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Abstract—Existing face anti-spoofing models using deep learn-
ing for multimodality data suffer from low generalization in
the case of using variety of presentation attacks, such as 2-D
printing and high-precision 3-D face masks. One of the main
reasons is that the nonlinearity of multispectral information
used to preserve the intrinsic attributes between a real and a
fake face is not well extracted. To address this issue, we pro-
pose a multimodility data-based two-stage cascade framework
for face anti-spoofing. The proposed framework has two advan-
tages. First, we design a two-stage cascade architecture that can
selectively fuse low-level and high-level features from different
modalities to improve feature representation. Second, we use
multimodality data to construct a distance-free spectral on RGB
and infrared to augment the nonlinearity of data. The presented
data fusion strategy is different from popular fusion approaches,
since it can strengthen discrimination ability of network mod-
els on physical attribute features than identity structure features
under certain constraints. In addition, a multiscale patch-based
weighted fine-tuning strategy is designed to learn each specific
local face region. The experimental results show that the proposed
framework achieves better performance than other state-of-the-
art methods on both benchmark data sets and self-established
data sets, especially on multimaterial masks spoofing.

Index Terms—Convolutional neural network (CNN), deep
learning, face anti-spoofing, multimodality fusion.
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I. INTRODUCTION

UMAN face is one of the most salient and stable bio-

metrics, it often relies on various kinds of interactive
Al systems, and has been widely used in many crowd gather-
ing and sensitive areas [1]—[3], such as attendance registration,
security surveillance, etc. In spite of successful applications in
many types of face authentication scenarios, most of existing
face recognition systems are easily spoofed by presentation
attacks (PAs) ranging from a 2-D printing attack or a vivid
3-D-mask attack [4], [5]. For example, with the help of sili-
cone or latex masks, users easily portray another identity or
obfuscate their identity for entertainment purposes. However,
such masks have been treated as criminal tools to deceive
automatic face recognition systems. Therefore, it is important
to distinguish a real face and a fake face for face recogni-
tion and authentications systems. In general, a robust face
recognition system can cope with variants of face states, such
as face partial occlusion, the change of face expression, etc.
On the contrary, variant face presentations should be strictly
restricted on face anti-spoofing tasks, and an entire frontal face
presentation is required. More importantly, an advanced face
anti-spoofing model needs to show strong discriminability on
intradata set with prior defined face knowledge, and performs
well on interdata set with unknown faces.

Most popular face anti-spoofing methods extract general-
ized likeness feature under binary supervision. In practice,
a well discriminative feature map is composed of structure
clues, texture clues, depth clues, material clues, etc. There are
many structure and texture distinctions between original and
recaptured images. Here, we present two obvious distinctions.
The first is light reflection. Typically, fake face materials are
much flat and smooth than real faces, easily cause specular
reflection, especially under active infrared (IR) light spectral.
Second, Moiré Pattern-based image is formed due to super-
imposing of the gratings and can be extracted by traditional
feature descriptors, such as local binary pattern (LBP), his-
tograms of oriented gradients (HOG), difference of Gaussian
(DOG), speeded up robust features (SURF), etc. In addition,
face anti-spoofing models are also improved by considering
the influence from image blur, distortion and noise, etc.

Under the help of depth sensors, such as time-of-flight,
structure light, stereo cameras, etc., point clouds of objects
can be directly constructed to prevent 2-D-based fake face
attacks, such as flatten screens, papers, etc. Most existing stud-
ies resort to a face detector to obtain face landmarks, and
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then reconstruct 3-D face models based on the stereo vision.
Motivated by these ideas, many auxiliary depth supervised
face anti-spoofing models have been developed. Intuitively,
the face-like depth can be regressed from images of real faces,
whereas the none face depth is regressed from images of fake
faces, such as printing style, replaying style, etc.

By providing richer spectral information, spectral imaging
is far beyond human visual perception ability in the field of
object detection and recognition. The researchers manifest that
compared to RGB or monochrome cameras, the utilization of
multispectral imaging can enhance spatial heterogeneity that is
not easily captured by the human visual system, and thus leads
to better face detection and recognition. Clearly, the spec-
tral signature between real and fake faces provides additional
spectral-spatial information that is helpful for improving face
anti-spoofing.

Although some significant models are proposed and used for
face anti-spoofing as aforementioned, most of them are trained
on 2-D data sets. Therefore, these models are still vulnerable
in 3-D reality environments. To address this issue, we propose
a robust face anti-spoofing model that focuses on defending
against both 2-D and 3-D face PAs. The contributions of our
work are given as follows.

1) We design a two-stage cascade framework that takes
advantage of depth, color, and IR data streams to hierar-
chically capture discriminative details on 3-D structure
(i.e., depth) clues and intrinsic face (i.e., RGB and IR)
properties.

2) We construct a distance-free image from multimodality
data and develop an effective data fusion strategy by
mixing the distance-free image, RGB, and IR, to enlarge
the feature difference between real and fake faces.

3) We establish a multiimage patterns data set (MIPD) con-
taining variant 2-D and 3-D PAs; hence can be used
as a benchmark data set for extensively verifying the
generalization ability of other face anti-spoofing models.

II. RELATED WORK

Popular face anti-spoofing models are designed in accordance
with several face spoofing levels, which can be mainly cate-
gorized into four groups: 1) monocular color images; 2) depth
images; 3) multispectral images; and 4) multimodality images.

A. Face Anti-Spoofing

Monocular Color Images: As the most face spoofing PAs
depend on image recapturing or portable electronic devices
presentation [6], many face anti-spoofing algorithms pay
much attention on image quality, image texture, etc., [7]-[9].
Yang et al. [10] introduced a component dependent descrip-
tor by partitioning a face to six parts and each part was
represented by using the bag of words model. However, the
framework requires a strong face detection module to sus-
tain its performance. Actually, it is a challenging task to
guide against spoofs by only considering static images in 2-
D space. Therefore, video-based face anti-spoofing models
are gradually presented by taking the advantage of tempo-
ral information [11], [12]. Early studies allow the user to
interact in front of devices, such as blinking eyes, nodding

head, etc., but the interactions reduce the quality of experi-
ences. Siddiqui et al. [13] used temporal evidence aggregation
over face region and scene of video images, which performs
well on 2-D face attack data sets due to the synthesized multi-
features, but fails to judge the 3-D realistic masks. In addition,
long short-term memory (LSTM) [14] can recurrently learn
features to obtain context information, but it suffers from the
heavy computational burden. To obtain intrinsic liveness cues,
researchers propose a remote photo plethysmography (rPPG)
technique [15] to detect the heartbeat signal from face appear-
ance. This technique can detect the blood flow based on the
absorption and reflection of light passing through human skin.
Hence, fake faces can be recognized by identifying such subtle
blood color variations. However, rPPG shows weak robust-
ness in real scenarios because of environmental noise, such as
camera motion, dim light or image low resolution, etc.

Depth Images: The above algorithms, whether based on
static images or clips of videos, are vulnerable to 3-D fake
attacks [4]. For this problem, a 3-D face reconstruction is
useful by dramatically rejecting a bunch of fake faces from
electronic devices or flatten papers. However, the algorithms of
3-D face reconstruction are seldom studied since that both the
intrinsic and extrinsic parameters of visible light cameras are
hard to be acquired precisely. In view of this, Wang et al. [16]
proposed a sparse 3-D structure recovered method by captur-
ing at least two face images from different viewpoints. This
method outperforms other texture-based methods, especially
on fake faces from printed photos. Unfortunately, it is not
very convincing that their fake samples are all warped papers,
rather than 3-D face masks. Recently, researchers find that
the depth estimation technology is beneficial for modeling
face anti-spoofing by utilizing face depth map as a supervised
signal. Compared to the binary cross-entropy loss that easily
learns the arbitrary patterns, depth supervision can learn bet-
ter spoofing patterns. For example, Yu et al. [17] considered
pseudoface depth maps as the auxiliary supervised signal, and
proposed a novel operation called central difference convolu-
tion (CDC) for face anti-spoofing, which is able to capture
intrinsic detailed patterns via aggregating both intensity and
gradient information.

Multispectral Images: With the demands of upgrading the
security level in practical applications, the multispectral tech-
nique is used to evaluate the essential attribute of fake and
real faces. Compared to general RGB cameras that only
provide three channels from visible wavelength bands, mul-
tispectral imagers provide more broadly wavelength bands,
which can greatly resist on the interference of illumina-
tion and reflect more intrinsic object attributes [18]-[19].
Typically, reflectance images of real faces show low intensity
and uniform distribution while reflectance images of 2-D/3-D
spoofing faces show high intensity and nonuniform distribu-
tion [20], [21]. In the past few years, few studies have been
devoted to multispectral-based face anti-spoofing due to the
lack of portable devices. In one of most representative stud-
ies, Zhang et al. [22] conducted a complete experiment with
wavelengths span from visible to near IR on face anti-spoofing.
In their experiments, the albedo curve of different materials
and skin colors is presented and some clear comparisons are
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shown to verify the effectiveness of the multispectral technique
for face anti-spoofing.

Multimodality Images: Multimodality methods provide
more robust performance than the above single modal-
ity techniques since they utilize complementary information
among different modality data [23]. Based on the assump-
tion, Zhang et al. [25] released a large scale of multimodality
data set (CASIA-SURF) for face anti-spoofing, which con-
sists of 1000 subjects with 21 000 videos, and each sample
contains three modality data (i.e., RGB, depth, and IR). With
CASIA-SURF data set, Parkin and Grinchuk [26] proposed
a multilevel feature aggregation network that achieves feature
fusion of different modality data at both coarse and fine lev-
els. Also, Shen et al. [27] proposed a patch-based multistream
fusion convolutional neural network (CNN) architecture to
extract local-spoof discriminative information. More recently,
Liu et al. [24] released the CASIA-SURF cross-ethnicity face
anti-spoofing (CeFA) data set, covering 3 ethnicities, 3 modal-
ities, 1607 subjects, and 2-D plus 3-D attacks. They also
proposed a novel static-dynamic fusion mechanism as a strong
baseline to learn complementary information from multiple
modalities. To further differentiate feature extraction among
different modality data, Yang et al. [28] designed a selective
modal pipeline of the fusion network for multimodal face anti-
spoofing. However, the aforementioned works are evaluated on
a small face anti-spoofing data set with limited subjects and
samples, which easily leads to the problem of over-fitting.

B. Deep Learning for Face Anti-Spoofing

In Section II-A, monocular color-based methods are
overemphasizing on optical imaging difference between real
and fake faces. However, with the rapid development of print-
ing techniques, false positive detections of such methods are
gradually increasing and make them much more unreliabe.

For deep learning, a large number of CNNs achieve remark-
able success in various tasks of object detection and recogni-
tion, [17], [29]-[32]. As for face anti-spoofing, it can be treated
as a special case of image classification tasks. It aims to dis-
tinguish between real and fake faces by outputting a binary
prediction [33], [34]. Rehman et al. [35] introduced a con-
tinuous data-randomization mechanism in the form of small
minibatches to train several benchmark CNNs, which avoid
overfitting on data sets with limited fake samples. However,
it is insufficient to only take feature maps from the last layer
of benchmark CNNs (VGG, ResNet, etc.) as the output on
face anti-spoofing tasks, multilevel feature maps containing
both texture and reflection clues from hierarchical layers are
expected. Alotaibi and Mahmood [36] analyzed 2-D images
using nonlinear diffusion that is helpful for distinguishing
boundaries between real and fake faces. After that, these dif-
fused images are taken as the input of a deep CNN to extract
useful high-level features. However, diffused features are
greatly influenced by original image quality, which reduces the
final face anti-spoofing performance. Feng et al. [37] proposed
a hierarchical neural network for face anti-spoofing by com-
bining image quality cues and motion cues. Although the
network achieves better performance than any of static image

cues, the image sequence is required and the computational
cost is expensive. Following the similar idea, a method using
the combination of two-stream CNN is proposed to extract
local features and holistic depth maps from face images [38].
These methods are clearly superior to conventional feature
descriptors.

III. METHODOLOGY
A. System Architecture

In this section, we propose an end-to-end strategy to extract
the fusion information from aforementioned data sources by
designing a two-stage cascade network. Specifically, two con-
volutional networks with similar architecture are designed and
a cascade framework for face anti-spoofing is presented. For
the first stage of the framework, the multipreprocessed depth
faces as the input of D-Net are employed to discriminate
significant spoofing attacks, such as printed photos, replayed
videos, etc. Before the training, depth faces are preprocessed
by three ways, including depth normalization, depth face
scale embedding, and normal orientation embedding. For our
design, if the predication score from this model is greater than
0.5, the model output is “fake face.” Otherwise, the second
stage, namely, M-Net is implemented. In the M-Net stage, the
fusion multimodality formation of RGB and IR, i.e., stack,
summation, and difference, is fed into M-Net for further resist-
ing more 3-D mask attacks. The pipeline of our proposed
framework is shown in Fig. 1.

B. Depth-Image Preprocessing and Multimodality Fusion

Before implementing the face anti-spoofing model, the com-
pact face area of IR, depth, and RGB should be synchronously
extracted by utilizing the face-detection module [39]. For pop-
ular face anti-spoofing systems, on the one hand, frontal face
images (within 206° of pitch, yaw, and roll) are required
because they can provide richer depth information than side
faces. On the other hand, the subsequent face recognition mod-
ule also needs frontal face images for feature representation.
Based on this consideration, here we remove exaggerated side
faces by rejecting the large angle between face norm and
rolling axis of sensors.

1) Depth Image Processing (Depth Face Normalization):
Due to the illumination reflection and self-occlusion, a raw
depth face often includes some noisy holes leading to the miss
of part depth information. To address this issue, the depth com-
pletion is first used to recover an entire face depth information
to achieve a smooth and continuous face depth surface; second,
the depth connected component [40] is further used to suppress
noise from background. Specifically, the largest depth connec-
tion area is extracted as the face profile region and the value
of background pixels is set to a constant 255. After that, the
current preprocessed raw depth face, denoted as I°, is finely
normalized by globally computing the maximum and mini-
mum depth values within face region, denoted by 4'** and
dg‘in, respectively. The normalized depth face D” is defined as

I° — Kmxn min
D' = ﬂoor( xdy 255) (1

max __ Jmin
do do
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Fig. 1.

the network input.

where K™*" is a matrix and the values of all elements in K™*"
are 1. Floor is the function that takes as input a real number
and gives as output the greatest integer less than or equal to
that real number.

Depth Face Scale Embedding: Generally, human face sizes
are maintained at a certain level and are proportional to
camera distances, which can roughly reject abnormal faces
at oversized scales. Instead of setting a proper threshold to
exclude faces with abnormal scales, the face size information
is embedded pixelwise into normalized face D*

X 255)

where I° represents the scale matrix of a depth face and I’ =
I°/s. The face area size s = w x h can be obtained in terms
of face bounding box (py, py, w, h). Similarly, d;ni“ and d"™*
represent the minimum and maximum value of I¥, respectively.

Normal Orientation Embedding: Here, we calculate the nor-
mal vector for each pixel in the raw depth face I°, and it
is denoted by V"™, As aforementioned, five key face land-
marks provided by the face detector, are taken as initial points
to fit a face plane t. Hence, the face planner normal vector
viorm s orthogonal to the plane 7. After that, a matrix I" can
be formed by computing arc-cosine between V2°™ and each
yhotm - Consequently, the raw depth face of I° is replaced by
the normalized face D"

X 255)

T — K" « drmin
dinax _ d;nin
where d™" and d™* represent the minimum and maximum
values of I", respectively. According to (3), the orientation
information on each face is preserved and can be further
extracted in the subsequent CNN modules.

2) Multispectral Image Processing (Reflectance Analysis):
From the perspective of spectroscopy, a real face and a
3-D face mask can be distinguished by computing their
spectral reflectance due to different materials. According to

s mxn min
I'-K x dy

max __ Jmin
ds ds

D’ = ﬁoor( 2)

D = ﬂoor( 3)

Overall cascade framework for face anti-spoofing, where the D-Net takes depth images as the network input and the M-Net takes fused images as

the Lambertian reflectance model [41], the reflectance light
intensity /(p) of pixel p can be written as

I(p) = s x p x cos(B) “4)

where s is the external light intensity, p is the object albedo at
pixel p related to physical properties of the object material at
each wavelength w, and 6 is the angle between pixel’s normal
and receiver’s viewpoint.

According to the Beer—Lambert law, the attenuation of light
through the air is s = soe~ ¢, where so is the light source
intensity, c¢ is the attenuation coefficient in the air, and d is
the distance traveled. For simplicity, we denote s = spe ¢ as
a function D(d), which is a monotone decreasing function of
distance d, and by jointing (4), we have

I(p) = D(d) x p x cos(9). 5)

From (5), it can be found that /(p) is linear with p under the
same cos(f) and external light intensity. This makes it possible
to tackle the face anti-spoofing problem because the indistin-
guishable fake faces exhibit quite different albedo properties
under the condition of multispectrum. If we define a real face
f1 and a fake face f>, respectively, pos; # pp, under most of the
wavelengths due to different materials. Specifically, giving a
wavelength w1, from (5), we have

Iface,cu1 — D(dl)pface,wl COS(Q)
Ispoof,w1 — D(dz),OSpOOf’wl cos(6).

(6)
(N
According to (6) and (7), fi and f> are undistinguishable
since there is always a proper distance pair d; and d» (d; is
unnecessarily equivalent to dy) such that
pface,wl _ D(dz)
pspoof,a)] - D(d])
To solve the problem imposed by distance, a multispec-

tral solution is considered. If another proper wavelength w; is
selected, then we have

[face,wl — [spoof‘wl N

®)

face,w)

D(d>)
D(dy)’

0
pspoof, w)

]face,wz #Ispoof,wz N

&)
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From above equations, we clearly find that if both @ and
wy are well selected, and

spoof,w; spoof,w;

0

face,w
p 2

I

face,w
p 1

(10)

then real and fake faces can be easily distinguished without
any distance requirement.

Nonlinear Data Fusion: From the above section, the selec-
tion of proper wavelengths is crucial for improving the
classification of real-fake faces when there is no limitation on
distance between faces and sensors. However, it is difficult to
select suitable values of w; and w» for different tasks. Thanks
to the registered image between RGB and IR, we consider to
establish a distance free image

o _ 10

abd = Dy 1D

where I“(p) is the reflectance light intensity at pixel p in (5).

As mentioned above, D(p) is a monotone decreasing func-
tace w)

tion of distance d. Furthermore, by combining / and
I;g(;)f 2 with If2ce@1 and [P°oh@1 | respectively, the nonlinear-
ity between two spectral data is enhanced as follows:
]sfﬁ(;}?'(w' ,w2) [face.or | Iface @
Issgrc;loﬂ(whwz) = Jspoot.on N Ispoof wy
ptace wlD(d]) + pface,wz
— - (12)
pspoof,wlD(dz) + pspoot,w2
Ig?lffe’(wl’wZ) Jface,or _ IZZC;MZ
spoof, (wy,w;) £ spoof,w;
Lgigy POt — Ly
face,a)lD di) — face,w)
1
Iy d)—p (13)

spoof,w;

PPt D(dy) — p

where the factors of cos(0) and sg are removed as mentioned in
(8). According to (12) and (13) and the fundamental assump-
tion pface,wl + pspoof,a)l and pface,wz £ pspoof,wQ’ we get the
following inequality without distance constraint:

face,wy

pface,wlD(dl) + pface,w2
pspoof,wlD(dZ) + pspoof,wz

pe1D(dr) — p
pspoof,wlD(d2) _

pspoof, wy”

(14)

In general, we designed three image fusion ways to strength
the albedo nonlinearity between real and fake faces.

Data Stack: A four channel multispectral data structure is
established by parallelly stacking the albedo RGB image I‘lbedB
and albedo IR image Iabd

ek = [ Zbdv Iabd’ Iabd’ abd] 15)

RGB
where IG5 = (1,0, 15 Toy ]
Data Summation: The aligned images of RGB and IR are
summed together, i.e.,
P = (1 T 1 T 1+ 1 (16)
then I*"™ is normalized and the value of each pixel ranges
from O to 255.

Data Difference:
subtracted

dift — [le ir b_IZde]‘

However, since the subtraction easily leads to the reduction of
image intensity contrast, we use gamma correction to enhance
the reduction

Aligned images of RGB and IR are

| CI U (17)

I;d/lff —f (Idltf) (18)
where the parameter y is set to 1/2.2 empirically.

3) Data Augmentation: After observing the difference
between real and fake faces, we can intuitively conclude that
details of 3-D fake faces, such as the jumping edge and
the texture structure, are finer and smoother than real faces.
To effectively preserve such local consistency and enhance
M-Net perception ability on saliency spoofing features, we
use the Fmix method [42] to achieve data augmentation.
Specifically, we implement inverse Discrete Fourier transform-
ing (IDFT) on a low pass filter f[Z] to obtain a grayscale image
7° = R(F! (f[Z)])), where Z denotes a complex random vari-
able with density N(0, I,.5), Z € C"*". Afterward, we can
get the mask image m* by setting the top Ty = A x w x h
elements of Z¢

A(ZG) _ { 1, if ZG e top(7y, Z°)
ij) =

1
0, 0therw1se (19)

where the parameter X is set to 0.8, empirically. According to

the above mask image m*, e.g., the fusion of I**™ and I‘}i,iff is
defined as
Igllllsge —m! oI 4 (1 _ mA) o I;d/iff_ (20)

According to (20), the data nonlinearity is further enhanced
by fusing diverse image regions between I4T and I%™.
Therefore, the proposed data augmentation strategy is useful
for improving feature representation of our model.

C. Design of Network

To obtain better feature representation, we design a new
network architecture that consists of three branches, where
ResNeXt [43] is considered as the backbone and the squeeze-
and-excitation (SE) fusion module [44] is employed. Fig. 2
shows the network architecture. For the M-Net, image patches
are processed by the first three residual convolutional blocks,
and corresponding results are named as Resl, Res2, and Res3,
respectively. Then three branches of multichannel features are
aggregated and imported to the SE block for achieving fea-
ture fusion. Meanwhile, features of different modalities are
outputted by the SE block from shallow to deep. This strat-
egy makes our model better of finding intermodal correlations
at both shallow and deep layers. Finally, all features from SE
models are repeatedly concatenated, and then the concatenated
feature maps are fed into a block composed of a global aver-
age pooling layer (GAP) and two fully connected layers. In
addition, the structure of D-Net is similar to M-Net, where the
difference is the inputting image size since the former requires
the image patches while the latter requires the original depth
images.
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| i:‘l‘i’:l H FC HReLUH FC H Sigmoid |
. . . . | HxwxC pootns HxWxC |
D. Multiscale Patch and Weighted Fine-Tuning | |
. . | X Sclae X |
n [45], patches with fixed size are randomly extracted [ — . —— —— |
from cropped face areas, which can strengthen the ability
Fig. 3.  Feature recalibration on deep fusion branch with SE module.

of CNNs for perceiving spoof clues on the texture attribute
other than the whole facial structure attribute. However, it is
time consuming to traverse all patches for network inference.
To solve the problem, we propose a new fine-tuning strategy
named weighted fine-tuning that can improve the discrimina-
tion ability of our network on specific patches. The weighted
fine-tuning is illustrated in Algorithm 1. Specifically, we use
an AdaBoost-like algorithm [46] to assign large weights to
good prediction patches and small weights to poor prediction
patches. Afterward, we pick out the best classifier that out-
puts the highest anti-spoofing response on that of selected
patches in each training epoch. Then, we update all loss func-
tion weights based on the best classifier for next epoch training
and update the classifier weights as well. The final prediction
depends on the ensemble CNN weighted classifiers, and the
input of each weighted classifier is the specific patch with
predefined location. The results of the fine-tuning strategy will
be explained in detail in our experiments.

Squeeze: A global average pooling is taken to obtain a channelwise descriptor.
Excitation: Fully connected (FC) layers, a ReLU, and another FC layer are
taken for dimension reduction and increase. The final output is obtained by
rescaling with the sigmoid activations.

IV. EXPERIMENTS

In this section, we conducted experiments to demonstrate
the effectiveness of the proposed framework. To assess the
generalization ability of each independent network, we built
an MIPD. In the end, the proposed cascade network and com-
parative models are implemented and tested on the overall
MIPD.

A. Data Sets and Metrics

For MIPD, each face includes three modalities, i.e., the
RGB, depth, and IR. Figs. 4 and 5 show some samples. On
the one hand, we simultaneously captured the calibrated depth,
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Depth IR

Real

Flatted Paper

Curved Paper

Fig. 4. Fake samples of MIP-2-D data set. The top row shows the real sample,
and the middle and bottom rows show fake samples captured by flatted and
curved papers.

Silicone Fake

IR

RGB

Fig. 5. Fake samples of MIP-3-D data set. The top row shows IR fake
samples; and the bottom row shows RGB fake samples.

TABLE I
STATISTICAL INFORMATION OF THE MIP-2-D DATA SET

Curved Flatted Simulated Total
Train Test Train Test Train Test Train Test
1290 320 1289 684 3901 1172 6480 2176

455 283 1134 768 3612 2227 5201 3278

Positive
Negative

color, and IR modality streams. On the other hand, we col-
lected more than six types of fake face samples that contain
basic 2-D and super-realistic 3-D fake styles. The statistics
of two subdata sets (MIP-2-D and MIP-3-D) are shown in
Tables 1 and II, respectively. For the 2-D fake style, those
samples are printed with three kinds of materials and are cap-
tured with flatted and curved papers. We also collected video
replaying for complementary 2-D fake style. For the 3-D fake
style, user-customized and life-size figure faces made in clay
with wax layers, silicone, or resin materials are captured and
collected as well.

The CASIA-SUREF is another largest publicly available data
set used for face anti-spoofing. It consists of 1000 subjects
with 21 000 videos and each sample contains three modalities
(i.e., RGB, depth, and IR). For simulating the human face as

Algorithm 1 Weighted Fine-Tuning
1: Initialisation:
o Choose N specific patches position, denoted by P,,
where n € (1,...,N)
o Let the cycles of epoch T equals to the number of
patches N
« Set weight for each patch position as: o}, the initial-
isation vallue of o} = ﬁ
o Let the ground truth label vector of each patch be yf{l,
where yP" € (0,1), me (1,...,M) is the sample of
each P,
2. Fort=1,...,T
3: Do network inference and select the best classifier G;
with regard to patch position P, under the minimum soft-

P P p
max cross entropy loss: ;" = —w," )" y; " log(G;), where
i=1
G, = softmax(CNN(I"", ©))
4: Update all weighted loss of each P, with regard to Gi:

Poo o1 S P
Wy = % X g X igl exp(—y; "a;G:(Py,)), where a; =
llnﬂ' Z; = Izv:a) mx Lo %exp(—y{)”aG(P )

2 lf" s &t = 1 M P i IAdACE )

5: Do back propagation with regard to all patches loss func-

N
tion based on updated weights: L?i[ | = Zl lfjl, where
n=

M

Py Py Py

Ly = -y Yy "1og(Gy)
=1

T
6: The final strong classifier: C(x) = )  «;G;
=1

TABLE 11
STATISTICAL INFORMATION OF THE MIP-3-D DATA SET

3D Mask 3D Head Total
Train Test Train Test Train Test
Positive 1289 684 3464 1767 6043 2771
Negative 1134 768 5786 3177 8375 4228

real as possible, six attack ways are presented by capturing
reproduction photos with hollow.

In order to compare different networks, we choose three
evaluation metrics: 1) the attack presentation classification
error rate (APCER) evaluates the highest error among all
samples; 2) the normal presentation classification error rate
(NPCER) evaluates error of live samples; and 3) the average
classification error rate (ACER) evaluates the mean of APCER
and NPCER. These metrics are defined as follows:

FP
APCER = — 1)
TN + FP
FN
NPCER = —— (22)
FN + TP
APCER + NPCER
ACER = + (23)

2

where TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative, respectively.
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TABLE III
COMPARISON RESULTS OF DIFFERENT FUSION SCHEMES
ON DEPTH MODALITY OF MIP-2-D

PI:SE‘:;?]S ACER(%) Accurary(%)
FaceBagNet [29] F1 1.9 0.979
FeatherNet [47] F1 2.6 0.976
F1 1.2 0.986
F1&F2 1.0 0.988
D-Net F2&F3 1.4 0.984
F1&F3 0.8 0.990
F1&F2&F3 0.5 0.994

We also pay attention to the true positive rate (TPR) at
some fixed false positive rate (FPR). This metric evaluation
approach enables to measure how many real samples pass
the anti-spoofing test while accepting no more than certain
percentage of spoofing attacks.

B. Implementation Details

We use PyTorch as the deep learning framework. For both
D-Net and M-Net, the backbone architecture is a modified ver-
sion of ResNeXt-50. We use the stochastic gradient descent
(SGD), and the weight decay and momentum are set to 0.0005
and 0.9, respectively. A cyclic cosine annealing learning rate
schedule is implemented with initial learning rate 0.1. All
models are trained on multiple NVIDIA Tesla V100 GPU
with a batch size of 256. The whole pretraining procedure
takes 200 epochs and the weighted fine-tuning procedure takes
36 epochs.

C. Intradata Set Evaluation on D-Net

In this experiment, we demonstrate the effectiveness of the
depth fusion strategy based on three discriminative features
on MPI-2-D. Specifically, three types of depth preprocessing
schemes, including the depth face normalization (F1), depth
face scale embedding (F2), and normal orientation embedding
(F3), are compared with multimodalities data fusion. The over-
all comparison results in terms of ACER and accuracy are
shown in Table III. For the basic F1 depth feature, our D-
Net model achieves the ACER of 1.2% and the accuracy of
98.6%, which slightly outperforms state-of-the-art methods,
such as FacebagNet and FeatherNet. Furthermore, after com-
bining F1, F2, and F3 features, the ACER reduces to 0.8% and
the accuracy achieves to 99.4%, indicating the best discrimi-
native power for detecting depth-based fake faces. Moreover,
feature combination schemes, such as F1 and F2, F2 and F3,
and F1 and F3, show higher performances than that of the
single feature models, which explains the effectiveness of the
proposed strategy of depth fusion features.

D. Intradata Set Evaluation on M-Net

For intradata set evaluation, M-Net is trained on MIP-3-D
and CASIA-SUREF, respectively. Comparison experiments are
shown in Table IV. We can see that under the proper illu-
mination, the RGB model shows better performance than the
IR model, since RGB data contain richer texture information.

TABLE IV
INTRADATA SET EVALUATION: INDIVIDUAL MODALITIES ON MIP-3-D

Method TPR(%) APCER(%)NPCER (%) ACER(%)
@FPR=10"2@FPR=10"3@FPR=10"*
RGB 1 99.034 97.63 0.1802 0.8130  0.4966
IR 99.18 81.59 50.70 1.0811 0.8130 0.9740
Fusion 1 99.42 98.96 0.9100  0.0963  0.0857
Aug Fusion 1 99.92 99.70 0.0903  0.0738  0.0820
TABLE V

INTRADATA SET EVALUATION: DIFFERENT APPROACHES ON MIP-3-D

Method FP EN APCER (%) NPCER (%) ACER (%)
Patch-based CNN [40] 50 36 3.584 4512 2.656
ML-LPQ [49] 15 551 37.712 1.444 19.578
LiveNet [37] 140 80 12.635 5.904 9.269
FaceBagNet [29] 12 11 1.081 0.813 0.947
Ours+ 1 1 0.090 0.073 0.082
TABLE VI
INTRADATA SET EVALUATION: DIFFERENT
APPROACHES ON CASIA-SURF
TPR(%)
Method Modal FP FN @FPR=10—2 @FPR=10—3ACER(%)
ResNet-18[27]RGB&IR 119 811 79.10 50.90 14.40
FeatherNet RGB&IR 225 0 99.03 97.56 1.700
FaceBagNet RGB&IR 166 12 98.29 85.63 1.455
Ours RGB&IR 142 4 99.53 93.58 1.114
Ours+ RGB&IR 33 5 99.86 98.67 0.296

Among three modalities, the fusion model achieves the best
performance of 0.082% (ACER), TPR=99.7% under the con-
dition of FPR=10e-4, which manifests the effectiveness of our
proposed fusion strategy.

Table V shows results of four comparative models and the
proposed model on MPI-3-D. Since patch-based CNN, ML-
LPQ [47], and LiveNet [34] only consider RGB images as
the network input, they suffer from inferior performance with
ACER up to0 2.656%, 19.578%, and 9.269%, respectively. Such
poor performance is attributed to low generalization ability
of the networks and single RGB modality. For fair compar-
ison, we also consider FacebagNet model by taking IR and
RGB modalities as the input streams. As a result, although
FaceBagNet with multipatches attains higher performance with
ACER of 0.947% than models utilizing the way of full image
input, the proposed M-Net achieves the best performance with
0.082% ACER and leaves only one false positive and false
negative samples.

In order to examine how the proposed nonlinear data
fusion strategy contributes to the performance, we consider
IR and RGB modalities as the input stream to compare
the performance with other three models (FeatherNet and
FacebagNet and Zhang’s method [25]) on the CASIA-SURF
data set. As shown in Table VI, the proposed M-Net achieves
ACER of 1.114% by constructing parallel IR and RGB
stream as the input of our network. By using the nonlinear
data fusion strategy (stack, summation, and differencing), the
ACER (Ours+) is further reduced to 0.296%, and the numbers
of FP and FN samples are reduced to 33 and 5, respectively.
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Fig. 6. ROC comparison between pretrained model and weighted fine-tuning
model on MIPD-3-D data set. Left: Original ROC. Right: Zoom in ROC.
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Fig. 7. ROC comparison between pretrained model and weighted fine-tuning
model on CASIA-SURF data set. Left: original ROC. Right: zoom in ROC.

TABLE VII
ABLATION STUDY OF SE-BASED BACKBONE
AND ASSOCIATED STRATEGIES

Backbone  Multi Scale Patch ~ Weighted Fine Tuning =~ ACER(%)
Res 0.095
Res v 0.091
Res v 0.092
Res v v 0.090

SE/Res 0.087
SE/Res v 0.085
SE/Res v 0.083
SE/Res v v 0.082

E. Weighted Fine-Tuning on M-Net

Due to the restriction of spoofing data collection, we per-
form weighted fine-tuning on original pretrained data sets and
specific 36 patch positions for face cropping during network
inference. Figs. 6 and 7 show the receiver operating character-
istic (ROC) curve comparisons between the pretrained model
and proposed fine-tuning model on two data sets of MIPD-3-D
and CASIA-SUREF. It can be shown that the weighted fine-
tuning is useful due to better ROC on MIPD-3-D. Moreover,
the strategy also works on CASIA-SURF since the blue curve
from the weighted fine-tuning model achieves slightly higher
TPR with lower FPR than the red curve from the pretrained
model.

F. Ablation Study on M-Net

In this section, ablation studies are conducted on MIP-3-D
to demonstrate the compelling results generated by the SE-
based backbone as well as the contribution of each associated
strategy. Specifically, ResNeXt-based backbone with both
multiscale image patch strategy and weighted fine-tuning strat-
egy is integrated and separately evaluated. It can be seen
from the last row of Table VII that ResNeXt backbone with
multilevel feature fusion outperforms (0.013% ACER) the

TABLE VIII
CROSS-EVALUATION ON D-NET BETWEEN CASIA-SURF AND MIP-2-D

Method Train Test Train Test
CASIA-SURF | MIP-2D| MPI-2D |[CASIA-SURF
ML-LPQ 56.3% 48.9%
Patch-based CNN 45.8% 25.8%
LiveNet 46.6% 21.1%
FacebagNet 43.1% 20.2%
Ours+ 43.5% 19.4%
TABLE IX

CROSS-EVALUATION ON M-NET BETWEEN CASIA-SURF AND MIP-3-D

Method Train Test Train Test
CASIA-SURF | MIP-3D| MPI-3D |[CASIA-SURF
ML-LPQ 56.9% 49.4%
Patch-based CNN 18.7% 18.3%
LiveNet 13.8% 12.6%
FacebagNet 13.2% 11.5%
Ours+ 12.6 % 9.5%

independent ResNeXt, indicating the effectiveness of our fea-
ture skip-connection architecture. Meanwhile, it is interesting
to find that the performance of our proposed network is slightly
improved (0.0035% ACER on Res and 0.0030% ACER on
SE/Res, respectively) by adding the multiscale patch and
weighted fine-tuning strategy. From the above results, our
proposed two strategies that are insensitive to the SE fusion
module, hence can be promoted and further used as other
networks backbone for face anti-spoofing tasks.

G. Cross-Evaluation on CASIA-SURF and MIP-2-D/3-D

Although cross-testing is known to be substantially harder
than intratesting, we still utilize CASIA-SURF, MIP-2-D, and
MIP-3-D to perform cross-testing. Tables VIII and IX show
cross-testing comparison results of different models for the
D-Net and M-Net, respectively. From Tables VIII and IX, we
can draw the following conclusions.

1) The overall ACER scores in Table VIII are higher than in
Table IX, indicating that the model generalization ability
on D-Net is lower than M-Net.

2) In the case of cross-testing between CASIA-SURF and
MIP-2-D, the D-Net model does not perform well since
the external background of face images on CASIA-
SUREF is all replaced by uniform zero values, whereas
no further images preprocessing is implemented on MIP-
2-D. Hence, the different ways of images preprocessing
finally impact on ACER by dramatically increasing false
positive samples.

3) For the M-Net model comparison shown in Table IX,
the proposed model achieves the lowest ACER of 12.6%
and 9.5% when the flipping data set is used for training
and testing. Besides, the cross-data set evaluation did not
perform as good as intradata set evaluation due to the
diversity of the image quality, such as noise, resolution,
exposure, etc.

H. Cross-Evaluation on M-Net Between MIP-2-D and
MIP-3-D

To evaluate model impact by different types of fake style
variations, we perform cross-data set evaluation on MIP-2-D
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TABLE X
CROSS-EVALUATION ON M-NET WITH MIP-3-D
TRAINING AND MIPD TESTING

Method FP FN APCER (%) NPCER (%) ACER (%)

ResNet-18[27] 64 57 0.858 1.115 0.983

FeatherNet 26 34 0.346 0.687 0.517

FaceBagNet 63 10 0.839 0.202 0.521

CDCN [16] 12 11 1.081 0.813 0.947

Ours+ 45 6 0.599 0.121 0.301
TABLE XI

COMPARISON RESULTS OF CASCADE NETWORK AND OTHER
METHODS ON OVERALL MIPD DATA SET

Method FP  FN  APCER (%) NPCER (%) ACER (%)
ResNet-18[27] 32 20 0.4263 0.4042 0.4152
FeatherNet 15 24 0.1998 0.4851 0.3425
FaceBagNet 12 3 0.1598 0.0606 0.1102
Ours+ 8 6 0.0932 0.1211 0.1071

and MIP-3-D. To follow our original intention to establish a
cascade network that can resist 2-D and 3-D-based face anti-
spoofing, we evaluate the M-Net by the training model on
MIP-3-D and testing model on MIPD. As shown in Table X,
our proposed M-Net with data fusion strategy (Ours+) achieves
the ACER of 0.301, which outperforms comparative models,
including CDCN, FaceBagNet, FeatherNet, and ResNet-18.
To avoid the uncertainty of illumination from RGB images,
we choose to take input of the IR image for CDCN. From
the results on our model, we can see that the FP number
raised greater than the FN number compared to intradata set
evaluation in Table V. It further manifests that fake faces
with different materials will affect the performance of M-Net.
Hence, it demonstrates the necessity of designing a cascade
network to eliminate different types of spoofing faces.

1. Cascade Evaluation

For the cascade framework evaluation, each hierarchical
network is individually trained on the MIP-2-D and MIP-3-D,
respectively. The above experimental results show that both
D-Net and M-Net only provide limited performance for face
anti-spoofing. In fact, the D-Net can be viewed as a prelimi-
narily discriminator to prevent basic face spoofing styles, such
as flatten or curved papers, videos, etc., and M-Net plays a role
of decisive discriminator for final classification based on the
intrinsic material attribute. It is clear that the proposed cas-
cade framework integrates advantages of D-Net and M-Net.
Table XI shows that the proposed cascade framework with
ACER of 0.1071% outperforms all three comparative models
with ACER of 0.4152%, 0.3425%, and 0.1102%, respectively.

V. DISCUSSION

With multimodality streams, conventional printed-like 2-
D face attacks can be easily discriminated by D-Net based
on depth data, and vivid 3-D face attacks can be also pre-
vented subsequently by M-Net based on multimodality data.
Due to the fact that many factors comprehensively affect the

face anti-spoofing system, we did serval functionally inde-
pendent subexperiments to assess the contribution of different
factors. For our proposed cascade framework, the first stage
of D-Net only focuses on the depth stream. Hence, it ensures
most of 2-D spoofing faces to be perfectly recognized and
merely allows 3-D realistic fake faces to be identified at the
next M-Net. Due to such framework design, the collection
of training data for M-Net is composed of large sets of 3-
D realistic fake samples and small sets of 2-D fake samples,
which improves the discrimination ability of M-Net on 3-D
fake samples but not fails to prevent 2-D fake samples. From
the experimental results, it can been seen that M-Net presents
better results compared to state-of-the-art models due to better
nonlinearity from multimodality data and better feature fusion
from multiple network levels. Furthermore, the weighted fine-
tuning strategy improves network performance because we do
not bring any extra training samples but merely take specific
patches from original images as fine-tuning data. Actually,
the strategy can be also adopted by taking our network as
a pretrained model in other face anti-spoofing tasks.

VI. CONCLUSION AND FUTURE WORK

In this work, we have studied the task of face anti-spoofing
for preventing both 2-D and 3-D face attacks under several
identification verification scenarios. For this task, we have
developed a two-stage cascade framework to extract both face
reflectance features and multilevel of face texture features by
considering the data nonlinearity fusion strategy and network
skip-connection architecture. The experimental results show
that the proposed anti-spoofing framework can prevent diver-
sity of face attacking forms, such as dim light, realistic face
camouflage, static or motion pattern, etc. Furthermore, the
proposed model shows strong generalization ability on PAs
since it fuses features from coarse to fine network levels
and utilizes the nonlinearity of multimodality information. For
future works, we will establish a more pervasive face spoofing
data set to analyze the generalization ability of the proposed
framework. Moreover, the proposed cascade strategy can also
be extended toward other tasks of biometric modality attack
detection, such as print attack in iris and palm.
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