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Abstract— With more electric buses, the optimal location of 
charging station plays an important role for bus electrification. 
This paper proposes a location planning model of electric bus fast-
charging stations for the electric bus transit system, that takes the 
bus operation network and the distribution network into account. 
The model 1) simulates the operation network of electric buses 
thoroughly to obtain the charging demand of electric buses and 2) 
takes into account of the absorption capacity of distribution 
network and other constraints in the siting and capacity 
determination stage. The objective of the model is to minimize the 
sum of the construction cost, operation and maintenance costs, 
travel cost to charging stations, and the cost of power loss for 

charging stations at established bus terminus. The Affinity 
Propagation method is adopted to cluster the bus terminuses in 
order to obtain a preliminary number of charging stations. 
Subsequently, the Binary Particle Swarm Optimization algorithm 
is used to optimize the site selection and capacity. Finally, the 
model is applied to simulate and analyze the bus operation 
network of a coastal city in South China. The case study shows that 
the model can effectively optimize the layout of bus charging 
stations for the city. 
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Nomenclature 
Abbreviation pgd Best position of global in BPSO 
e-bus Electric Bus vid Particle velocity in BPSO 

AP Affinity Propagation algorithm di,c Distance from charging demand point i to fast-charging 
station c, km 

BPSO Binary Particle Swarm Optimization algorithm var1i,j,b,t The operating state of e-bus b in route j of terminus i at 
the time of its t-th operation 

GA Genetic algorithm var2i,j,b,t The charging state of e-bus b in route j of terminus i at 
the time of its t-th charging 

SOC State of Charge SOC1i,j,b,t SOC of e-bus b in route j of terminus i at the time of its 
t-th departure 

 SOC2i,j,b,t SOC of e-bus b in route j of terminus i at the time of its 
t-th arrival 

Parameters  Ei,j Energy consumption of route j operated by the i-th 
terminus, kWh 

D Dimension of the particles Ei,c Energy consumption from bus terminus i to charging 
station c, kWh 

c1, c2 Learning factors TDi,j,b,t 
Dwelling time of e-bus b in route j operated by terminus 
i at the time of its t-th dwell, minute 

λ The damping factor TCi,j,b,t Charging time of e-bus b in route j operated by terminus 
i at the time of its t-th dwell, minute 

ω Inertia weight Ti,c Driving time from bus terminus i to charging station c, 
minute 

P Charging power of the equipped charging facilities ei,j,b,t Electric energy obtained of e-bus b in route j of terminus 
i at the time of its t-th charging, kWh 

Cbattery Battery capacity of e-bus, kWh NSDc Number of charging spots required for daytime charging 
of fast-charging station c 

u Energy consumption per kilometer, kWh/km TCDc Effective charging time of fast-charging station c during 
the daytime, minute 

α Fluctuation coefficient of charging demand Δtci,j,b Time required for e-bus b in route j operated by terminus 
i to be fully charged at night, minute 

ks Operation simultaneous rate of charging facilities TCNc Effective charging time of fast-charging station c at 
night, minute 

keff Charging efficiency of the charging facility, % NSNc Number of charging spots required for night charging of 
fast-charging station c 

TRj the operation time of route j, minute NSc Number of charging spots to be built for the fast-
charging station c 

TSj the spacing interval of route j, minute NTc Number of transformers in the charging station c 



SOCmax Maximum SOC of e-bus battery nc,i  
Number of charging times of terminus i of charging 
station c  

SOCmin Minimum SOC of e-bus battery Yc,n State variable representing the connection between 
charging station c and node n in distribution network. 

Li,j Length of route j operated by the i-th terminus, km Lc,n Length of the power distribution line connecting 
charging station c to node n of distribution network, km 

Ƞb Assuming scaling factor, % xid 
State variable representing whether the bus terminus is 
the charging station or not 

gt Electricity price of charging, ¥/kWh NBj Number of e-buses of route j 

N Number of distribution network node  NIc Number of charging demand points belonging to the 
same cluster of fast-charging station c 

µ Charging capacity redundancy of the fast-charging station NJi Number of bus routes operated by charging demand 
point i 

ld Influencing factor on the operation routes  NTb Number of arrivals of e-bus b 
r0 Discount rate, % NC Number of charging stations 
γ Operating life of the charging station, year C1c Equipment and installation cost of charging station c, ¥ 
p1 Unit price of the charging facility, ¥ C2c Construction cost of power distribution line, ¥ 
wc Construction cost of charging station c, ¥ C3c Operation and maintenance cost of charging station c,  ¥ 

αcn 
Equipment and installation cost of power distribution line 
per kilometer, ¥/km C4c Travel cost of e-bus to charging station c, ¥ 

p2 Unit price of the transformer, ¥ C5 Power loss cost, ¥ 
gp Average tariff including tax Ploss2 Active power loss after fast-charging station access, kW 
L Service radius of fast-charging station, km Un Voltage magnitude of bus n, kV 

Un
min, Un

max Upper/lower margins of voltage magnitude, kV Pc,n 
Charging power of the charging station c access node n 
of distribution network, kW 

NSmin Minimum number of charging facilities  
NSmax Maximum number of charging facilities Sets and Indices 

Pn
max

 
Maximum power allowed for node n of distribution 
network, kW 

 The set of bus terminus 

Ploss1 Active power loss before fast-charging station access, kW S(i, j) The set of "suitability" 
Pn Load power of node n of distribution network, kW R(i, k) The set of "responsibility" 
 A(i, k) The set of "availability" 
Variables  b The e-buses index, where b=1, 2, ..., NBj 
F Objective function c The fast-charging station index, where c=1, 2, ..., NC 
pid Best position of particle in BPSO   

 

1. Introduction  
With the depletion of fossil energy resources, increased 
environmental pollution, promoting low-carbon economy and 
reduction of carbon emissions that attract people’s awareness 
of decarbonization and the willingness to deploy smart cities 
worldwide; smart energy and smart transportation are the two 
most essential components in smart cities [1]. As a major 
energy producer and consumer, China has been committed to 
energy transition and reducing carbon emissions [2]. Electric 
vehicles, as a new form of energy transportation, are considered 
as one of the solutions for China to reduce its carbon emissions 
and dependence from oil. Electric buses (E-buses) play an 
important role in urban transportation in many cities. By 
analyzing the life cycle costs and carbon emissions of different 
type of e-buses, some studies point out that electric vehicles 
produce less carbon emissions than the traditional ones, which 
is important to improve air quality and reduce environmental 
pollution [3,4]. With the development of new energy and 
charging management technologies, the environmental 
friendliness of electric vehicles is expected to be further 
strengthened [5,6]. In addition, the use of electric vehicles can 
also contribute to the consumption of new energy and the stable 
operation of distribution network [7]. For example, electric 
vehicles can be used to mitigate fluctuations in photovoltaic 
output in the low-voltage grid [8]. The demand response of 
electric vehicles can also be used to smooth the wind power and 
limit the ramp rate, so as to solve the problem of high 
penetration of wind farms [9]. Some studies had shown that 
electric vehicles can be used as portable generators, which 

supply power to critical loads in emergency condition by using 
Vehicle-to-Grid technology [10]. 

However, with the growth of electric vehicles, problems 
such as lack of, and sub-optimal placements of charging 
infrastructure are gradually exposed [11]. To better understand 
the interaction between the promotion of electric vehicles and 
construction of charging infrastructure, China has issued a 
series of policies to promote the development of a national 
charging network [12]. 

Therefore, effective charging station deployment may help 
avoiding non-economic investment and further promoting the 
penetration of electric vehicles in the market. Most of the 
current studies focus on private electric vehicles or taxis, and 
fewer consider the optimization of e-bus charging stations. For 
example, Yang et al. described the decision-making process of 
electric vehicle users and the driving characteristics of electric 
vehicles, and further analyzed electric vehicle charging demand 
variation curve [13]. Hosseini et al. proposed a Bayesian 
Network model that considered uncertainty, quantitative factors 
and qualitative factors, further assessed the site selection of 
charging stations from a sustainability and technical point of 
view [14]. From the perspective of distribution network, Wang  
et al. described a distributed test network model, which 
combined active and reactive power optimization methods to 
determine the optimal placement of charging stations to reduce 
power losses [15]. From the driver's point of view, according to 
the trip success ratio of electric vehicles, Alhazmi et al. selected 
the charging stations to optimize the trip success ratio from the 
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existing candidate charging stations [16]. Morro-Mello et al. 
also proposed a method to optimize the allocation of fast-
charging stations for urban electric taxis which met the 
planning requirements of all urban planners [17]. 

Compared with the uncertain usage of private cars and taxis, 
e-bus has a fixed operation route and a systemic daily operation 
schedule. This is not only beneficial to the countries to reduce 
carbon emissions as well as the transition to low-carbon energy, 
but also to the charge of grid for V2G scheduling. From the 
technological development history of e-buses in China, e-buses 
occupy a large share of the Chinese new energy vehicle market 
and will play a key role in urban electrified transportation [18]. 
From the recent announcements of the National Development 
and Reform Commission and Ministry of Industry and 
Information Technology, it is suggested that China will 
vigorously promote electrification of public sector in the future, 
including public transportation, sanitation vehicles, and taxis 
[19-21]. Mahmoud et al. reviewed the development history of 
e-bus technology and pointed out that electrification of public 
buses in cities is feasible [22]. Gao et al. indicated that high-
power charging technology could make the service reliability 
of e-buses in operation consistent with that of traditional diesel 
buses [23]. 

Thus, the electrification of urban bus network is important 
for transport systems. The construction of charging 
infrastructure at existing bus terminus is very important as e-
buses are getting popular. To date, there are few literatures 
documenting the optimization of charging infrastructure for e-
buses. Some of these studies are briefly summarized in Table 1. 
Bi et al. proposed a framework of multi-objective optimization 
model based on life cycle assessment for siting the location of 
wireless charger in multi-route e-bus transit system [24]. Ke et 
al. studied the bus transit system in Penghu, the impact of day 
and night charging on the construction cost of the e-bus transit 
system was examined to improve the practicability of e-buses 
[25]. He, et al. proposed a mathematical model for the optimal 
planning of fast-charging stations to alleviate the problem of 
high charges caused by high-speed charging, and applied the 
model to the public transport system in Salt Lake City. The 
optimization results showed that the fast-charging stations 
could be built at on-street bus stops that are shared by many bus 
routes [26]. To determine which bus stop is selected to build 
charging station, Wang et al. used a linear programming 
relaxation algorithm, and multiple backtracking and greedy 
algorithms to minimize the total installation cost of the charging 
station [27]. Xylia et al. minimized the total costs or the total 
energy consumption of the electrification e-bus system, and the 
charging stations were deployed at major transport hubs [28]. 
Rogge et al. studied the cost-optimized planning of depot 
charging battery bus fleets and their corresponding charging 
infrastructure. The total cost of electrification operation is 
minimized and the grouping genetic algorithm and mixed 
integer nonlinear programming are adopted to solve the 
problem [29]. Lajunen also pointed out that, compared with 
charging at night and charging at bus stops along the way, 
charging stations at bus terminuses are cheaper and more 
suitable for bus electrification during the whole life cycle [30]. 
However, the study of Rogge et al. assumed that all bus 
terminuses should be equipped with charging stations, which 

would only lead to high investment costs and redundant 
equipment including transformers and power converters [31]. 

Therefore, based on the above literature review, this paper 
proposes an optimization model of e-bus fast-charging station 
considering the bus transit system and the power distribution 
network. The contributions of this paper are as follows: 

1) With the Affinity Propagation (AP) clustering algorithm, we 
proposed clustering the adjacent terminuses into the same class 
according to the geographical location of each bus terminuses 
in order to share resources. AP is a clustering algorithm based 
on the information transfer mechanism between data points, 
which can avoid determining the number of clusters and setting 
the initial values. 

2) A real-life bus dispatching schedule is adopted to simulate 
daily charging load for a city’s bus transit system. 

3) The optimal cost model of charging station is proposed, where 
the bus transit system and power distribution network are 
considered as well. 

4) With binary particle swarm optimization, we optimize the 
deployment of fast-charging stations due to discrete site 
selection, also the charging capacities such that the total bus 
transit system cost is minimized. 

5) A methodology is developed to solve the fast-charging 
stations deployment problem. The convergence behavior and the 
total cost are investigated. 

The remainder of the paper is organized as follows. Section 
2 provides operating characteristics of e-buses and the 
clustering of bus stations. Section 3 formulates the optimization 
model, followed by a numerical study to demonstrate the 
effectiveness of the proposed model in Section 4. Section 5 
concludes the paper. 

2. Problem description and assumptions  
In this section, the description and assumptions regarding 

bus routes and fast-charging stations of an e-bus system are 
presented. In addition, an analytical model for clustering bus 
stations is proposed.  
2.1 Operating characteristics of electric buses 

Assuming a bus transit system is with multiple bus routes. 
Then each bus route has a fixed loop route with the same start 
point and end point. Due to the operational requirements of e-
buses, they require larger onboard batteries than that of other 
types of electric cars, so even using fast-charging mode, it will 
take dozens of minutes to several hours for charging up to a 
reasonable amount of stored energy. The Bloomberg report 
pointed out that although pantograph chargers and wireless 
charging have low on-board battery capacity requirements for 
e-bus, they are nevertheless less flexible, limited by space and 
local policy [32]. Both technologies are currently expensive. 
Therefore, it is more realistic to use fast-charging technology. 
The e-buses can only be recharged near the terminus in the 
period of waiting for the next departure only after they have run 
the operating routes.  There is a large number of bus terminuses. 
The charging demand of each station is affected by the number 
of e-buses, time headway and operating time of each route. The  



Table 1 Research on e-bus charging stations deployment 

Literature Zicheng Bi et al. [24] 
Bwo-Ren Ke et al. 
[25] 

Yi He et al. [26] 
Xiumin Wang et al. 
[27] 

Maria Xylia et al. 
[28] 

Matthias Rogge et al. 
[29] 

This work 

Location of study University of Michigan Penghu, Taiwan Salt Lake City, Utah  Qingdao, China Stockholm, Sweden 
European Cities: 
Aachen, German; 
Roskilde, Danish 

Yangjiang, China 

Optimization method Genetic algorithm  Genetic algorithm  
Mixed integer linear 
programming 

Linear programming 
relaxation algorithm; 
Multiple 
backtracking and 
greedy algorithm 

Mixed integer linear 
programming 

Grouping genetic 
algorithm;  
Mixed integer non-
linear programming 

Affinity propagation 
algorithm; 
Binary particle 
swarm optimization 

Charging station deployment 

Deploy large-scale 
wireless charging 
infrastructure at bus 
stops 

Build charging 
station in parking 
lots 

Install fast-charging 
stations at an on-street 
bus stop or a bus 
terminal 

Install electric 
vehicle charging 
stations at selected 
bus stops 

Deploy charging 
stations at major 
transport hubs 

Plan depot charging 
station 

Deploy fast-charging 
station in bus 
terminus 

Bus dispatching schedule Y Y Y Y N N Y 

Charging station sharing for 
different bus routes 

N N N Y Y N Y 

Objective 
function 

Construction cost 
of power 
distribution line 

N N N N N N Y 

Operation and 
maintenance cost of 
charging station 

N N N N Y N Y 

Travel cost of e-bus 
to charging station 

Y Y N N Y Y Y 

Power loss cost N N N N N N Y 

Greenhouse gas 
emissions 

Y N N N N N N 

Installation cost of 
energy storage 
systems 

N N Y N N N N 

Constraints 
Bus voltages N N N N N N Y 

Line flows N N N N N N Y 



investment cost will be too high if charging stations are built at 
each bus terminus. Also, the equipment in the station is often 
redundant. Therefore, by clustering the adjacent bus terminuses 
and building relatively centralized fast-charging station, the 
investment of the fast-charging station can be reduced, and the 
usage effectiveness can be improved. 

2.2 Affinity Propagation algorithm 

Affinity Propagation (AP) is a clustering algorithm based on 
the information transfer mechanism between data points [12]. 
This algorithm can avoid determining the number of clusters and 
the sensitive issue setting the initial values, which pose in 
traditional clustering algorithms such as K-mean [33]. In this 
paper, each bus terminus is regarded as potential clustering 
centers. According to the geographical location information of 
the terminuses, the similarity set S between the terminuses is 
constructed, where the similarity S(i, j) indicates how well the 
terminus with index j is suited to be the exemplar for data point 
i.  

                               (1) 

The terminuses with larger values of S(k, k) are more likely 
to be chosen as an exemplar. These values are referred to as 
"preferences". The iterative process is to perform an exemplar 
competition according to the "availability" and "responsibility" 
between the terminuses. The "responsibility" R(i, k), sent from 
data point i to candidate exemplar point k, reflects the 
accumulated evidence for how well-suited point k is to serve as 
the exemplar for point i, taking into account other potential 
exemplars for point i. The "availability" A(i, k), sent from 
candidate exemplar point k to point i, reflects the accumulated 
evidence for how appropriate it would be for point i to choose 
point k as its exemplar, taking into account the support from 
other points that point k should be an exemplar. The 
responsibilities are computed using the following rules [34]: 

          (2) 

(3) 

The damping factor λ is introduced to avoid numerical 
oscillation and adjust the convergence rate of AP clustering 
algorithm in the iterative updating process. Then the above 
equations are updated as follows: 

                (4) 

                (5) 

The clustering division of the terminuses can be obtained 
through the AP clustering algorithm. Since the fast-charging site 
selection is discrete, Binary Particle Swarm Optimization 
algorithm is used to solve the optimization problem. Based on 
the results of clustering, the binary code is used to generate 
initial particle populations. Each population represents a 
combination mode, and the fast-charging stations in each 

combination mode are selected from the terminuses. The 
advantage is that it can ensure that each charging station and its 
charging demands can be classified into the same category, in 
addition to this, the combination of fast-charging station sites 
updated in each iteration is guaranteed to be a feasible solution, 
which reduces the search space.  

In this paper, in BPSO represents the i-th particle position, 
and each particle represents a solution of the planning problem. 

                        (6) 

where  
D - the dimension of the particles, which corresponds to the 
number of terminuses of each cluster,  
xid - indicates whether the i-th particle selects the d-th 
terminus as the fast-charging station, and its values are {0,1}. 
Its particle velocity is updated as follows [35] : 

 
(7)	

where  
ω - inertia weight, 

c1, c2 - learning factors,  
rand( ) - a random positive number between 0 and 1,  

pid - best position of particle in BPSO,  
pgd - best position of global in BPSO. 
After updating, each particle velocity vid will be mapped to 

the probability value of xid by the sigmoid( ) function, and its 
position will be updated by Eq. (9) [36]:  

                        (8) 

                       (9) 

where  
Sig(vid) - a sigmoid limiting transformation which represents 
the probability in which the position xid takes 1. 

3. Model Formulation 
In the following section, a mathematical program is 

developed to optimize the deployment of fast-charging stations, 
as well as the capacity in order to minimize the total cost. The 
detailed model solution and optimal flow chart is shown in Fig. 
1. 

3.1 Capacity model of electric bus fast-charging station 

Compared with other types of electric vehicles, e-buses have 
a fixed operation mode. Therefore, in this paper, we obtain the 
spatial-temporal distribution characteristics of buses according 
to its operation scheduling plan, and simulate the operational 
task according to the spatial-temporal distribution 
characteristics. From the characteristics of the bus route, to 
ensure the demand of the route, the number of e-buses needs to 
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be reasonably configured. The number of e-buses required for 
route j is determined by Eq. (10): 

(10) 

where  
NBj - number of e-buses that need to be configured for route 
j,  

TRj - running time of route j, minute,  
TSj - spacing interval of route j, minute,  

Cbattery - battery capacity of e-bus,  
SOCmin - minimum SOC of e-bus battery,  

SOCmax - maximum SOC of e-bus battery,  
ceil( ) - function for rounding up to an integer. 
The simulation model needs to assume some state variables 

to track the e-bus state throughout the whole process. Assuming 
that var1i,j,b,t, var2i,j,b,t, SOC1i,j,b,t, and SOC2i,j,b,t are the 
operating state, the charging state, the state of charge when the 
e-bus is departing, and the state of charge when the e-bus is 
arriving at bus b in route j of terminus i at the time of its t-th 
departure or arrival, respectively.  
1) The first bus departure is scheduled according to the operation 
schedule, at this moment SOC1,i,j,b,t=1 and var1,i,j,b,t=1. 
2) After the TRj time, the e-bus arrives at the terminus, at this 
moment var1i,j,b,t =0, the  arrival time should be recorded and 
SOC2i,j,b,t are recorded as follows: 

               (11) 

where the energy consumption of route j operated by the i-th 
terminus: 

                              (12) 

where  
u - energy consumption per kilometer, kWh/km,  

Li,j - length of route j operated by the i-th terminus, km,  

ld - influencing factor on the operation routes, for example, 
slope, rugged degree, etc., which together named as a 
comprehensive factor, and generally taken between 1.1-1.3 
[6].  

3) According to Eq. (13), if the e-bus needs to be charged, setting 
var2i,j,b,t at 1; otherwise, setting as 0 and wait for the next 
departure time: 

               (13) 

where  
Ei,c - energy consumption from bus terminus i to charging 
station c, kWh,  

 
Fig.1. AP-BPSO algorithm flow chart 

 
4) If the e-bus needs to be charged, the charging time for the e-
bus is calculated according to Eq. (14). Meanwhile, in order to 
ensure that the SOC of the e-bus can meet the next operation task 
and not exceed the spacing interval, the charging time needs to 
meet the constraint of Eq. (15). The energy obtained from 
charging is given by Eq. (16).  
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where  
TCi,j,b,t - charging time of e-bus b in route j operated by 
terminus i at the time of its t-th dwell, minute, 

P - charging power of the equipped charging facilities, kW,  
TDi,j,b,t - dwelling time of e-bus b in route j operated by 
terminus i at the time of its t-th dwell, minute  
Ti,c - driving time from bus terminus i to charging station c, 
minute,  
ei,j,b,t - electric energy obtained of e-bus b in route j of 
terminus i at the time of its t-th charging, kWh. 
5) After a period of TDi,j,b,t, it is time for departure, at this 

moment  SOC1i,j,b,t is: 

(17) 
6) Repeat Steps 2) to 5) until all e-buses, routes and 

terminuses have been traversed to obtain the total charging 
demand and effective charging time of each bus terminus during 
the daytime operation. The number of charging spots required 
for charging during the day is as follows: 

       (18) 

where  
NSDc - number of charging spots required for daytime 
charging of fast-charging station c,  
NIc - number of charging demand points belonging to the 
same cluster of fast-charging station c, 
NJi - number of bus routes operated by charging demand 
point i,  
NTb  - number of arrivals of e-bus b, 

µ - charging capacity redundancy of the fast-charging station, 
TCDc - effective charging time of fast-charging station c 
during the daytime, minute,  
ks - operation simultaneous rate of charging facilities, 

keff - charging efficiency of the charging facility, %,  
α - fluctuation coefficient of charging demand.  
The period from the end of operation on one day to the 

beginning of operation on the next day is the charging time at 
night. During this period, the number of charging spots should 
meet the operation requirements of all the e-buses on the next 
day. According to the SOC, when the buses are fully charged, 
the number of charging spots required for night charging is as 
follows: 

                     (19) 

where 
NSNc - number of charging spots required for night charging 
of fast-charging station c 
Δtci,j,b - time required for e-bus b in route j operated by 
terminus i to be fully charged at night, minute 
TCNc - effective charging time of fast-charging station c at 
night, minute. 
The number of charging facilities to be built for the fast-

charging station c is given as follows: 

                 (20) 

3.2 Deployment model of electric bus fast-charging station 

The objective function for e-bus fast-charging station 
planning is to minimize the total cost of charging station.  

            (21) 

where  

NC - number of charging stations,  
C1c - equipment and installation cost of charging station c, ¥ 

C2c - construction cost of power distribution line, ¥ 
C3c - operation and maintenance cost of charging station c, ¥ 

C4c - travel cost of e-bus to charging station c, ¥ 
C5 - power loss cost, ¥. 

                             (22) 
                              (23) 

                              (24) 

                   (25) 

                             (26) 
where  

di,c - distance from the charging demand point i to the fast-
charging station c, km, 

L - service radius of fast-charging station, km, 
Yc,n - state variable representing the connection between 
charging station c and node n in distribution network. If the 
charging station c is connected to node n of the distribution 
network, then Ycn=1. Otherwise, it is 0,  
N - number of distribution network node,  

Un - voltage magnitude of node n of distribution network, 
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Unmin and Unmax - upper and lower margins of voltage 
magnitude of node n of distribution network, kV 
Pc,n - charging power of the charging station c access node n 
of distribution network, kW 
Pn - load power of node n of distribution network, kW 
Pnmax - maximum power allowed for node n of distribution 
network, kW. 
For the technical constraints, Eq. (22) shows that when the 

charging facilities are configured, the limitation of the occupied 
area should be taken into account. The limitation of the occupied 
area is converted into the maximum number of charging 
facilities that can be installed in the station. Eq. (23) shows that 
in order to satisfy the charging reliability, the distance from the 
charging demand point to the fast-charging station needs to be 
met. Eq. (24) shows that each charging station can only access 
to one distribution network node. Eq. (25) and Eq. (26) show 
that the constraints of the distribution network include load 
constraints and voltage constraints.  

Each cost is calculated as follows: 

1) Equipment and installation cost of charging station 

               (27) 

where  

r0 - discount rate, %,  
γ - operating life of the charging station, year,  

NSc - number of charging facilities at the charging station c,  
p1 - unit price of the charging facility, ¥,  

NTc - number of transformers in the charging station c,  
p2 - unit price of the transformer, ¥,  

wc - construction cost of charging station c, ¥.  
2). Construction cost of power distribution line  

                   (28) 

where  
αcn - equipment and installation cost of power distribution 
line per kilometer, ¥/km,  
Lc,n - length of the power distribution line connecting 
charging station c to node n of the distribution network, km.  
3). Operation and maintenance cost of charging station 
The calculation of the annual operation and maintenance 

cost is given as follows: 

                        (29) 

where 

Ƞb - assuming scaling factor, %.  

4). Travel cost to charging station is given as below: 

                   (30) 

where  

gt - electricity price of charging, ¥/kWh,  
nc,i - number of charging times of terminus i of charging station 
c.  
5). Power loss cost 
After the charging station is connected to the distribution 

network, the active power loss of the distribution network will 
increase. The increased annual power loss cost is shown as 
follows:  

                    (31) 

where  
gp - average tariff including tax,  
Ploss1 - active power loss of distribution network before fast-
charging station access, kW 
Ploss2 - active power loss of distribution network after fast-
charging station access, kW. 

4. Results and discussion 
A numerical study to demonstrate the effectiveness of the 

proposed model is given. The numerical study is based on a real 
bus transit system in urban area Yangjiang City, which is a 
coastal city in South China.  

4.1 Spatio-temporal distribution of buses 

A bus transit system with 26 bus routes is utilized in this 
numerical study. The routes of the bus transit system cover 
510.8 km of road segments in urban and suburb areas of 
Yangjiang City. The 26 bus routes serve 388 bus stops, where 
34 terminuses are included. In this paper, only the urban area of 
the city is considered, where the geographical distribution of the 
terminuses is shown in Fig. 2. The simulation parameters 
utilized for bus dispatching schedule is listed in Table 2.  

For simplicity, it is assumed that the e-buses used for the 26 
bus routes are with the same model. In the future, the whole 
subnetwork in Fig. 2 will be served by the Yutong E6  e-bus with 
an on-board battery capacity of 85.85 kWh, and the charging 
power is 120 kW. The proposed optimization model can help 
Yangjiang city to determine the locations and number of fast-
charging stations, the numbers of charging spots within fast-
charging stations, and the cost of the electrified bus network.  
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Fig.2. Schematic diagram of the planning area 

Table 2 Bus dispatching schedule 

Station  Route Number 
 of buses  

First 
bus 

Last 
bus 

Time 
headway 

(min) 

Route 
length 
(km) 

g1 2 7 7:00 20:00 20 20 

g2 

2 7 7:00 20:00 20 20 
3 15 6:10 21:15 15 27 
5 3 6:35 18:35 60 23 
8 22 6:05 22:00 9 30 

11 2 7:15 19:00 180 29 
12 9 6:05 21:00 13 25 
14 3 7:30 22:30 40 12 

g3 7 2 8:00 16:30 180 22 
4 7 7:00 20:00 30 23.5 

g4 6 2  6:55 17:35 140 21 
g5 9 1  8:30 17:30 390 30 
g6 10 1 7:30 17:00 120 8.3 

g7 25 1  7:30 17:30 120 7 
26 1 7:30 17:30 120 3 

g8 1 5 7:00 20:00 40 21 
g9 4 7 7:00 20:00 30 23.5 

g10 6 2 6:55 17:35 140 21 
g11 7 2 8:00 16:30 180 22 
g12 10 1 7:30 17:00 120 8.3 

g13 15 2 9:40 19:30 80 15 
20 1 7:00 17:00 480 26 

g14 16 1 9:00 15:30 180 21 
g15 18 1 10:20 13:50 120 10 
g16 26 1 7:30 17:30 120 3 

*Note: One bus route has two terminuses. Some terminuses are far away from 
the planned area, which is not included in the Table. 

4.2 Optimized deployment of e-bus fast-charging stations 

The AP clustering algorithm is used to obtain the charging 
demand location of each terminus and the number of fast-
charging stations needed to be built for the bus network. Based 
on the model proposed in Section 3, the optimal solution is 
obtained of e-bus fast-charging stations by the BPSO algorithm. 
As a result, the planning scheme obtained by the proposed 
optimization model is 4 fast-charging stations to serve 16 bus 
terminuses and 26 bus routes. The detailed charging station 
planning scheme is shown in Table 3. The optimal cost of the 
model is reported in Table 4. The location and service of the 
fast-charging stations is shown in Fig. 3, where the selected bus 

 
1 Chinese RMB ￥1 ≈USD $0.1501 

terminus is marked blue. The variation of the SOC of e-buses 
in the daytime operation is shown in Fig. 4. Due to the large 
number of e-buses involved in the study, only the bus route 8 is 
taken as an example, and the rest of the e-buses are similar. 

Table 3 Planning scheme of fast-charging stations 

Terminuses used 
for charging 

stations 

Number of 
fast-charging 

spots 

Served  
e-buses 

Number of 
charging 

times 

Charging 
demand 
(kWh) 

g1 2 11 18 767 
g2 9 72 171 7554 
g9 3 18 29 1226 

g12 1 5 5 183 

Table 4 Cost of fast-charging stations 

Result Value (¥1 ´ 106) 
Equipment and installation cost 0.442 
Distribution line construction cost 0.096 
Operation and maintenance cost 0.061 
Total travel cost 0.093 
Total power loss cost 0.114 

 
Fig. 3. Deployment of fast-charging stations 

 

Fig. 4. Changes in SOC of bus route 8 



4.3 Comparison of different optimization planning methods 

To present the economic benefits of the proposed 
optimization model, a comparison of placing fast-charging 
stations at selected terminuses is conducted as shown in Fig. 5a. 
Conventional planning scheme is to build charging stations in 
each bus terminus. Although the travel cost on the way to 
charging station should not be considered in conventional 
planning scheme, other costs might much higher and the 
equipment will be redundant because fast-charging stations are 
built in each bus terminus. For AP clustering only, the obtained 
location of fast-charging stations is the closest to other bus 
terminuses. But the difference in the number of routes and e-
buses operated by different terminuses is ignored, resulting in a 
larger total travel cost. It can be seen that the deployment of 
charging stations cannot be determined only by the distance 

between bus terminuses. The calculated costs of GA algorithm 
and BPSO algorithm are slightly higher than that of proposed 
method in this paper. The convergence of these three algorithms 
is compared, as shown in Fig. 5b. The proposed method has a 
faster rate of convergence and a reduced total cost than BPSO 
algorithm.  The reason is that the terminuses have been classified 
before optimization. After the classification, the number of 
terminuses within each class decreases. When the BPSO 
algorithm is used for each class, its optimization range becomes 
smaller. BPSO needs to be calculated several times for several 
classes, but the calculation speed is shorter than that of non-
clustering. Therefore, for the electrification of public transport 
network in Yangjiang city, the fast-charging stations 
deployment based on the proposed optimal model is more 
economical. 

 
         a) Cost comparison of different optimization planning methods                       b) Convergence comparison of different optimization planning methods 

Fig. 5. Cost and convergence comparison of different optimization planning methods 

4.4 Comparison under different time headways 

Compared to the transit operation in big cities, the time 
headway for most bus routes in Yangjiang City is relatively long. 
The further impact of different time headway on the result of the 
model is examined and analyzed. According to the bus 
operation schedule in Yangjiang City, the time headway is 
modified for bus routes with other model parameters fixed, and 
the results are shown in Figs. 6 and 7. The minimum fleet size 
of each bus route is given by Eq. (10). Three groups of time 
headways, namely, 20 minutes (Scenario 1), 15 minutes 
(Scenario 2) and 10 minutes (Scenario 3) are considered. It can 
be seen that with the decrease of time headway, the need for fast-
charging spots, charging times of e-buses, the number of e-buses 
in service and charging load are all increased in the public 
transport network. The result is logical as the reduction in the 
time headway leads to an increase in the number of journeys and 
charging times.  

 
 

Fig. 6. Cost comparison under different time headways 

 



 

 
          a) Number of spots and charging times                              b) Number of service e-buses and charging demand (MWh) 

Fig. 7. Deployment comparison under different time headways 

4.5 Comparison under different battery size and charging 
power 

In addition, we also studied the impact of different types of 
e-buses on the proposed model. For simplicity, only the 
difference of battery capacity is considered. The e-bus models 
used are Yutong bus E6 (Scenario 1), E8 (Scenario 2) and E10 
(Scenario 3), with battery parameter values illustrated in Table 
5 [37]. Fig. 8 shows the comparison of charging details for 
different capacities of buses. It is assumed that when e-buses 
have enough power, they can operate longer and perform more 
tasks, and they can even meet the needs of a day's circular 
operation for a bus route with no need to be recharged. However, 
as seen from Fig. 8, the number of charging times decrease when 
the battery capacity of the buses is increased, while the number 
of fast-charging spots, service e-buses and charging demands 
increase. This is due to the increase in the battery capacity would 
lead to the required charging time increases. When a battery of 
e-bus is not fully charged, new e-buses are coming, resulting in 
an increase in the number of e-buses to be charged per unit of 

time. As a result, the number of fast-charging facilities, 
operating e-buses and charging demand are also increased. 
Furthermore, in order to investigate the influence of charging 
power, three groups of fast-charging facilities were set for 
comparison, namely 120 kW (Scenario 1), 150 kW (Scenario 2) 
and 180 kW (Scenario 3) of Star Charge brand [38], as shown in 
Fig. 9. The minimum fleet size for each bus route should satisfy 
Eq. (10). Fig. 9 shows that with the increase of charging power, 
there is a reduction in the number of fast-charging spots, 
charging times and operating e-buses. This is because as the 
charging power increases, less charging time is required for e-
buses and more power is obtained per unit of time.  

 
Table 5 Values of the battery sizes 

E-bus type Battery capacity (kWh) 
E6 85.85 
E8 122.93 

E10 202.93 
 

 

 
               a) Number of spots and charging times                                         b) Number of service e-buses and charging demand (MWh) 

Fig. 8. Deployment comparison under different battery size 



 

 
                   a) Number of spots and charging times                                                b) Number of service e-buses and charging demand (kWh) 

Fig. 9. Deployment comparison under different charging power 

4.6 Policy and business model implications 

The main stakeholders in electric bus public transportation 
include the central and local governments, electric bus 
manufacturers, users/bus companies, and providers of charging 
infrastructure. A number of issues in the electric bus industry 
has to be considered, such as policy implementation, technology 
innovation, business model and the whole supply chain.  

Recently, new policies focused more on the construction, 
operation, and business models of charging facilities. For 
example, in China, there is the incentive policies on EV charging 
facility construction during the 13th five-year-plan [39]. In 
addition, new energy generation and energy storage 
technologies were considered to be an important part of the EV 
industry’s strategy in 2016 [40]. A number of policies continue 
to support the construction and operation of charging facilities, 
especially those intended for public transportation systems.  

With the integration of mobile energy storage into the power 
system and the build-up of charging infrastructure, there will be 
shifts in the value chain, the revenue model, and the value 
proposition. It is foreseen that a holistic approach will be used 
to explain how value is created [41].  

The bus remains the most suitable solution from an 
economic, environmental, and social point of view regarding the 
balanced and sustainable urban development [42]. Urban public 
transportation is a multicriteria decision-making (MCDM) 
problem. For example, Gao et al. studied battery capacity and 
recharging [43] and Lai et al. proposed a financial model for 
lithium-ion storage [44]. A business model should be developed 
to identify appropriate specific evaluation criteria for electric 
buses transportation under clean technology and to select the 
transportation structures and elements such as charging station 
and batteries to maximize the contribution to sustainability and 
profit. Many methods could be considered such as 
computational intelligent methods for example deep neural 
network [45], genetic algorithm and particle swarm optimization. 
In summary, the present proposed method and studied system 
could be used as an example to further carry out sensitivity 
analysis and identify more parameters to develop business 
model and energy policy.  

5. Conclusions 
In this paper, the problem of deploying fast-charging stations 

at established bus terminus for e-buses is studied to ensure that 
buses on each bus route satisfies the energy demand. The 
purpose of this work is to identify optimal fast-charging stations 
at selected bus terminus to minimize the total cost of the transit 
system for deploying fast-charging stations. This paper proposes 
a planning model for locating and sizing the e-bus fast-charging 
stations, based on the consideration of both the bus operation 
network and distribution network. The Affinity Propagation 
clustering algorithm is used to cluster the bus terminuses, and 
then the Binary Particle Swarm Optimization algorithm is used 
to find the optimal solution of the deployed fast-charging station. 
The case study based on a real-world bus network is provided to 
demonstrate the effectiveness of the model. The objective is to 
reduce equipment redundancy in the station and excessive costs 
caused by excess charging stations. The decrease of the time 
headway will lead to the increase of fleet size and charging 
demand, thus increasing the total cost of fast-charging stations. 

In future, the optimization model will be extended to 
different bus operation networks by customizing model data to 
assist the deployment of fast-charging stations in the 
electrification of bus networks in practice. 
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