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Abstract The world is facing a large-scale refugee crisis because of the ongoing
war in Syria, and it is important to improve refugees’ life conditions from a hu-
manitarian point of view. In order to analyse the living conditions of refugees, we
conduct fieldwork in a district in Ankara, Turkey, and interview refugees, the local
population and humanitarian practitioners from several organizations. Among the
many challenges refugees face, we observe that addressing the problems of refugee
children is critical. Thus, in this study, we focus on increasing the efficiency of the
education services provided to refugee children. We investigate a service provided
via mobile trucks that supply informal education and psychological support to
children. By analysing the operational dynamics of these trucks, we introduce two
problems to the logistics literature, which we refer to as the Covering Vehicle Rout-
ing Problem and the Covering Vehicle Routing Problem with Integrated Tours. In
the first problem, we either visit or cover all nodes, such that every node not in
one of the tours is within a predetermined distance of any visited node. In the sec-
ond problem, we generate smaller tours for covered (or unvisited) nodes originated
at the visited ones. We first propose mathematical models for the problems and
then introduce heuristic methods to overcome the computational challenge of the
second problem. In the computational study, we compare the optimal solutions
obtained using the models with a solution of real life application. We then test the
models and heuristics on medium and large real data sets gathered from Turkey
and conduct sensitivity analysis on the model parameters.

Keywords Humanitarian Logistics · Refugee Services · Covering Vehicle Routing
Problem · Integrated Tours

E. Buluc
E-mail: elfebuluc@gmail.com

M. Peker
Bilkent University, Ankara, Turkey, E-mail: meltem.peker@bilkent.edu.tr

B. Y. Kara
Bilkent University, Ankara, Turkey, E-mail: bkara@bilkent.edu.tr

Manoj Dora
Brunel Business School London, England, E-mail: Manoj.Dora@brunel.ac.uk

This is a pre-copyedited, author-produced version of an article accepted for publication in OR Spectrum following peer review. The final 
authenticated version is available online at https://doi.org/10.1007/s00291-021-00617-0.



2 Elfe Buluc et al.

1 Introduction

The world is facing a large-scale refugee crisis because of the ongoing war in Syria.
As of 2017, Syrian refugees are contributing almost one-third of the world’s refugee
population and 5.6 million refugees are registered outside of Syria (UNHCR, 2018).
Most of them live in Middle Eastern and North African countries, Turkey, Lebanon,
Jordan, Iraq, and Egypt, and around 10% of them are in European countries. The
end of the war is still not imminent: hence, the integration of refugees in the host
countries becomes an important aspect of the refugee crisis from a humanitarian
point of view.

Children constitute more than half of the Syrian refugee population and 1.7
million of these children are school-aged (UNICEF, 2017): 57% of them are en-
rolled in formal education and 3% are enrolled in informal education (NLG, 2017).
However, 43% of Syrian refugee children are unable to attend any kind of educa-
tion because of challenges such as funding, resources, and their families’ income
(UNICEF, 2017).

1.1 Refugees’ Children in Turkey and their Needs

Turkey is the largest host of refugees in the world, with over 3.7 million registered
refugees, according to the estimates of the Ministry of Interior (ECHO, 2018).
Only 6% of the Syrian refugees live in one of 20 camps in Turkey that meet their
basic needs, such as shelter, health services, food and education. The remaining
Syrians prefer not to live in these camps, even though meeting their basic needs
can be much more challenging outside of the camps (ECHO, 2018). Most of the
refugees who live outside of the camps are in the southeast region of Turkey and
in some major cities such as Istanbul, Ankara, and Izmir.

In order to analyse the conditions of the Syrian refugees through first-hand
observations, the first author conducts a fieldwork study in an area where a con-
siderable number of Syrian refugees have settled. The main focus of the fieldwork is
to listen to people who are faced with a change in their life because of the war, and
get a sense of the real situation in order to give a solid and practical background to
the theoretical work. Syrian refugee children in Turkey constitute 52.5% of Syrians
in the camps and 43.3% of Syrians outside of the camps (AFAD, 2018). Enrolment
in formal education is high in the camps, since education services are provided free
of charge by volunteer Syrian teachers. On the other hand, enrolment in formal
education by Syrian children who live outside of the camps is very low (Alpaydın,
2017). We interviewed Syrians and officers from organizations such as Ministry of
the Interior Directorate General of Migration Management, the Civil Registry Of-
fice, Social Assistance and Solidarity Foundations, the Turkish Red Crescent and
temporary education centres. Using these interviews, we deduct that another im-
portant reason for not enrolling in formal education is due to economic challenges.
Although there are schools in the district that offer education to Syrian children
with Syrian teachers, most of the children have to work to meet their and their
families’ basic human needs. We also observe that, even though there are Turkish
schools which provide education services for Syrian children, the number of these
schools is inadequate to meet the demand. There are also private schools that are
supported by some Syrians and NGOs. However, enrolment in these schools is also
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low (Sonmez, 2014). The language barrier is another important factor, since it is
considered that Syrians will live in Turkey for a short period of time and then go
back to Syria after the war is over. Thus, teaching Turkish to Syrian children is
undervalued and families disregard their children’s education (Seydi, 2014).

1.2 Child-Friendly Spaces

In Turkey, it is estimated that around 380,000 Syrian children are not attending
school, which makes them vulnerable because of the risk of isolation, discrimi-
nation, economic and sexual exploitation, and child marriage (UNICEF, 2017).
Thus, increasing educational services for refugee children is an important problem
to prevent a lost generation and increase their adaptation to the host country.

There are some services in Turkey that provide either formal or informal edu-
cation to refugee children. They are mainly operated by the Turkish Red Crescent
and UNICEF. For informal education, child-friendly spaces (CFS) are used to en-
sure children’s protection and well-being. They provide opportunities for children
to play, acquire skills, receive social support and become aware of their rights
(UNICEF, 2011). In Turkey, as of 2017, there are 28 CFS and two mobile CFS
(MCFS) that are used to reach vulnerable children. These MCFS are large trucks
which provide informal education and support services through a team of teachers
and psychologists who travel within the trucks. The MCFS trucks travel to reach
refugee children, especially in areas where the Syrian refugee population is high.
The trucks generally park near schools that have large numbers of Syrian students,
and it is estimated that around 400 students visit these trucks in a month (Lorch,
2017).

1.3 Problem Definition

Upon investigating the situation explained above and the real data for the trucks,
taken from Turkish Red Crescent, we realize that the number of areas visited and
the number of refugee children served by the MCFS trucks can be improved dras-
tically using optimization methods. By minimizing the distance travelled by the
MCFS trucks and guaranteeing the accessibility of the MCFS service for children,
we aim to increase the efficiency of the service. We consider that the MCFS trucks
travel to certain areas and stay there for a while to provide psychological support
and educational activities to the children in the area. Once the truck has stopped
in a particular area, children from ”close enough” neighbouring areas are assumed
to travel to MCFS. Thus, children residing in neighbouring areas are also assumed
to be reached.

In this paper, we define the Covering Vehicle Routing Problem (CVRP) as
designing the routes of the MCFS trucks that either visit or cover all nodes, such
that every node that is not in one of the tours is within a predetermined distance
of any visited nodes (Fig. 1a). The aim of the problem is to minimize the total
distance travelled by the trucks.

To remedy the possible decrease in accessibility or awareness of the MCFS
trucks by the children in the nodes that are only covered (not visited), a variation
of the CVRP is then proposed. In this variation, which is referred to as the CVRP
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with Integrated Tours (CVRPwIT), we generate smaller tours for the covered
nodes originated at a visited node (Fig. 1b). We consider that the team, which
consists of teachers and psychologists who travel within the trucks, visit the covered
nodes on foot to increase awareness of the trucks, gather the children, observe and
analyse the situation of the children’s living conditions, and provide psychological
support to the children who are not able to visit the trucks. The aim of the second
problem is also to minimize the total distance travelled by the trucks and the team
while ensuring that all nodes are visited by either trucks or teams.

(a) Covering Vehicle Routing Problem (CVRP) (b) CVRP with Integrated Tours
(CVRPwIT)

Fig. 1 Illustrations of the proposed problems.

The paper continues as follows: In Section 2, we discuss the related literature. In
Section 3, we provide mathematical programming models for the problems CVRP
and CVRPwIT. We also provide solution approaches to handle the computational
burden of the second model in the same section. In Section 4, we present the re-
sults of our computational study. We conclude with some final remarks in Section
5.

2 Literature Review

Given the increasing demand for humanitarian relief operations and the impor-
tance of logistics in such cases, and the direct consequences of both natural and
man-made disasters, it can be argued that studying humanitarian logistics is of
utmost importance. Various literature reviews have been conducted on human-
itarian logistics and disaster management. Bayram (2016) conducts a literature
review on emergency evacuation, while Behl and Dutta (2018) classify humanitar-
ian supply chain management literature according to a scope of research such as
resilience-based, disaster phases etc. Altay and Green (2006), Kovács and Spens
(2007), Cozzolino (2012) and Galindo and Batta (2013) categorize articles in terms
of their stance on the disaster management cycle, whereas Ozdamar and Ertem
(2015) focus on the response and recovery phases of the disaster management cy-
cle. Kara and Savaser (2017) and Gulczynski et al. (2006) categorize humanitarian
logistics as relief logistics and development logistics.
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In a recent review, Goldschmidt and Kumar (2016) argue that researchers have
been primarily focused on establishing supply chain methodologies to improve dis-
aster response rather than humanitarian development, such as relief distribution
and network design (Habib et al., 2016; Bealt and Mansouri, 2018). For humani-
tarian supply chain management in the case of refugees, Seifert et al. (2018) argue
that there are more theoretical works than empirical ones, and that recent studies
focus more on disaster relief than on development aid operations. Thus, it can
be observed that even though there are many studies on humanitarian logistics,
many of them focus on disaster preparedness and relief rather than humanitarian
development.

We now provide a summary of the routing literature, due to its close relation
with the proposed problem in this study.

2.1 Related Routing Problems

In the classical Travelling Salesman Problem (TSP) and the Vehicle Routing Prob-
lem (VRP), the routes of the vehicle(s) are determined while minimizing travelling
costs and visiting all of the demand points in a network. However, there are some
variations of the problems where not all of the points in the network are visited:
rather, the most profitable ones are selected. Feillet et al. (2005) classify such
problems as Travelling Salesman Problems with Profits (TSPs with Profits), and
define three classes of such problems, namely the Selective Travelling Salesman
Problem (STSP), the Quota Travelling Salesman Problem (Quota TSP), and the
Profitable Tour Problem (PTP).

A general version of the selective routing problems is referred to as the Covering
Salesman Problem (CSP), where a minimum cost tour is identified such that any
node not included in the tour is within some predetermined covering distance of
a node in the tour (Current and Schilling, 1989). In the CSP, every node must be
either visited or covered and the decision as to which nodes to cover and which
nodes to visit is considered by minimizing the travel costs. Another related problem
is the Covering Tour Problem (CTP), in which a set of vertices V that can be
visited, a set of vertices T ⊆ V that must be visited, and a set of vertices W
that must be covered are defined, and the aim is to find a minimum length tour
over a subset of V such that it contains all vertices of T and lies within a pre-
specified distance from every vertex of W (Gendreau et al., 1997). Hachicha et al.
(2000) propose a multi-vehicle version of the CTP. An example of the application
of the CTP is health care teams travelling in rural areas of developing countries
to deliver medical care, where they visit a subset of villages and the residents of
unvisited villages travel to the nearest node on the tour to obtain medical care
(Current and Schilling, 1994). Furthermore, Hodgson et al. (1998) implement CTP
for planning mobile health care facilities in Ghana, which are expected to increase
the accessibility of the equipment, staff, and health care facilities supplied. Another
CTP application in humanitarian aid is the location of satellite distribution centres
to deliver aid to affected people in disaster areas, as studied by Naji-Azimi et al.
(2012). People in disaster-affected regions are expected to go to these distribution
centres, which are close to their homes, to supply their needs, and the distribution
centres are supplied from a central depot through capacitated vehicles.
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Other related routing problems are the Generalized Travelling Salesman Prob-
lem (GTSP) and the Generalized Vehicle Routing Problem (GVRP). Baldacci
et al. (2010) define the GVRP as an extension of the VRP where each set of
vertices is partitioned into clusters, and the routes of the vehicles are determined
considering minimizing the total cost. Bektas et al. (2011) introduce application ar-
eas for GVRP such as health care logistics, where each district consists of several
municipalities and the medical distribution team delivers pharmaceutical prod-
ucts into one municipality within each district. Another area of application of the
GVRP is the urban waste collection problem, where the routes used by vehicles to
collect urban waste and deliver it to the dump, incinerator, or recycling plant is
determined considering minimum transportation costs (Bautista et al., 2008; Bek-
tas et al., 2011). Other variants of covering-routing problems and their properties
can be seen in Table 1.

Table 1 Covering-Routing Problems

Problem Introduced
By

Objective Vehicle Dynamics

Covering Salesman
Problem

Current and
Schilling
(1989)

minimize cost single Each node can be covered or
visited

Generalized Covering
Salesman Problem

Golden et al.
(2012)

minimize cost single Cost of visiting each node,
Nodes can be visited more

than once

Geometric Covering
Salesman Problem

Arkin and
Hassin (1994)

minimize cost single Covering intersection of the
neighbourhoods

Covering Tour
Problem

Gendreau
et al. (1997)

minimize cost single Set of vertices to cover and set
of vertices to visit

Multi-vehicle Covering
Tour Problem

Hachicha et al.
(2000)

minimize cost multi Set of vertices to cover and set
of vertices to visit

Maximal Covering
Tour Problem

Current and
Schilling
(1994)

minimize length
maximize access

single Visit only p nodes of the
network,

Access - maximize demand

Median Tour Problem Current and
Schilling
(1994)

minimize length
maximize access

single Visit only p nodes of the
network,

Access - minimize access
distance

Generalized Travelling
Salesman Problem

Henrylab
(1969)

minimize cost single Vertices are partitioned into
clusters

Generalized Vehicle
Routing Problem

Ghiani and
Improta (2000)

minimize cost multi Vertices are partitioned into
clusters

Close Enough
Travelling Salesman

Problem

Gulczynski
et al. (2006)

minimize
length

single Visiting the intersection of
coverage areas

Close Enough Vehicle
Routing Problem Mennell (2009)

minimize
length

multi Visiting the intersection of
coverage areas
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Routing problems in humanitarian logistics also garner great interest in the
light of the increasing demand for humanitarian relief operations. As discussed
above, Current and Schilling (1994), Hodgson et al. (1998) and Naji-Azimi et al.
(2012) study for the application of CTP to humanitarian logistics, and Bektas
et al. (2011) introduce application areas for GVRP such as health care logistics.
Hemmelmayr et al. (2009) study the problem of the delivery of blood products to
hospitals and develop two routing strategies. The first strategy has fixed routes
with flexible days and the second strategy has flexible routes with repeating de-
livery patterns. Huang et al. (2012) discuss the vehicle routing problem in relief
operations and define metrics for equity, efficiency and efficacy. The authors anal-
yse the effect of these metrics on routing decisions. Examples of routing problems
in humanitarian logistics include home healthcare systems (An et al., 2012), assign-
ing teaching assistants to disabled people and routing them (Maya et al., 2012),
post-disaster logistics (Sheu, 2014), and routing ambulances after an earthquake
(Mills et al., 2018).

A comparison of our problems to the most relevant literature can be seen in
Table 2. Our problem can be classified as a generalization of the CSP with multiple
vehicles, as each node can be covered or visited. It is also very similar to the mCTP;
however, the common characteristic of the CTP and its variations is that the set
of vertices to cover and the set of vertices to visit are different. Thus, rather than
classifying the problem introduced as a variation of the CTP, we will refer to it as
the Covering Vehicle Routing Problem (CVRP) as a generalization of the CSP.

Moreover, Semet and Taillard (1993) solve a similar problem to ours in which
some customers can get services only via specified ways of transportation; and a
truck covers a route, unloads its trailer to reach some specified customers through
a subtour, turns back and loads its trailer again and continues its main tour. The
problem is introduced as a real-life VRP and a tabu search-based method is used
to find solutions. Even though our problem is similar, in this type of problem, the
subsets are defined considering the characteristics of the ways of transportation
through which the customers are served. Since we approach our problem as a
covering-routing problem in terms of deciding on the subtours by means of coverage
range rather than transportation type, we will refer to our problem as the Covering
Vehicle Routing Problem with Integrated Tours (CVRPwIT). To the best of the
authors’ knowledge, this version of the problem has not previously been defined in
the literature. We also note that the problem setting can be easily applied to the
problems in the categories of CSP, CTP and CVRP. For example, for the travelling
circus problem (ReVelle and Laporte, 1993), a presenter may visit cities near to
the city where the circus is located to increase people’s awareness of the circus.
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Table 2 Comparison of the Proposed Problems to the Related Literature

Problem Introduced
By

Objective Vehicle Dynamics

Routing Problems
with Profits

various various various Most profitable nodes are
selected to visit

Generalized Vehicle
Routing Problem

Ghiani and
Improta (2000)

minimize cost multi Set of clusters to visit

Multi-vehicle Covering
Tour Problem

Hachicha et al.
(2000)

minimize cost multi Set of vertices to cover and set
of vertices to visit

Covering Salesman
Problem

Current and
Schilling
(1989)

minimize cost single Each node should be covered
or visited

Covering Vehicle
Routing Problem

(CVRP)

This study minimize cost multi Each node should be covered
or visited

Covering VRP with
Integrated Tours

(CVRPwIT)

This study minimize cost multi Integrated tours from the
visited nodes to the covered

nodes

3 Model Development

3.1 Covering Vehicle Routing Problem

The covering Vehicle Routing Problem (CVRP) determines the routes of the trucks
that either visit or cover all nodes and minimizes the total distance travelled by
the trucks. As customarily done in VRP literature, we assume that we have a
limited number of trucks which should start and end their tours at the depot. We
also assume that each node can be either visited or covered at most once.

Let G = (V,A) be a graph such that V = {0, 1, ..., n} is the set of nodes and
A = {(i, j) : i, j ∈ V } is the set of arcs. Node 0 denotes the depot. There is a
symmetric distance matrix D = {dij : (i, j) ∈ A} associated with each arc in the
set A. Ni denotes a set of nodes such that the distance between them and node
i is less than or equal to a threshold value, γ (i.e. Ni = {j : dij ≤ γ, j ∈ V }).
The number of vehicles is denoted by m and the maximum distance a vehicle can
travel is denoted by C.

The binary decision variable xij is 1 if node j is visited immediately after
node i and 0 otherwise. The other binary decision variable zi is 1 if node i is
visited and 0 otherwise. Finally, for each arc in the set A, uij is a continuous
variable representing the total distance from the depot to node j which is visited
immediately after node i.

The model for CVRP (MC) is given below:
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(MC) min
∑
i∈V

∑
j∈V

dijxij (1)

s.t.
∑
j∈V

x0j = m (2)

∑
i∈V

xi0 = m (3)

∑
j∈V

xij = zi ∀i ∈ V i 6= 0 (4)

∑
j∈V

xji = zi ∀i ∈ V i 6= 0 (5)

(1− zi) ≤
∑
k∈Ni

zk ∀i ∈ V (6)

∑
i∈V

xii = 0 (7)

∑
j∈V
j 6=i

uij −
∑
j∈V
j 6=i

uji −
∑
j∈V

dijxij = 0 ∀i ∈ V i 6= 0 (8)

u0i = d0ix0i ∀i ∈ V i 6= 0 (9)

uij ≤ (C − dj0)xij ∀i ∈ V ∀j ∈ V j 6= 0 (10)

ui0 ≤ Cxi0 ∀i ∈ V i 6= 0 (11)

uij ≥ (d0i + dij)xij ∀i ∈ V i 6= 0 ∀j ∈ V (12)

xij ∈
{
0, 1
}

∀i ∈ V ∀j ∈ V (13)

zi ∈
{
0, 1
}

∀i ∈ V (14)

Objective function (1) minimizes the total distance travelled by trucks. Con-
straints (2) and (3) ensure that the tours start and end at the depot and m vehicles
are conducting the tours. Constraints (4) and (5) guarantee that a node cannot be
visited more than once. Constraint (6) ensures that every node should be either
visited or covered, and if a node is not visited (i.e. zi = 0), then another node
which is in the set Ni must be visited. Constraint (7) eliminates visits from a
node to itself. Constraints (8) - (12) are subtour elimination constraints, which
are proposed in Kara (2011). Constraints (13) and (14) are domain restrictions.

3.2 Covering Vehicle Routing Problem with Integrated Tours

CVRP with Integrated Tours (CVRPwIT) is an extension of the CVRP and gen-
erates smaller tours for the covered nodes that are originated at the visited ones.
We consider that a team which consists of teachers and psychologists who travel
within the trucks visits the covered nodes by foot. The goal is to minimize the
total weighted distance travelled by the trucks and the team in the smaller tours,
where α denotes the weight of the total distance travelled by trucks and β is the
weight of the total distance travelled by the team. In CVRPwIT, we assume that
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each small tour conducted by the team starts and ends at the same node. Each
node in the small tours is also visited by the team exactly once.

In addition to the decision variables above, three new decision variables are
defined for the model of CVRPwIT. yik is 1 if node k is visited within the small
tour originated at node i and 0 otherwise. wi

jl is 1 if node l is visited immediately

after j and visited within the small tour originated at node i, and 0 otherwise. vij
is a continuous variable that is used to order the nodes in the small tour originated
at node i.

The model for CVRPwIT (MC wIT) is given below:

(MC wIT) min
∑
i∈V

∑
j∈V

(
α dijxij+

∑
l∈V

β djlw
i
jl

)
(15)

s.t. (2)− (14)

yik ≤ zi ∀i ∈ V ∀k ∈ V (16)∑
i∈Nk
i 6=k

yik = (1− zk) ∀k ∈ V (17)

∑
j∈Ni
j 6=k

wi
kj = yik ∀i ∈ V ∀k ∈ Ni k 6= i (18)

∑
j∈Ni
j 6=k

wi
jk = yik ∀i ∈ V ∀k ∈ Ni k 6= i (19)

vij − vil + n wi
jl ≤ n− 1 ∀i ∈ V ∀j ∈ Ni ∀l ∈ Ni l 6= i (20)

yik ∈
{
0, 1
}

∀i ∈ V ∀k ∈ V (21)

wi
jl ∈

{
0, 1
}

∀i ∈ V ∀j ∈ V ∀l ∈ V (22)

Objective function (15) is the weighted sum of the total distance travelled by
the trucks and the team in the small tours, respectively. Constraints (2) - (12)
are the same as in the first model and determine the main tour. Constraint (16)
prevents any small tour from starting from a node that is not visited by the trucks.
Constraint (17) ensures that a node that is not visited by the trucks should be
in exactly one of the small tours. Constraint (17) also guarantees that the nodes
visited by the trucks cannot be in the small tours. Constraints (18) and (19)
guarantee that a node in a small tour can be visited by the team exactly once.
Constraint (20) is the subtour elimination constraint and orders the nodes in the
small tours. Constraints (21) and (22) are domain restrictions.

We also note that the following constraint can be added to the model (MC wIT)
to limit the distance of the smaller tours.

∑
j∈V

∑
l∈V

djlw
i
jl ≤ κ ∀i ∈ V (23)

where κ is the threshold value for the walking tours.
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3.3 Solution Approaches

During our preliminary study, we encounter instances whose optimality for the
second problem (CVRPwIT) cannot be verified within a predetermined time limit
for the medium-size data set, which will be discussed in detail in Section 4.2. Thus,
to overcome the computational burden and avoid memory problems, we propose
three heuristic solution methodologies for CVRPwIT. The heuristics consist of
several steps that are evaluated sequentially. In the heuristics, we first identify
nodes that are visited and covered (or unvisited) by the trucks. Using the outputs,
we then determine the integrated tours.

In the first heuristic, we construct the main tour using the model MC and
optimally solve it with a solver. We then use an assignment model and cluster
the nodes by minimizing the distance of each unvisited node from the visited
nodes. Finally, we utilize the mathematical programming model for the well-known
travelling salesman problem (TSP) proposed in Miller et al. (1960) to find out the
optimal tours within each cluster.

In the second heuristic, similar to the first one, we again first find the main
tour optimally by running the model MC with a solver and identify the nodes
visited by trucks and the main tour. After obtaining the main tour, we fix it in
MC wIT and run the model MC wIT to find the integrated tours.

In the third heuristic, we first determine the number of visited nodes, τ , and
identify a set of candidate nodes, S, to be visited by the trucks in the main
tour by solving the set covering model proposed in Toregas and Revelle (1973).
We then run the model MC by adding the following constraints to the model,
(1 − δ)τ ≤

∑
k∈S zk and

∑
k∈V zk ≤ (1 + δ)τ where 0 ≤ δ ≤ 1. After obtaining

the main tour, similar to the previous heuristic, we fix it in the model MC wIT

and obtain the integrated tours. In the computational analysis, we test the third
heuristic with two different δ values, 0.10 and 0.25, and compare the solutions.

4 Computational Analysis

In this section, we first discuss the real routes of the trucks taken from Turkish Red
Crescent data and the optimal routes obtained by the proposed models. We then
test the models and solution approaches on medium and large size real data sets
and provide a sensitivity analysis on the problem parameters. All experiments are
implemented in a Java platform using Cplex 12.7.1 on a Linux OS environment
with Dual Intel Xeon E5-2690 v4 14 Core 2.6 GHz processors with 128 GB of
RAM.

4.1 Real Life Application

Data regarding the past activities of the two trucks for 2016 and 2017 is collected
from the Turkish Red Crescent. Data shows that during this time period, the
trucks travel 5552.9 km and visit 20 points, namely eleven temporary education
centres, three schools, two camps for seasonal agricultural workers, one temporary
shelter centre, one student residence, one repatriation centre, and one maintenance
area. The representation of the visited points can be seen in Fig. 2.



12 Elfe Buluc et al.

Since Adapazari is visited once during this time period for maintenance, it is
taken as the depot for the mathematical models. The predetermined distance to
cover nodes, γ, is assumed to be 2 km so as not to exceed the walking distance
considering the real-life application and not to decrease the accessibility of the
MCFS.

Fig. 2 Points visited by the MCFS trucks in 2016 and 2017.

In the optimal solution of the first model (MC), the trucks visit 19 points. The
total travel distance of the trucks turns out to be 4147.2 km: thus, the optimization
model decreases the total travel distance by 25.32%. The tour obtained for the
first truck can be seen in Fig. 3. In this figure, the trails starting from the depot
and ending at the depot are not fully shown. It can be observed that one point
which is very close to a visited point is not included in the main tour, but rather
covered. For the second model, MC wIT, we first estimate the weights α and β
which denote the weights of the total distance travelled by trucks and by the
team, respectively. Since trucks are scarce sources for the Turkish Red Crescent, we
utilise reciprocal proportion of the speed of trucks and walking speed considering
the real-life application which are assumed to be 80km/h (Demir et al., 2012) and
5 km/h (Azmi et al., 2012), and determine the weights as α = 1 and β = 0.0625.
With the estimated weights, the main tour remains the same and only one small
tour, with a total travel distance of 3.2 km, is generated for the covered one. We
note that we do not use Constraint (23) and only solve the model MC wIT since
the distances are already small.

This result indicates that it is possible to decrease the travelled distance of the
trucks by optimizing the routes and by not visiting all points; hence, we are able
to cover more points, reach more children or increase service time for each visit
in a given time period. This is a valuable improvement, considering the restricted
number of vehicles and the fact that optimizing the routes would be much more
cost efficient than renting/purchasing new vehicles, especially with budget restric-
tions. There may be still possible real-life implications during the decision-making
process regarding the routes: for example, some schools may not be able to provide
parking during certain time periods, or some vehicles may require maintenance at
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Fig. 3 A part of the tour obtained by model MC .

unpredicted times. However, it can be assumed that making use of the optimiza-
tion methods would still be more efficient, considering that the improvement is
quite significant.

4.2 Computational Results on a Medium-Size Real Data Set

The models are further tested with a medium-size data set that is also for a
real-life application. The data set considers one of the cities in Turkey, Burdur,
which includes a population of 45 villages with distances between them (Kara and
Savaser, 2018). In this section, we first discuss the optimal solutions of models
MC and MC wIT. We then perform a sensitivity analysis on the weights α and β
assigned to distance travelled by the trucks and the team, respectively that are
used in the second model.

4.2.1 Solutions of the Models

In this section, we discuss and analyse the results with different parameter settings.
We vary the number of trucks,m, by 2, 3 and 4. The maximum time that each truck
can travel, C, is decided by considering the number of trucks and the average time
of the tours. Experiments are conducted with the values of 1200, 1500, and 2000
minutes for m = 2 and 1000, 1200, and 1500 minutes for m = 3 and m = 4. Using
our results in preliminary studies, we set the coverage range, γ, to 90 minutes, and
the weights of the objective function of the second model (MC wIT), α and β, are
equal to 1 and 0.0625, respectively, as used for the real-life application in Section
4.1. The models are tested for a time limit of six hours.

Table 3 shows that for the same C value, the distance of the main tours in-
creases as the number of vehicles, m, also increases, which is due to the fact that all
vehicles should start and end their tours at the depot (Fig. 2). On the other hand,
for any m, the distance of the main tours increases while C decreases. This result
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Table 3 Solutions of the Models on a Medium-Size Data Set with Different Parameters

(MC) (MC wIT)

m C
Total Time of
Main Tours

Solution
Time (sec.)

Total Time of
Main Tours

Total Time of
Small Tours

Solution
Time (sec.)

1200 2089.58 225.89 2095.16 1966.40 19979.78

2 1500 1866.38 27.95 1872.49 2156.00 201.67

2000 1811.42 24.17 1813.78 2263.19 109.75

1000 2532.66 178.28 2546.20 1951.25 9846.72

3 1200 2166.86 129.82 2175.47 1841.56 6094.20

1500 1943.66 26.60 1949.77 2106.38 138.22

1000 2609.93 165.74 2623.48 1901.63 1498.42

4 1200 2251.95 299.57 2257.52 1841.56 980.52

1500 2028.75 23.12 2031.94 2106.38 70.19

indicates that the more a vehicle’s capacity to travel increases, the less distance is
travelled to cover all the nodes. From Table 3, we also observe the importance of
adding integrated tours since total time of main tours in the model MC wIT are
always higher than the total time of the main tours in the model MC .

4.2.2 Sensitivity Analysis on Weights α and β

We further test and perform a sensitivity analysis on the weights α and β in the
second model. Table 4 shows the solutions obtained with α = 1 and three different
β values where the weights demonstrate the relative importance of the distance
travelled by the truck and the team. In any of the cases, main tours are valued
over small tours because of the problem structure, however, the solutions still differ
by the variations in β and the decision maker can choose the value they give for
smaller tours. For example, the scenario with α = 1, β = 0.01 corresponds to the
case where utilising the trucks has the utmost importance compared to utilizing
the team. In Table 4, we again provide the solutions given in Table 3 obtained
with the estimated α = 1 and β = 0.0625 values for readability. The model is
tested for a time limit of six hours.

Table 4 shows that similar to the discussions in Section 4.2.1, for all combina-
tions of α and β values, for the same C value, the total time of the main tours
increases as the number of vehicles, m, also increases and for any m, the total
time of the main tours increases while C decreases. However, there is no general
trend for the the total time of the small tours as the trends highly depends on α
and β values. For example, when m = 2, for the scenario with β = 0.0625, total
time of the small tours always increases as C increases. On the other hand, total
time of small tours first increases then decreases as C increases with other weights.
We finally note that, as expected, the objective value of the model increases as β
increases.
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Table 4 Comparison of the Solutions of Model MC wIT with Different Weights

m C
Total Time of
Main Tours

Total Time of
Small Tours

Objective
Value

Optimality
Gap (%)

Solution
Time (sec.)

1200 2090.65 2101.96 2111.67 0 1345.45
2 1500 1866.38 2403.09 1890.41 0 53.86

2000 1811.42 2366.77 1835.09 0 42.80

1000 2532.66 2354.96 2556.21 0 956.80
α = 1 3 1200 2167.93 2065.64 2188.59 0 2239.54
β = 0.01 1500 1943.66 2366.77 1967.33 0 69.96

1000 2609.93 2325.22 2633.18 0.86 21600
4 1200 2253.02 2004.77 2273.07 0 11587.83

1500 2028.75 2305.90 2051.81 0 72.89

α = 1

1200 2095.16 1966.40 2218.06 0 19979.78
2 1500 1872.49 2156.00 2007.24 0 201.67

2000 1813.78 2263.19 1955.23 0 109.75

1000 2546.20 1951.25 2668.15 0 9846.72
α = 1 3 1200 2175.47 1841.56 2290.56 0 6094.20

β = 0.0625 1500 1949.77 2106.38 2081.42 0 138.22

1000 2623.48 1901.63 2742.33 0 1498.42
4 1200 2257.52 1841.56 2372.62 0 980.52

1500 2031.94 2106.38 2163.59 0 70.19

1200 2104.83 1837.82 2288.61 0 2237.93
2 1500 1880.45 2068.00 2087.25 0 510.38

2000 1821.74 2175.20 2039.26 0 193.64

1000 2546.20 1951.25 2741.33 0.94 21600
α = 1 3 1200 2182.11 1760.54 2358.16 0 956.62
β = 0.1 1500 1957.73 2018.39 2159.57 0 194.26

1000 2623.48 1901.63 2813.64 0 401.02
4 1200 2264.17 1760.54 2440.22 0 14039.24

1500 2042.82 1975.12 2240.33 0 168.89

4.3 Comparison of Heuristic Solution Methodologies

Table 4 shows that at two instances for the second model MC wIT, optimality is
not guaranteed within the predetermined time limit and concludes with a 0.86%
gap and 0.94% between the lower bounds and the best known solutions for the
scenarios with m = 4, C = 1000 and m = 3, C = 1000, respectively. These
result verify the need to use heuristics in order to obtain good solutions for larger
instances. For the same instances used in Table 3, we test the three heuristics
explained in Section 3.3. Table 5 shows the results obtained by the model MC wIT,
Heuristic 1, Heuristic 2 and two versions of Heuristic 3 with δ is equal to 0.10 and
0.25. We run the model and heuristics with the estimated real-life α and β values
in Section 4.1.

Table 5 shows that the solution times of the proposed heuristics are signif-
icantly shorter than the solution times of the model. Table 5 also presents the
gap between the optimal solution values of the model and the results obtained
with the heuristics, and the proposed heuristics find solutions all less than 4%
gap. Heuristic 2 and Heuristic 3 (δ = 0.25) are the best among the alternatives
in terms of solution quality since the average optimality gaps are 0.66%, 0.58%,
1.61% and 0.58% for Heuristic 1, Heuristic 2, Heuristic 3 (δ = 0.10) and Heuristic
3 (δ = 0.25), respectively. We note here that all solutions obtained by Heuristic
2 and Heuristic 3 (δ = 0.25) are the same. The maximum gaps for the best two
heuristics are 0.98% whereas it is equal to 1.13% for Heuristic 1 and 3.85% for
Heuristic 3 (δ = 0.10). On the other hand, Heuristic 3 (δ = 0.10) considerably
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outperforms other heuristics in terms of solution time since Heuristic 1, Heuristic 2
and Heuristic 3 (δ = 0.25) find the solutions within five minutes whereas Heuristic
3 (δ = 0.10) finds the solutions within 20 seconds. We also observe that as we
enlarge the feasible region by increasing δ in Heuristic 3, we find better solutions
while sacrificing from the computation time.

Table 5 Comparison of the Heuristics on a Medium-Size Data Set

m C
Total Time of
Main Tours

Total Time of
Small Tours

Objective
Value

Optimality
Gap (%)

Solution
Time (sec.)

1200 2095.16 1966.40 2218.06 0 19979.78
2 1500 1872.49 2156.00 2007.24 0 201.67

2000 1813.78 2263.19 1955.23 0 109.75

1000 2546.20 1951.25 2668.15 0 9846.72
MC wIT 3 1200 2175.47 1841.56 2290.56 0 6094.20

1500 1949.77 2106.38 2081.42 0 138.22

1000 2623.48 1901.63 2742.33 0 1498.42
4 1200 2257.52 1841.56 2372.62 0 980.52

1500 2031.94 2106.38 2163.59 0 70.19

1200 2089.58 2427.60 2241.31 1.05 235.92
2 1500 1866.38 2403.09 2016.57 0.47 28.82

2000 1811.42 2421.60 1962.77 0.39 25.22

1000 2532.66 2355.47 2679.87 0.44 185.17
Heuristic 1 3 1200 2166.86 2391.28 2316.32 1.13 135.66

1500 1943.66 2366.77 2091.58 0.49 28.15

1000 2609.93 2319.16 2754.88 0.46 174.34
4 1200 2251.95 2330.41 2397.60 1.05 311.86

1500 2028.75 2305.90 2172.87 0.43 23.87

1200 2089.58 2372.77 2237.88 0.89 226.81
2 1500 1866.38 2403.09 2016.57 0.47 28.87

2000 1811.42 2366.77 1959.35 0.21 24.99

1000 2532.66 2354.96 2679.84 0.44 179.24
Heuristic 2 3 1200 2166.86 2336.45 2312.89 0.98 130.65

1500 1943.66 2366.77 2091.58 0.49 27.49

1000 2609.93 2305.35 2754.02 0.43 166.60
4 1200 2251.95 2275.59 2394.17 0.91 300.54

1500 2028.75 2305.90 2172.87 0.43 23.98

1200 2089.58 2372.77 2237.88 0.89 13.92
2 1500 1905.62 2372.77 2053.92 2.33 9.65

2000 1811.42 2366.77 1959.35 0.21 5.25

1000 2537.30 2369.59 2685.4 0.65 17.6
Heuristic 3 3 1200 2166.86 2336.45 2312.89 0.98 10.58
(δ = 0.10) 1500 1982.90 2336.45 2128.92 2.28 4.38

1000 2614.66 2369.59 2762.76 0.75 11.62
4 1200 2287.50 2336.45 2433.53 2.57 7.13

1500 2100.77 2336.45 2246.80 3.85 2.67

1200 2089.58 2372.77 2237.88 0.89 192.77
2 1500 1866.38 2403.09 2016.57 0.47 39.71

2000 1811.42 2366.77 1959.35 0.21 23.80

1000 2532.66 2354.96 2679.84 0.44 191.03
Heuristic 3 3 1200 2166.86 2336.45 2312.89 0.98 64.48
(δ = 0.25) 1500 1943.66 2366.77 2091.58 0.49 20.84

1000 2609.93 2305.35 2754.02 0.43 59.46
4 1200 2251.96 2275.59 2394.17 0.91 45.12

1500 2028.75 2305.90 2172.87 0.43 8.55
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4.4 Computational Results on a Large-Size Real Data Set

In order to further test the proposed heuristics, we utilise a large-size data set that
is collected from the southeast region of Turkey where the refugee population is
high due to the geographic region being close to the border with Syria. The data
set includes 74 points which are scattered between 10 cities that near the border
or in the neighbouring area. Among the 74 points, 19 of which are existing refugee
camps and 55 are potential camp locations (Yontucu and Demir, 2018).

Table 5 demonstrates that Heuristic 1, Heuristic 2, and Heuristic 3 (δ = 0.25)
achieve good results with the medium-size data set, however, their computation
times are relatively high compared to Heuristic 3 (δ = 0.10). In our preliminary
results for the large-size data set, we observe that for more than half of the in-
stances (4 out of 7 feasible solutions), the optimality of the model MC , which is the
first step of Heuristic 1 and Heuristic 2, could not be verified within 6-hour time
limit. Therefore, we only provide the solutions for Heuristic 3 (δ = 0.10) for the
large-size data set which is proven to find the best solutions in terms of solution
time with acceptable solution quality for the medium-size data as seen in Table 5.

Table 6 shows the solutions obtained with Heuristic 3 (δ = 0.10) for the large-
size data set with the same parameters used in Section 4.2.1. It can be observed
that Heuristic 3 (δ = 0.10) finds the results under one hour except for one in-
stance, and under 5 minutes except for three instances. Thus, it can be argued
that for large data sets, Heuristic 3 (δ = 0.10) is the only solution among proposed
alternatives to achieve results within reasonable solution times.

From Table 6, we also observe similar trends as in Section 4.2 and for any m,
the total distance of the main tours increases while C decreases. For the large-size
data set, we find out that C turns out to be an important parameter since we
could not find any feasible solutions for the two instances that we find optimal
results with the medium-size data set (m=2, C=1200 and m = 3, C=1000).

Table 6 Solution of Heuristic 3 (δ = 0.10) on a Large-Size Data Set

m C
Total Time of
Main Tours

Total Time of
Small Tours

Objective
Value

Solution
Time (sec.)

1200 infeasible
2 1500 2619.49 3710.17 2851.37 372.32

2000 2610.00 3537.69 2831.11 2031.89

1000 infeasible
Heuristic 3 3 1200 2912.12 3537.69 3133.22 2992.76
(δ = 0.10) 1500 2635.89 3696.34 2866.91 180.29

1000 3362.84 3710.17 3594.72 5433.79
4 1200 2928.51 3523.87 3148.75 508.57

1500 2662.15 3690.84 2892.83 417.54

4.5 Insights for the Organization of Refugee Aid

The results obtained during the computational analysis with different data sets
and different weights all imply that the solutions are sensitive to both the number,
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m, and the capacity, C, of the trucks and decision makers should carefully analyze
the trade-offs between the results obtained with different parameters. For exam-
ple, as seen on Table 4, we found out that for the same C value, increasing the
number of the trucks increases the total distance travelled by trucks by 3%-4.4%,
but decreases the total distance travelled by the team within small tours up to
6%. This result indicates that by increasing the number of trucks, more points are
visited and less points are covered. This may enhance the awareness and accessi-
bility to the MCFS as the trucks visit more points, however, the operational costs
such as driver, fuel, and maintenance costs would increase in addition to the cost
of acquiring trucks. Hence, there is a trade-off between accessibility and costs, and
decision makers should carry out both a qualitative and a quantitative analysis
to assess their solutions in order to deliver an effective strategy considering their
budget restrictions and the aim of providing MCFS to children of need.

We also observed that the capacity of the trucks is an important factor es-
pecially on the large data set where we achieved infeasible results with restricted
number of trucks with smaller capacities. Even if one does not have the data or
means to conduct the proposed models and heuristics to find optimal routes, it
would be beneficial to carry out a feasibility analysis in the planning phase. If
the refugee aid organization has a scarce source of trucks, they may not complete
their routes considering different restrictions related to the travelling capacity of
the trucks such as time limits or the maintenance scheduling. In this case, decision
makers should consider increasing the number of trucks or decreasing the number
of nodes that are planned to be visited. Thus, conducting such analyses in the
planning phase could be beneficial for the operation to achieve a more effective
strategy.

It is also beneficial to use qualitative research approaches such as conducting
fieldworks, interviews or surveys to assess the needs and to construct the execution
plan according to the local specifications and restrictions. The decision whether to
apply CVRP or CVRPwIT setting can also be given considering this information.
To illustrate, if the area is well-connected, CVRP can be applied assuming the
children can come easily to the location of the trucks, on the other hand, if there
are isolated places within the area, CVRPwIT can be applied so that the team
can help raise the awareness to the MCFS. The implementation setting may also
change according to the strategy of the refugee aid organization. If decision makers
would like to combine several humanitarian operations such as providing MCFS
and conducting household visits to analyse the living conditions of refugees, they
may decide to apply CVRPwIT setting.

5 Conclusion

The ongoing refugee situation has caused Turkey to become the largest host of
refugees in the world, with over 3.7 million registered refugees. Children constitute
almost half of the refugee population in Turkey, and more than 40% of them are
not enrolled in formal education. In order to understand the situation through
first-hand observation, fieldwork is conducted in Ankara, Turkey, and it is observed
that children remain vulnerable in these changing conditions. Therefore, increasing
refugees’ integration with the community and improving their living conditions,
especially for the development of children, is highly important to prevent a lost



Covering Vehicle Routing Problem 19

generation. The focus of this work is on the routing of the Mobile Child Friendly
Space (MCFS) trucks in order to increase refugee children’s access to psychological
support and informal education.

For the routing of the MCFS trucks, two cases are taken into account, which are
covering all demand points but not visiting all, and covering all demand points
and visiting the nodes that are not included in the tour through smaller tours.
Two problems are introduced for these cases, namely the Covering Vehicle Rout-
ing Problem (CVRP) and the Covering Vehicle Routing Problem with Integrated
Tours (CVRPwIT), respectively.

Computational analysis is conducted using data generated from the real-life
activities of the trucks, which is obtained from the Turkish Red Crescent. The
comparison of the optimal solution with the real-life activities shows that it is
possible to decrease the total travel distance by 25.32% using the proposed models.
The models and proposed heuristics are tested with different parameter settings
on a medium-size real data set that considers one of the cities in Turkey, Burdur
to solve the model for CVRPwIT in shorter times. The solutions obtained with
the best heuristic among alternatives in terms of solution time are also provided
and discussed on a large-size data set that considers locations of refugee camps
in Turkey. We note here that the notion in our problem setting in CVRPwIT
(i.e. generating smaller tours from visited nodes) can be used in many problems
related to selective routing. Similarly, the proposed solution approaches can be
easily adapted to the extended versions of the problems.

In future research, one could develop a multi-objective version of the problem
by taking other objectives into account. To illustrate, balanced coverage according
to the demand of the nodes might be added as an objective: i.e. each coverage
cluster could have an approximately equal demand to obtain a more balanced
service. In addition, the nodes’ demand could be taken into account in the decision
as to whether visiting or covering a node is preferable, such that a node with higher
demand would be visited rather than covered, while nodes with lower demands
are covered rather than visited. Service times during visiting nodes could also be
included in the problem if time is also an important restriction.
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