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Abstract—Increased attention is paid to reducing the 
greenhouse gases resulting from combustion processes either 
from energy generation stations or the transportation sector. 
Countries are setting rules and targets to govern this issue and 
electrification of transportation is spreading. One of the 
motivations for people use electric vehicles may be the availability 
of rapid charging stations which function similarly to the 
conventional fuel stations (forecourts). The UK’s first solar EV 
charging forecourt is being built and commissioned with a 5 MW 
on-site battery to store energy from a solar farm and to enable 
arbitrage for grid services. To enable optimum site operation, 
predicting the arrival of electric vehicles at different times of the 
day and hence the load demand, determines the availability of the 
battery for bulk power supply or fast-frequency response to the 
grid. This paper presents the outline of a stochastic model for the 
electric vehicle arrival and charging at the site using the concept 
of vehicle population-types. The model considers the stochastic 
nature of different parameters controlling the charging process 
e.g. the charging start time and the state of charge (SoC) at start 
of the charging session. 
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I. INTRODUCTION 
Transport accounts for 28% of UK greenhouse gas (GHG) 

emissions [1]. Liquid fuels (fossil and renewable) have been 
shown to be unlikely to meet GHG reduction targets, even in 
the near-term [2] yet transportation is considered one of the 
hardest sectors to decarbonize. The barriers hindering the take-
up of electric vehicles (EVs)  include: high initial costs, limited 
charging facilities, limited driving range, and long battery 
recharge times [3],not the least of which is access to charging 
infrastructure [4]. 

The UK Government has committed the nation to become 
net-zero carbon by 2050 [5], and introduced a target year of 
2035 to cease sales of new gasoline and diesel automobiles [6]. 
In the UK in 2019 there were 32,884,320 registered passenger 
vehicles [7] of which 0.7% were EVs (battery EV (BEV) and 
plug-in hybrid EV (PHEV)). EV sale rate is increasing in the 
UK where the 2019 sales share of EVs was 3.2% compared to 
0.2% in 2013 [8]. 

Currently, the principal options for charging are at home, 
on-street, or a car park (work or retail). In the UK there are 
19,167 public charging devices providing 33,301 connectors 

[9]. Of these public chargers, 75% of the chargers have 
charging rate less than or equal to 22 kW and only 3% are ultra-
rapid chargers (100 kW or more) [9]. Charging at home is 
limited to 3-5 kW and requires a suitable off-street space. For 
those living in apartment blocks or other high-density housing 
this is problematic.  

Uncontrolled charging of EVs either at home or public 
places may lead to significant increases in demand on the 
electric grid e.g. increasing load during the peak periods of the 
day [10]. Accordingly, forecasting and modelling EV charging 
demand is important for power system planning and operation. 
Su et al [11] formulated a stochastic model estimating the 
effect of EVs charging on the distribution system. They 
considered different charging scenarios and showed 
uncontrolled domestic charging to be the worst-case scenario. 
Probabilistic modelling using the Copula method [12] was 
used to find the joint probability of home arrival time, daily 
travelled distance and home departure time. Markov chain 
modelling was implemented to investigate when and where the 
EV will be recharged [13]. Using deep learning methods Kara 
et al [14] provided super-short-term forecasting of EV 
charging. The method predicts the EV charging profile with 
one-minute resolution and uses real data with one-minute 
resolution for training, validation and testing. The concept of 
smart (controlled) charging was introduced to avoid problems 
associated with the uncontrolled charging [15].  

The UK’s first Solar Electric Forecourt demonstrator 
project aims to design, deliver and operate an integrated, 
utility-scale site located in Braintree, Essex consisting of 24 
ultra-rapid charging points (of various power ratings from 
90 kW to 350 kW) with charging times of less than 30 minutes, 
in addition to other lower-rated chargers. Charging will be via 
a 5 MWh on-site battery energy storage system (BESS) 
coupled to a solar farm. The objectives of the demonstrator 
include   balancing EV charging and the provision of grid 
services, and demonstrating the economic, social and 
environmental benefits of ultra-rapid public EV charging hubs. 
Furthermore, such electric forecourts may help mitigating the 
burden on the distribution system as the EVs charge from the 
BESS not through direct connection to the main electric grid. 

The aim of this paper is to introduce a model to mimic EV 
arrival rates at the site. This will model is designed to serve 
two purposes: 1) to help predict likely site use in the next 24 
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hour period for planning the BESS strategy for providing grid 
services, and 2) to learn about patterns of use to assist in  
developing the second and subsequent sites. 

II. MODEL DESIGN AND METHODS 
The aim of the model is to understand how the energy 

demand from vehicle charging through the day may vary. The 
variation is driven by factors such as time of the day, daily 
distance travelled , and battery capacity of the EV. The 
predicted EV arrival is used to estimate the power and energy 
withdrawn from the BESS during the day. Firstly, the EV 
arrival model is explained, then, the site operation to charge 
EVs is described. 

Neither a deterministic nor system dynamics approaches 
are appropriate, we need to introduce stochastic variation in 
most parameters in some way to mimic the uncertainty 
demonstrated in the real-world data. At present, the site is in 
the early stages of operation and experience of the parameters 
is being gained daily. Accordingly, the stochastic nature of the 
parameters is initially modeled based on information available 
from literature and the transport sector data. The code is 
written in Matlab (version 2016b). 

To match the half-hourly settlement periods each day 
consists of 48 slots. When EVs arrive at the site they start 
charging unless no suitable charging point is free, in which 
case they queue in the waiting area. Each EV’s SoC is checked 
every two minutes until reaching the required energy target.  

We model the EV fleet as three principal populations 1) 
those who live in the catchment postcodes, 2) those who work 
at the adjacent business park but live outside of the catchment 
area, and 3) opportunistic charging by passing traffic with no 
direct connection with the area. It is expected that EV drivers 
from outside the site catchment area will show a different 
behaviour (charging requirement) compared to people 
working/living close to the site. Each population is modelled 
independently and the total number of EV arriving is the sum 
of all populations.  

A. Local Populations 
Generally, the resident and work populations show 

different behaviors, although there is likely to be a small subset 
of those who live and work locally. This is most clear during 
the weekends when it is not expected that EVs from the work 
population will charge. The work population will be 
determined once the site is operational and the local live/work 
populations can be deconvoluted i.e. those who work at the 
business park but commute from non-local postcodes. 

The common models for EVs in the market and their 
relative share are given by [8]. These databases are updated as 
the market changes. EVs owned by postcode can be obtained 
from Department of transport records [7]. Basic technical 
information such as full electrical range, charging rate, and 
battery capacity of EVs were obtained from [16]. 

Modeling the total local population (Nmax) starts by 
estimating the total number of EVs needing to charge (Nev) and 
therefore most likely to arriving during the day (next 48 half-
hour periods). The flowchart in Fig. 1 shows the two steps to 
model the local population. Modeling the local population 
relies on monitoring the current SoC for each EV. By 
exploiting the distribution for distance travelled per day with 
vehicle battery capacity we can determine the likely state of 

charge. Assuming the SoC decreases linearly with the distance 
travelled, the current SoC is calculated by 

 SoCc = SoCf ‒ (d/Dm) × 100% (1) 

where SoCc and SoCf are the current and final SoC 
respectively, and d and Dm are the total travelled distance and 
total electrical range for the EV respectively. 

If the current SoC for an EV is below a threshold level that 
would risk the driver being unable to make many additional 
journeys, then this EV potentially needs recharging. The 
tracking and checking for the SoC is applied to all EVs in the 
resident population, giving the number potential EVs needing  
to charge on a certain day, Nev in Fig. 1. The threshold level for 
SoC is initially assumed 50% in this paper which can be easily 
adjusted to better reflect the actual real data collected from 
running the site. 

The Department for Transport’s National Travel Survey 
(NTS) is used to develop a distribution for the daily travelled  
distance [17]. A dataset of 100,783 trips is used to build the 
distribution which is found to be lognormal (Fig. 2 with a mean 
and standard deviation of 1.9 and 1.1 respectively. Therefore, 
the average travelled per day is 12 km with a standard 
deviation of 14 km. 

 
Fig. 1. Local population model flowsheet. 

EVs arrival at each time slot
• Upper limit = Nev – charged EVs in previous slots
• Generate an integer random value (N) between 0 and Upper limit
• If the total EVs charged = Nev; assign 0 EVs to charge at remaining 

slots. 
• Generate N random values (R1, R2, … RN) between 0 and 1
• EVs arrival = (R1, R2, … RN) ≤ Likelihood

Input and initialization
• Assume local population size = Nmax
• Select a model for each EV (from the EV database) and 

accordingly define all its parameters (electrical range, charging 
power and battery capacity)

• Use distance travelled distribution for daily travelled distance
• Tag each EV and store its parameters such as final SoC at end of 

charging and total distance travelled

At start of every day: for each EV in the population
• Increase total distance travelled by its daily distance to represent 

distance travelled yesterday
• Check the current total travelled distance
• From distance travelled and recorded SoC (final SoC at end of 

previous charging), calculate current SoC for the EV

SoC ≤ Threshold

This EV needs charging
Record the EV tag

EV does not 
need charging

Now, possible EVs need charging are known 
for this day (Nev) and the corresponding tags

Yes

No

Step 1

Step 2
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Fig. 2. Modelled distribution (red line) of daily travelled distance. Data 
source: [17]. 

The second step estimates the number of EVs arriving 
during each 48 slot, requiring a plug-in time distribution [18, 
19]. for starting the charging. This distribution is used to give 
a relative weighting to different time slots of the day 
(likelihood for each time slot is used). Firstly, an integer (N) is 
randomly generated between 0 and Nev. This is the number of 
trials the EV arrival routine is run at this time slot. 
Accordingly, the number of EVs turning up will be between 0 
and N. For each trial, the decision that an EV will charge or 
not is defined by comparing a randomly generated value 
(uniform distribution between 0 and 1) with the likelihood of 
the plug-in distribution at this time slot. If the random value is 
less than or equal to the likelihood, then this trial is counted as 
an EV that will charge during this time slot. Nev recursively 
decreases accounting for EVs charged during the previous 
slots of the day. 

Initially, statistics on local authority rapid plug-in vehicle 
charge points in England in 2017 [20] are used to develop the 
plug-in time distribution. The plug-in time distribution can be 
easily modified in the algorithm to reflect the actual behavior 
of the EVs when more operational data is available. The rapid 
charge points in this dataset are chargers of 22 kW or more and 
are used as a reference as the chargers adopted in the project 
are of high power. The EV charging datasets combine 108,746 
charging events recorded for 237 rapid chargers located in 27 
local authorities, of which 697 were recorded in Essex. The 
frequency of charging events was affected more by the time of 
the day than the day of the week. Accordingly, the same plug-
in time distribution is used for different days of the week. The 
number of events by time of the day for Essex county is shown 
in Fig. 3. The data for Essex is used to build the plug-in time 
distribution which is found to be normal distribution. The peak 
plug-in time for the distribution is 13:40 pm. 

 

Fig. 3. Modelled plug-in start time distribution (red line) in Essex (local 
population). Data source: [20]. 

B. Passing Traffic 
The passing traffic population is undertaking medium and long 
distance journeys using the main roads (A12, A120 and A131) 
nearby the site. These journeys may or may not end in Essex, 
but are using the forecourt as part of their journey plan. This 
population is a direct function of the vehicle flow-rate along 
the main roads. A step in the modeling is to pick a model for 
the EV coming to charge. For this purpose, the relative share of 
EVs is used to set the probability for each EV model.  

The total daily number of vehicles passing along the roads 
of interest is known [21], but not the temporal distribution. Fig. 
4 shows the normalized average motor vehicle traffic 
distribution by time of day and day of week for all roads in 
Great Britain in 2018 [21]. The weekdays are similar with 
bimodal peaks in the morning and late afternoon. On the other 
hand, the weekends have a single peak in the early afternoon. 
This information is used to build two traffic flow probability 
distributions; one for weekdays and one for weekends. 

 

Fig. 4. Traffic flow distribution. Data source: [21]. 

 

To create a distribution of types of EV in the passing traffic 
population, the EV share in the market (BEV and PHEV) is 
used to scale the average daily flow to represent EV daily flow 
on the roads of interest. The licensed cars statistics in the UK 
at the end of 2019 are used where the BEV and the PHEV 
represent 0.3% and 0.4% respectively [7]. 

Therefore, from the daily flow, the percentage of long 
journeys needs to be extracted. Car journeys longer than 25 
miles (40 km) are assumed to form the passing traffic 
population. The long journeys are found to be approximately 
7% of all trips from the NTS dataset [17]. Therefore, the traffic 
flow distribution, average daily flow, EV share and percentage 
of long journeys can be used to estimate the EV arrival at 
different time slots of the day. 

For a certain slot, the EV decision to charge is defined by 
comparing a randomly generated value between 0 and 1 with a 
threshold level. If the random value is less than or equal to the 
threshold level, then the EV will charge at the site at this time 
slot. At this initial stage of the model design, a threshold level 
of 0.5 (50%) is used to give equal opportunity to charge or not. 

The likely initial SoC of the EV was estimated from the 
travelled distance for the local population. On the other hand, 
the passing traffic population requires a distribution for the 
initial SoC. The distribution of the initial SoC is assumed in 
this study until a real operating data is collected from the site. 
The initial SoC distribution is shown in Fig. 5. 
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Fig. 5. Initial state of charge distribution. 

C. EV Charging 
For the 48 slots the flowchart (Fig. 6) illustrates the process 

of charging sessions at the site, aiming to estimate the power 
demand from the BESS. Once the total number of EVs that will 
be charging is estimated from all the populations, the EV 
model and the corresponding parameters e.g. rated charging 
power and battery capacity is selected from the EV database 
[16]. Monitoring the EV charging status is carried out every Dt 
time step (2 minutes). 

The energy required is defined from initial SoC, final SoC 
and the battery capacity. Initial SoC is defined either by 
estimation for the local population or the distribution for the 
passing traffic. For the final SoC, data from literature is used 
to build a distribution (Fig. 7) for the final SoC [22]. The final 
SoC is close to full charge, however, leaving a portion of the 
battery capacity to charge through regenerative braking may 
be required. Therefore, the distribution shows a high 
probability for high SoC but gets lower when approaching the 
full capacity (100%).  

For every time step Dt, the total charged energy for each 
EV is calculated using (2). The EV charging power is assumed 
constant during the short time period Dt. The charged energy 
is compared with the required energy to decide ending the 
charging session. Also, a stop request by the EV user can 
terminate the charging and this has been given a probability of 
1%. When the time slot is over, any EVs arriving for the next 
time slot is determined and this process is repeated for the 
whole day, 

 Et+Dt = Et + Pch × Dt ×hc  (2) 

where E is the energy, Pch is the charging power during the 
interval Dt, and hc is the battery charging efficiency.  

III. RESULTS AND DISCUSSION 
 The model remains under development, but the current 
version has been implemented with a (real) local (residential) 
population size of 50 EVs. Typical EV arrival patterns for two 
different days for the residential and passing traffic 
populations are shown in Error! Reference source not 
found.. Table I displays the total daily EV arrival for 7 days. 
The charging power drawn from the BESS at different time 
steps is shown in Error! Reference source not found. for two 
typical days. EV arrival is more likely during the daytime (8am 
to 6pm) which follows the plug-in time and traffic flow 
distributions. The arrival rate is low, but this is dependent on 
the fleet sizes, daily travelled distance and vehicle electrical 

range. The total charging power is used to estimate the energy 
delivered by the BESS. Accordingly, the SoC, number of 
discharging/charging cycles and the degradation rate for the 
BESS (major asset) can be estimated and considered for the 
optimal operation of the charging forecourt. 

 

Fig. 6. Charging session operation. 

 

Fig. 7. Modelled final state of charge distribution. Data source: [22]. 

TABLE I.  TOTAL EV ARRIVAL FOR 7 DAYS 

Day 1 2 3 4 5 6 7 

EV arrival 23 35 35 28 27 19 31 

IV. CONCLUSIONS AND FURTHER WORK 
Home and on-street charging cannot deliver fast charging 

times, so super-fast EV charging forecourts are expected to 
spread across many countries in the next decade to help meet 
the growth in high-capacity (long range) EVs. Electric 
forecourts with BESS can provide other services to the power 
grid e.g. bulk power delivery or fast frequency support during 
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peak load periods. This paper outlines a stochastic model to 
predict EV arrival for charging, aiding the optimal running of 
the forecourt. The model accounts for the stochastic nature of 
many parameters affecting the arrival rate e.g. plug-in start 
time, daily travelled  distance and vehicle SoC. Steps to 
implement the proposed model have been discussed with 
defining important parameters and the corresponding possible 
sources. The model has been implemented using Matlab and 
sample of the results has been presented. Work is on-going to 
fully understand the effect of different populations and their 
characteristic parameters. Operational data from the site will 
enhance the model design. Detailed statistical analysis for 
different parameters affecting the arrival rate is to be 
considered in future work. 

 

Fig. 8. Total charging power for typical weekday and weekend. 
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Fig. 9. EV arrival by time of the day. 


