑(𝜇) are orthogonal Gegenbauer polynomial coefficients defined recursively as

𝐶0,𝑑(𝜇) = 1, 𝐶1,𝑑(𝜇) = 2𝜇 𝑑,

𝐶𝑗,𝑑(𝜇) = 2𝜇

(
𝑑 − 1

𝑗
+ 1

)
𝐶𝑗−1,𝑑(𝜇) −

(
2
𝑑 − 1

𝑗
+ 1

)
𝐶𝑗−2,𝑑(𝜇), 𝑗 = 2, 3, … .

Gray et al. (1989, 1994) showed that xt in (5) is (covariance) stationary if d < 0.5 for
│μ = coswr │ < 1 and if d < 0.25 for│μ│ = 1. This process implies the existence of a pole
or singularity at a nonzero frequency which corresponds to the cyclical pattern. Special cases
of this model were analyzed by Athola and Tiao (1987a,b) and Bierens (2001) setting d = 1,
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and by Phillip et al. (2018), Dissanayake et al. (2020) and others allowing d to take fractional
values.2
In this paper, we combine the two models given by equations (4) and (5) in a single framework

that is presented in the following section. Our novel approach encompasses the two cases of unit
roots and fractional integration on the one hand and cyclicality on the other as special cases when
the specific orders of integration are equal to zero.

3 A STATISTICALMODEL FOR TRENDS AND CYCLES

Wepropose a very general specification that incorporates both deterministic and stochastic trends,
not only at the zero frequency but also at the nonzero (cyclical) frequencies, allowing for both
long- and short-memory components. The model is the given by (6) below:

𝑦𝑡 = 𝑓(𝜙, 𝑡) + 𝑥𝑡 𝑡 = 1, 2, … ,

(1 − 𝐿)
𝑑1(1 − 2 cos𝑤𝑟𝐿 + 𝐿2)

𝑑2
𝑥𝑡 = 𝑢𝑡 𝑡 = 1, 2, … ,

𝜑(𝐿)𝑢𝑡 = 𝜃(𝐿)𝜀𝑡 𝑡 = 1, 2, … ,

(6)

where f is a function that can also be nonlinear, depending on time and the unknown parameter
vector φ; L is the lag operator; d1 and d2 are the integration orders of the long-run and the cyclical
frequencies, respectively, where wr = 2πr/T with r = T/j, j indicates the number of periods per
cycle and r the frequency with a singularity or pole in the spectrum; ut is I(0) and displays weak
dependence (as in equation (2) but replacing xt with ut), and εt is i.i.d. N(0, σ2). Therefore, the
vector of parameters to be estimated is ψ = [φT, d1, d2, r, 𝜑1 ,. . . ,𝜑𝑝 , θ1, . . .θp]T.
Robinson (1994) had previously proposed a general testing framework that includes as a special

case a very similar specification to ours. He considered themodel in (7) with a linear deterministic
component:

𝑦𝑡 = 𝛽𝑇𝑧𝑡 + 𝑥𝑡 𝑡 = 1, 2, … ,

(1 − 𝐿)
𝑑1

𝑠∏
𝑗=2

(1 − 2 cos𝑤
𝑗
𝑟𝐿 + 𝐿2)

𝑑𝑗
𝑥𝑡 = 𝑢𝑡 𝑡 = 1, 2, … ,

𝜑(𝐿)𝑢𝑡 = 𝜃(𝐿)𝜀𝑡 𝑡 = 1, 2, … ,

(7)

where zt is a (k × 1) vector of deterministic terms and/or weakly exogenous variables and s repre-
sents the number of cyclical and/or seasonal patterns observed in the data. Within this set-up, he
tested the nullhypothesis in (8):

𝐻𝑜 ∶ 𝑑 = 𝑑𝑜, (8)

where d = [d1, d2, . . . , ds]T and do = [d1o, d2o, . . . , dso]T is an (s × 1) vector of given real
numbers.
Assuming now that s= 2, the second equation in (7) becomes the same as the second one in (6),

with the two coefficients d1 and d2 referring, respectively, to the long-run and cyclical components

2 See Chung (1996) and Wu and Peiris (2018) for modeling with Gegenbauer processes.
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of the series. In this context, an LM test of (8) in (6) can be defined as in equation (9)

�̂� =
𝑇

�̂�4
�̂�′�̂�−1�̂�, (9)

where T is the sample size, and

�̂� =
−2𝜋

𝑇

∗∑
𝑗

𝜓(𝜆𝑗) 𝑔𝑢(𝜆𝑗; �̂�)
−1

𝐼(𝜆𝑗); �̂�2 = 𝜎2(�̂�) =
2𝜋

𝑇

𝑇−1∑
𝑗 = 1

𝑔𝑢(𝜆𝑗; �̂�)
−1

𝐼(𝜆𝑗);

�̂� =
2

𝑇

⎛⎜⎜⎝
∗∑
𝑗

𝜓(𝜆𝑗)𝜓(𝜆𝑗)
′−

∗∑
𝑗

𝜓(𝜆𝑗)𝜀(𝜆𝑗)
′

(
∗∑
𝑗

𝜀(𝜆𝑗)𝜀(𝜆𝑗)
′

)−1 ∗∑
𝑗

𝜀(𝜆𝑗)𝜓(𝜆𝑗)
′
⎞⎟⎟⎠ ;

𝜓(𝜆𝑗)
′ =

[
𝜓1(𝜆𝑗), 𝜓2(𝜆𝑗)

]
; 𝜀(𝜆𝑗) =

𝜕

𝜕 𝜏
log 𝑔𝑢(𝜆𝑗; �̂�); 𝜓1(𝜆𝑗) = log

|||2 sin
𝜆𝑗

2

||| ;

𝜓2(𝜆𝑗) = log
||| 2 (

cos 𝜆𝑗 − cos 𝑤𝑟

) ||| ,
where λj = 2πj/T, and the summation in * in the above equations is over all frequencies which are
bounded in the spectrum. I(λj) is the periodogram of �̂�𝑡 defined as

�̂�𝑡 = (1 − 𝐿)𝑑1𝑜 (1 − 2 cos 𝑤𝑟𝐿 + 𝐿2)𝑑2𝑜 𝑦𝑡 − (1 − 𝐿)𝑑1𝑜 (1 − 2 cos 𝑤𝑟𝐿 + 𝐿2)𝑑2𝑜 𝑓(�̂�, 𝑡) ,

where the last termof the above equation, for some special nonlinear cases such as those presented
in the following section, can be expressed in a linear way as �̂� 𝑓 (𝑡)) ,with

�̂� =

(
𝑇∑
𝑡=1

𝑓(𝑡) 𝑓(𝑡)′

)−1
𝑇∑
𝑡=1

𝑓(𝑡) (1 − 𝐿)
𝑑1𝑜 (1 − 2 cos 𝑤𝑟𝐿 + 𝐿2)

𝑑2𝑜
𝑦𝑡,

where 𝑓(𝑡) is a linear function of time. Also, �̂� = arg min𝜏∈𝑇∗ 𝜎
2(𝜏) ,with T* as a suitable subset

of the Rq Euclidean space. Finally, gu is a known function coming from the spectral density of ut:

sdf𝑢(𝜆) =
𝜎2

2𝜋
𝑔𝑢(𝜆; 𝜏), −𝜋 < 𝜆 ≤ 𝜋.

Note that these tests are parametric and, therefore, they require specific modeling assumptions
about the short-memory specification of ut. In particular, if ut is a white noise, gu ≡ 1, while if it
is an AR process of the form ϕ(L)ut = εt, gu = |ϕ(eiλ)|−2, with σ2 = V(εt), with the AR coefficients
being a function of τ.
The point estimates were obtained by choosing over a grid the values of d1, d2, and r that min-

imize Robinson’s (1994) test statistic. They were found to be almost the same as those obtained
by maximizing the Whittle function in the frequency domain (Dahlhaus, 1989) in the linear case.
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The confidence intervals were calculated by choosing the values of the differencing parameters
for which the null hypothesis could not be rejected at the 5% level.
Under very general regularity conditions, Robinson (1994) showed that for this particular ver-

sion of his tests, the limit distribution is given by (10):

�̂� →𝑑 𝜒2
2
, 𝑎𝑠 𝑇 → ∞ , (10)

where “→d” stands for convergence in distribution. Therefore, unlike in the case of other proce-
dures, this is a classical large-sample testing situation. If this test is carried out in the context of (6),
the null Ho will be rejected against the alternative Ha: d ≠ do if �̂�> 𝜒2

2,𝛼
with Prob (𝜒2

2
>𝜒2

2,𝛼
) = α.

As mentioned before, despite the potentially nonlinear structure of the first equation in (6), its
interaction with the second equation will make it linear for some specific nonlinear structures,
such as the Chebyshev polynomials in time presented in the following section.3

4 EMPIRICAL ANALYSIS

We examine the following four series:

1. US annual real GDP,
2. US annual real GDP per capita,
3. US quarterly real GDP,
4. US quarterly real GDP per capita,

for the time period from 1929 to 2015 in the case of annual data, and from 1947Q1 till 2015Q3 in the
case of the quarterly data.
We start by considering a linear model with a time trend allowing for unit roots and fractional

degrees of integration, specifically, the model given model bu (11) below:

𝑦𝑡 = 𝛼 + 𝛽 𝑡 + 𝑥𝑡 , (1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡, 𝑡 = 1 , 2 , … , (11)

where the errors are assumed to follow in turn a white noise and an autocorrelated process. How-
ever, instead of imposing a parametricARMAstructure onut, we employ a nonparametricmethod
due to Bloomfield (1973) such that the error term is specified exclusively in terms of its spectral
density function, which is given by equation (12)

sdf𝑢 (𝜆; 𝜏) =
𝜎2

2𝜋
exp

(
2

𝑚∑
𝑟=1

𝜏𝑟 cos ( 𝜆 𝑟 )

)
, (12)

where σ2 is the variance of the error term and m is a fixed parameter. This model approximates
highly parameterized ARMA models with very few parameters, and producing autocorrelations
decaying exponentially as in the AR case. Moreover, it is stationary for all ranges of parameters,
unlike in the AR case.4

3 See Cuestas andGil-Alana (2016) for the specification of the Chebyshev polynomials in time in the context of I(d)models.
4 See Gil-Alana (2004) for its application in the context of fractional integration.
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TABLE 1 Estimated values of d with white noise errors

Series No terms An intercept A linear trend
Annual real GDP 1.22 (1.11, 1.42) 1.31 (1.18, 1.58) 1.36 (1.23, 1.58)
Annual real GDP per
cap

1.45 (1.34, 1.65) 1.45 (1.35, 1.68) 1.49 (1.39, 1.68)

Quarterly real GDP 1.09 (1.02, 1.18) 1.30 (1.22, 1.41) 1.31 (1.24, 1.42)
Quarterly real GDP per
cap

1.33 (1.26, 1.42) 1.38 (1.31, 1.48) 1.40 (1.34, 1.49)

In bold, the selected models according to the deterministic terms.

TABLE 2 Estimated values of d with autocorrelated (Bloomfield) errors

Series No terms An intercept A linear trend
Annual real GDP 1.08 (0.98, 1.25) 1.10 (1.00, 1.26) 1.14 (1.00, 1.32)
Annual real GDP per
cap

1.29 (1.19, 1.43) 1.28 (1.18, 1.42) 1.33 (1.22, 1.47)

Quarterly real GDP 1.05 (0.97, 1.19) 1.22 (1.11, 1.43) 1.26 (1.14, 1.44)
Quarterly real GDP per
cap

1.31 (1.22, 1.46) 1.35 (1.25, 1.14) 1.39 (1.30, 1.55)

In bold, the selected models according to the deterministic terms.

Tables 1 and 2 display the estimates of d, along with their corresponding 95% confidence bands,
for the three cases of (i) no deterministic terms, (ii) a constant, and (iii) a constant and a linear
time trend, assuming in turn that ut is a white noise (Table 1) and autocorrelated as in the model
of Bloomfield (Table 2).
In the white-noise case, the time trend is significant in all cases except annual GDP per capita,

and the estimates of d are significantly above 1, ranging from 1.31 (quarterly GDP) to 1.45 (annual
GDP per capita). When allowing for (weak) autocorrelation as specified by Bloomfield (1973), the
time trend is significant in all four cases, and the estimated values of d are still significantly above
1 but smaller.
Given the significance of the time trend in most cases, next we investigate whether it might be

nonlinear by using an approach based on Chebyshev polynomials in time that has been shown
to perform well in the context of the tests of Robinson (1994) for fractional integration (Cuestas &
Gil-Alana, 2016). Thus, we replace the first (linear) equation in (11) with equation (13)

𝑦𝑡 =

𝑚∑
𝑖 = 0

𝜃𝑖 𝑃𝑖𝑇(𝑡) + 𝑥𝑡 , 𝑡 = 1 , 2 , … , (13)

withm now indicating the order of the Chebyshev polynomial Pi,T(t) defined as in (14)

𝑃0,𝑇(𝑡) = 1,

𝑃𝑖,𝑇(𝑡) =
√
2 cos (𝑖 𝜋 (𝑡 − 0.5) ∕ 𝑇) , 𝑡 = 1 , 2 , … , 𝑇; 𝑖 = 1 , 2 , … (14)
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TABLE 3 Estimated values of d with white-noise errors and nonlinear trends

Series d θ0 θ1 θ2 θ3
Annual real GDP 1.31 (1.12, 1.52) 6727.29 (2.92) −3727.39 (−2.51) 665.09 (1.25) −328.19 (−1.05)
Annual real GDP per
cap

1.37 (1.23, 1.49) 13,192.94 (1.47) −11,626.58 (−1.99) 3762.34 (1.91) −271.74 (−0.24)

Quarterly real GDP 1.25 (1.01, 1.57) 6202.24 (3.19) −4108.28 (−3.33) 1013.71 (2.19) −524.42 (−1.89)
Quarterly real GDP
per cap

1.39 (1.20, 1.68) 10,072.98 (2.20) −10,468.05 (−1.93) 5500.76 (3.00) −1523.63 (−1.44)

TABLE 4 Estimated coefficients with white-noise errors

Series

Original data Demeaned data
r d1 d2 r d1 d2

Annual real GDP 10 0.55* 0.20* 12 0.75* 0.01
Annual real GDP per
cap

10 0.64* 0.15* 12 0.63* 0.36*

Quarterly real GDP 7 0.69* -0.01 7 0.73* 0.14*
Quarterly real GDP per
cap

13 0.66* 0.04 8 1.24* −0.13

*Statistical significance at the 5% level.

(see Hamming, 1973, and Smyth, 1998, for a detailed description of these polynomials). Bierens
(1997) andTomasevic and Stanivuk (2009) argue that it is possible to approximate highly nonlinear
trends with polynomials of a rather low degree. This model includes the previous one noting that
if m = 0, it contains an intercept, if m = 1 it includes a linear trend, and if m > 1 it becomes
nonlinear—the higherm is, the less linear the approximated deterministic component becomes.
Combining (13) with the second equation in (11) yields a linear model that can be estimated using
least squares (see Cuestas & Gil-Alana, 2016).
Table 3 displays the estimated coefficients of the Chebyshev polynomials in time along with the

estimates of d for the case of uncorrelated errors (almost identical results were obtainedwith auto-
correlated (Bloomfield) disturbances). To allow for some degree of nonlinearity, we setm equal to
3; therefore θ2 and θ3 are the coefficients corresponding to the nonlinear trends. Nonlinear behav-
ior is found only in the case of the quarterly real GDP series with the two nonlinear coefficients
(θ2 and θ3) being statistically significant at the 5% level; θ2 is also found to be significant in the
case of the two real GDP per capita series (annual and quarterly) but not for annual real GDP.
Further, the estimated values of d are all significantly higher than 1, ranging from 1.25 (quarterly
real GDP) to 1.37 (annual real GDP per capita).5
Next, we examine the possibility of a cyclical pattern in the data, and for this purpose we con-

sider a model specified as in (6): the coefficients of the first equation on the deterministic terms
were not found to be statistically significant in any case, both with a linear time trend and when
allowing for nonlinearities by using Chebyshev polynomials in time. Therefore, we estimatemod-
els for both the original and the demeaned series but without time trends, assuming in turn that
ut in (6) is a white-noise process, an AR(1) process, and finally follows the exponential spectral
specification of Bloomfield (1973). The results are presented in Tables 4, 5, and 6, respectively.

5 Other nonlinear deterministic transformations (such as Fourier methods) produce insignificant coefficients in all cases.



CAPORALE and GIL-ALANA 9

TABLE 5 Estimated coefficients with AR(1) errors

Series

Original data Demeaned data
r d1 d2 r d1 d2

Annual real GDP 10 0.01 0.32* 10 0.26* 0.12*
Annual real GDP per
cap

10 0.01 0.37* 10 0.29* 0.14*

Quarterly real GDP 7 0.65* 0.40* 7 0.25* 0.11*
Quarterly real GDP per
cap

13 0.00 0.29* 13 0.58* 0.46*

*Statistical significance at the 5% level.

TABLE 6 Estimated coefficients with Bloomfield-type errors

Series

Original data Demeaned data
r d1 d2 r d1 d2

Annual real GDP 10 0.55* 0.20* 10 0.60* 0.32*
Annual real GDP per
cap

10 0.63* 0.17* 10 0.63* 0.26*

Quarterly real GDP 7 0.69* -0.01 7 0.73* 0.14*
Quarterly real GDP per
cap

13 0.66* 0.04 13 0.91* −0.03

*Statistical significance at the 5% level.

In the case of white-noise errors (Table 4), the estimated value of d for the original series is
10 years at the annual frequency, and 7 and 13 quarters, respectively, for real GDP and real GDP
per capita at the quarterly frequency. The estimated value of r for the demeaned series is 12 at the
annual frequency, and 7 and 8, respectively, for real GDP and real GDP per capita at the quar-
terly frequency. It is also noteworthy that d1 is systematically higher than d2, which indicates that
the long-run frequency is relatively more important than the cyclical one. Specifically, d1 ranges
between 0.55 (annual real GDP, original data) and 1.24 (quarterly real GDP per capita, demeaned
data), while d2 oscillates around 0, being significantly positive for the original series at the annual
frequency aswell as for both annual and quarterly real GDP per capita in the case of the demeaned
series.
Table 5 displays the results under the assumption of AR(1) errors. In this case, the estimated

value of r is 10 for the four annual series, while it is 7 and 10, respectively, for quarterly real GDP
and real GDP per capita. Moreover, the estimated value of d1 is much lower than in the previous
case, and is not statistically different from zero for some of the original series. This might be a
consequence of the competition with the AR(1) parameter in describing the degree of persistence
in the long-run structure of the data. For the demeaned series, the values of d1 are significant
but smaller than those reported in Table 4. Besides, d2 is now statistically significant in all cases,
which implies the presence of a cyclical pattern.
Finally, Table 6 displays the results under the assumption that the error term follows the non-

parametric specification of Bloomfield (1973). We consider these the most reliable because this
model allows for some degree of weak autocorrelation without affecting the estimation of the
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remaining parameters.6 The estimated value of r is now 10 for the two annual series, regardless
of whether raw or demeaned data are used. The two differencing parameters are significantly dif-
ferent from zero in one of the four cases examined, with the value of the long-run parameter d1
being around 0.60 and that of d2 about 0.2 for the original data and slightly higher (about 0.3) for
the demeaned series; for quarterly real GDP, r = 7, d1 is around 0.7 and d2 is close to zero for the
original data but equal to 0.14 (and statistically significant) for the demeaned data; for quarterly
real GDP per capita, r= 13, d1 is equal to 0.66 for the original data and 0.91 for the demeaned data,
and d2 is statistically insignificant in both cases.
To summarize the main findings, first, there is evidence that when modeling GDP one should

allow for long memory and fractional integration, instead of restricting the differencing parame-
ters to be either zero or one; second, both the zero (or long-run) frequency and the other nonzero
(cyclical) frequencies play a role, at least in some cases. Awareness of the latter point is impor-
tant for the purpose of evaluating the effects of shocks, which can affect not only the long-run
but also the cyclical structure. However, our modeling approach has the limitation of not being
able to discriminate between the effects on the two components, because the error term is of a
multiplicative nature and is based on both. Future work will aim to address this issue.

5 CONCLUSIONS

This paper proposes a new statistical model for macro series that captures both their long-run
behavior and their cyclical properties by including two poles in their spectrum, in addition to
both linear and nonlinear deterministic trends. The adopted framework is very general because it
also allows for fractional degrees of integration at both long- and short-run memory components,
and is suitable for modeling any macro series of interest. As an illustration, in this study it is
applied to analyze four US real GDP series (annual and quarterly, per capita as well), and it is
found to capture very well the stochastic properties of this series. In particular, both stochastic
trends and stochastic cycles are found to be significant, both beingmean reverting, but the former
being nonstationary and the latter stationary with cycles repeating themselves every 6–10 years.
Further, there is evidence of a higher degree of persistence at the long-run frequency. It would also
be desirable to report the results of the estimated models visually, but this is not possible owing
to the nonparametric nature of the Bloomfield’s (1973) approach for the error term used here; it
could be done in the case of a parametric ARMA approach but at the cost of having to specify the
orders of the short-run components.
Our findings provide useful information to policymakers because they suggest that the effects of

shocks to GDP, though long-lived, eventually die away and also that there is an important cyclical
component.However, specific policy implications can only be obtained by estimatingmultivariate
models to analyze the nature of the shocks driving GDP fluctuations. Therefore, future work will
extend our modeling framework with the aim of distinguishing between different types of shocks
affecting trends and cycles separately while still allowing for a flexible degree of persistence.
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